-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathflow.py
293 lines (228 loc) · 10.3 KB
/
flow.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
import torch
import torch.nn as nn
import torch.nn.functional as F
from networks import FeatureNet, AffinityNet, RefinementNet
from flow_matching import FlowMatchingSad
from ops.lbp_stereo.bp_op_cuda import BP
from corenet import CvConfidence#, LrCheck, LrDistance,
from corenet import Pad, Unpad
class FlowMethod(nn.Module):
def __init__(self, device, args):
nn.Module.__init__(self)
self.args = args
self._feature_net = None
self._matching = []
self._affinity_net = None
self._refinement_net = None
self._crf = [] # list of bp layers
self.cv_conf = CvConfidence(device).to(device)
self._sws = args.sws
self.pad = None
self.unpad = None
self.device = device
def forward(self, I0_pyramid, I1_pyramid, beliefs_in=None, sws=None):
# necessary for evaluation
if self.pad is None:
self.pad = Pad(self.feature_net.net.divisor, self.args.pad)
if self.unpad is None:
self.unpad = Unpad()
res_dict = {'flow0': None}
I0_in = I0_pyramid[self.args.input_level_offset].to(self.device)
I1_in = I1_pyramid[self.args.input_level_offset].to(self.device)
# pad input for multi-scale (for evaluation)
I0_in = self.pad.forward(I0_in)
I1_in = self.pad.forward(I1_in)
f0_pyramid = self.extract_features(I0_in)
f1_pyramid = self.extract_features(I1_in)
# if sws is not None:
# self.matching.sws = sws
# multi-scale-matching
prob_vol_pyramid = self.match(f0_pyramid, f1_pyramid)
uflow0_pyramid = []
for pv0 in prob_vol_pyramid:
uflow0_pyramid.append(torch.argmax(pv0, dim=-1))
res_dict['flow0'] = uflow0_pyramid
if not self._crf:
return res_dict
affinity_pyramid = None
if self.affinity_net:
affinity_pyramid = self.extract_affinities(I0_in)
for lvl in range(len(affinity_pyramid)):
_, _, h, w = affinity_pyramid[lvl].shape
affinity_pyramid[lvl] = affinity_pyramid[lvl].view((-1, 2, 5, h, w))
affinity_pyramid[lvl] = affinity_pyramid[lvl].unsqueeze(0)
output_flow_pyramid = []
beliefs_pyramid = None
crf_flow_pyramid = []
beliefs_pyramid = []
beliefs_in = None
for lvl in reversed(range(len(prob_vol_pyramid))):
pv_lvl = prob_vol_pyramid[lvl]
m = self.matching[lvl]
affinity = None
if affinity_pyramid is not None:
affinity = affinity_pyramid[lvl]
crf = self.crf[lvl]
# add probably an if condition whether do add multi-scale to crf
if beliefs_in is not None:
N,_,H,W,K = beliefs_in.shape
size = (2*H, 2*W, 2*K-1)
beliefs_in_u = F.interpolate(beliefs_in[:, 0].unsqueeze(1), size=size, mode='trilinear')[:, 0]
beliefs_in_v = F.interpolate(beliefs_in[:, 1].unsqueeze(1), size=size, mode='trilinear')[:, 0]
beliefs_in = torch.cat((beliefs_in_u.unsqueeze(1), beliefs_in_v.unsqueeze(1)), dim=1).contiguous()
pv_lvl = pv_lvl + beliefs_in / 2.0
flow_lvl, beliefs_lvl, affinities_lvl, offsets_lvl = self.optimize_crf(crf, pv_lvl, None, affinity, None)
if lvl == 0: # TODO FOR EVAL!!!!
