forked from A2R-Lab/TrajoptMPCReference
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTrajoptCost.py
656 lines (545 loc) · 22.5 KB
/
TrajoptCost.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
import numpy as np
from sympy import symbols, diff, Matrix, cos, sin, MatrixSymbol, BlockMatrix, lambdify, ccode
from expressions import *
from TrajoptPlant import *
import csv
class TrajoptCost:
def value():
raise NotImplementedError
def gradient():
raise NotImplementedError
def hessian():
raise NotImplementedError
#------------------------------------------------------------QUADRATIC COST ----------------------------------------------------------------------------------------------------------------
class QuadraticCost(TrajoptCost):
def __init__(self, Q_in: np.ndarray, QF_in: np.ndarray, R_in: np.ndarray, xg_in: np.ndarray, QF_start = None):
self.Q = Q_in
self.QF = QF_in
self.R = R_in
self.xg = xg_in
self.increaseCount_Q = 0
self.increaseCount_QF = 0
self.QF_start = QF_start
self.saved_cost=[]
self.saved_grad=[]
self.saved_hess=[]
def get_currQ(self, u = None, timestep = None):
last_state = isinstance(u,type(None))
shifted_QF = (not isinstance(timestep,type(None)) \
and not isinstance(self.QF_start,type(None)) \
and timestep >= self.QF_start)
use_QF = last_state or shifted_QF
currQ = self.QF if use_QF else self.Q
return currQ
def value(self, x: np.ndarray, u: np.ndarray = None, timestep: int = None):
delta_x = x - self.xg
currQ = self.get_currQ(u,timestep)
cost = 0.5*np.matmul(delta_x.transpose(),np.matmul(currQ,delta_x))
if not isinstance(u, type(None)):
cost += 0.5*np.matmul(u.transpose(),np.matmul(self.R,u))
self.saved_cost.append([cost])
return cost
def gradient(self, x: np.ndarray, u: np.ndarray = None, timestep: int = None):
delta_x = x - self.xg
currQ = self.get_currQ(u,timestep)
top = np.matmul(delta_x.transpose(),currQ)
if u is None:
grad= top
else:
bottom = np.matmul(u.transpose(),self.R)
grad = np.hstack((top,bottom))
self.saved_grad.append(grad)
return grad
def hessian(self, x: np.ndarray, u: np.ndarray = None, timestep: int = None):
nx = self.Q.shape[0]
nu = self.R.shape[0]
currQ = self.get_currQ(u,timestep)
if u is None:
hess= currQ
else:
top = np.hstack((currQ,np.zeros((nx,nu))))
bottom = np.hstack((np.zeros((nu,nx)),self.R))
hess= np.vstack((top,bottom))
self.saved_hess.append(hess)
return hess
def increase_QF(self, multiplier: float = 2.0):
self.QF *= multiplier
self.increaseCount_QF += 1
return self.increaseCount_QF
def increase_Q(self, multiplier: float = 2.0):
self.Q *= multiplier
self.increaseCount_Q += 1
return self.increaseCount_Q
def reset_increase_count_QF(self):
self.increaseCount_QF = 0
def reset_increase_count_Q(self):
self.increaseCount_Q = 0
def shift_QF_start(self, shift: float = -1.0):
self.QF_start += shift
self.QF_start = max(self.QF_start, 0)
return self.QF_start
#-------------------------------------------------------------SYMBOLIC COST ----------------------------------------------------------------------------------------------------------------
class ArmCost(TrajoptCost):
def __init__(self, Q_in: np.ndarray, QF_in: np.ndarray, R_in: np.ndarray, xg_in: np.ndarray, simplified_hessian: bool,QF_start = None):
self.Q = Q_in
self.QF = QF_in
self.R = R_in
self.xg = xg_in
self.increaseCount_Q = 0
self.increaseCount_QF = 0
self.QF_start = QF_start
self.l1=1
self.l2=1
self.simplified_hess=simplified_hessian
self.cost_control_in=self.symbolic_cost(control=True)
self.cost_control_in_eval=self.symbolic_cost_eval(control=True)
self.cost_control_off=self.symbolic_cost(control=False)
self.cost_control_off_eval=self.symbolic_cost_eval(control=False)
self.grad_control_in=self.symbolic_gradient(control=True)
self.grad_control_off=self.symbolic_gradient(control=False)
self.grad_control_in_eval=self.symbolic_gradient_eval(control=True)
self.grad_control_off_eval=self.symbolic_gradient_eval(control=False)
self.hess_control_in=self.symbolic_hessian(control=True)
self.hess_control_off=self.symbolic_hessian(control=False)
self.hess_control_in_eval=self.symbolic_hessian_eval(control=True)
self.hess_control_off_eval=self.symbolic_hessian_eval(control=False)
self.saved_cost=[]
self.saved_grad=[]
self.saved_hess=[]
self.saved_simple_hess=[]
# Is used by the gradient to find the symbolic derivative
def symbolic_cost(self, control=True):
q1,q2,q1_dot,q2_dot, u1, u2 = symbols('q1 q2 q1_dot q2_dot u1 u2')
Q= MatrixSymbol('Q',4,4)
R= MatrixSymbol('R',2,2)
xg=MatrixSymbol('xg',4,1)
x=-self.l2*sin(q2+q1)-self.l1*sin(q1)
y=self.l2*cos(q2+q1)+self.l1*cos(q1)
c12 = cos(q2+q1)
s12 = sin(q2+q1)
J = Matrix([
[-self.l2*c12-self.l1*cos(q1), -self.l2*c12],
[-self.l2*s12-self.l1*sin(q1), -self.l2*s12]
])
#Jacobian=Matrix([[diff(x,q1),diff(x,q2)],[diff(y,q1),diff(y,q2)]])
pos_ee=Matrix([x,y])
vel_ee=J*Matrix([q1_dot,q2_dot])
delta_x = Matrix([pos_ee, vel_ee]) - Matrix(self.xg)
cost=0.5*delta_x.transpose()*Q*delta_x
if control:
cost += 0.5 * Matrix([u1,u2]).transpose() * R * Matrix([u1,u2])
return cost
# Is computed once, cost that can be evaluated online to find the value
def symbolic_cost_eval(self, control=True):
q1,q2,q1_dot,q2_dot, u1, u2 = symbols('q1 q2 q1_dot q2_dot u1 u2')
Q= MatrixSymbol('Q',4,4)
R= MatrixSymbol('R',2,2)
xg=MatrixSymbol('xg',4,1)
x=-self.l2*sin(q2+q1)-self.l1*sin(q1)
y=self.l2*cos(q2+q1)+self.l1*cos(q1)
c12 = cos(q2+q1)
s12 = sin(