beliefs_lvl = self.unpad(beliefs_lvl, self.pad.l, self.pad.r, self.pad.t,
self.pad.b, NCHW=False)
flow_lvl = self.unpad(flow_lvl, self.pad.l, self.pad.r, self.pad.t,
self.pad.b)
beliefs_pyramid.append(beliefs_lvl)
crf_flow_pyramid.append(flow_lvl - m.sws // 2)
beliefs_in = beliefs_pyramid[-1]
# beliefs are from low res to high res
beliefs_pyramid.reverse()
crf_flow_pyramid.reverse()
output_flow_pyramid = crf_flow_pyramid
res_dict['flow0'] = crf_flow_pyramid
if self.refinement_net:
# crf
cv_conf_u = self.cv_conf.forward(beliefs_pyramid[0][:,0].permute(0, 3, 1, 2),
crf_flow_pyramid[0][:,0:1] + m.sws // 2)
cv_conf_v = self.cv_conf.forward(beliefs_pyramid[0][:,1].permute(0, 3, 1, 2),
crf_flow_pyramid[0][:,1:2] + m.sws // 2)
conf_all = torch.cat((cv_conf_u, cv_conf_v), dim=1)
refined_flow_pyramid, _ = self.refine_disps(I0_pyramid,
crf_flow_pyramid[0],
confidence=conf_all,
I1=I1_pyramid)
refined_flow_pyramid.reverse()
output_flow_pyramid = refined_flow_pyramid
res_dict['flow0'] = output_flow_pyramid
return res_dict
def extract_features(self, ipt):
if self.feature_net:
return self.feature_net.forward(ipt)
return None
def compute_guidance(self, ipt):
if self.guidance_net:
return self.guidance_net.forward(ipt)
return None
def extract_edges(self, ipt):
if self.edge_net:
return self.edge_net.forward(ipt)
return None
def extract_affinities(self, ipt):
if self.affinity_net:
return self.affinity_net.forward(ipt)
return None
def extract_offsets(self, ipt):
if self.offset_net:
return self.offset_net.forward(ipt)
return None
def match(self, f0, f1):
prob_vols = []
if self.matching:
for matching, f0s, f1s in zip(self.matching, f0, f1):
prob_vols.append(matching.forward(f0s, f1s))
return prob_vols
return None
def optimize_crf(self, crf_layer, prob_vol, weights, affinities, offsets):
if crf_layer:
# iterate over all bp "layers"
for idx, crf in enumerate(crf_layer):
#TODO take care of BP layer idx in adjust functions
prob_vol = prob_vol.contiguous()
weights_input = crf.adjust_input_weights(weights, idx)
affinities_shift = crf.adjust_input_affinities(affinities[:,idx])
offsets_shift = crf.adjust_input_offsets(offsets)
disps, prob_vol, messages = crf.forward(prob_vol, weights_input, affinities_shift, offsets_shift)
return disps, prob_vol, affinities_shift, offsets_shift
return None
def refine_disps(self, I0, d0, confidence=None, I1=None):
if self.refinement_net:
refined, steps = self.refinement_net.forward(I0, d0, confidence, I1)
return refined, steps
return None
def feature_net_params(self, requires_grad=None):
if self.feature_net:
return self.feature_net.parameter_list(requires_grad)
return []
def matching_params(self, requires_grad=None):
params = []
if self.matching:
for m in self.matching:
params += m.parameter_list(requires_grad)
return params
def affinity_net_params(self, requires_grad=None):
if self.affinity_net:
return self.affinity_net.parameter_list(requires_grad)
return []
def crf_params(self, requires_grad=None):
crf_params = []
if self.crf:
for crf_layer in self.crf:
for crf in crf_layer:
crf_params += crf.parameter_list(requires_grad)
return crf_params
def refinement_net_params(self, requires_grad=None):
if self.refinement_net:
return self.refinement_net.parameter_list(requires_grad)
return []
@property
def feature_net(self):
return self._feature_net
@property
def affinity_net(self):
return self._affinity_net
@property
def offset_net(self):
return self._offset_net
@property
def crf(self):
if self._crf == []:
return None
return self._crf
@property
def refinement_net(self):
return self._refinement_net
@property
def matching(self):
return self._matching
@property
def min_disp(self):
return self._min_disp
@property
def max_disp(self):
return self._max_disp
####################################################################################################
# Block Match
####################################################################################################
class BlockMatchFlow(FlowMethod):
def __init__(self, device, args):
FlowMethod.__init__(self, device, args)
self._feature_net = FeatureNet(device, args)
self._matching = []
for matching_lvl in range(self._feature_net.net.num_output_levels):
sws = ((self._sws) // 2**matching_lvl)
self._matching.append(FlowMatchingSad(device, args, sws, lvl=matching_lvl))
if args.matching != 'sad':
print('WARNING: Use SAD matching for flow, but', args.matching, 'was chosen.')
####################################################################################################
# Min-Sum LBP
####################################################################################################
class MinSumFlow(BlockMatchFlow):
def __init__(self, device, args):
BlockMatchFlow.__init__(self, device, args)
self.max_iter = args.max_iter
num_labels = self._sws + 1
self._affinity_net = AffinityNet(device, args)
for lvl in range(self._feature_net.net.num_output_levels):
self._crf.append([BP(device, args, self.max_iter, num_labels, 3,
mode_inference = args.bp_inference,
mode_message_passing='min-sum', layer_idx=idx, level=lvl)
for idx in range(args.num_bp_layers)])
class RefinedMinSumFlow(MinSumFlow):
def __init__(self, device, args):
super(RefinedMinSumFlow, self).__init__(device, args)
self._refinement_net = RefinementNet(device, args, in_channels=7, out_channels=2, with_output_relu=False)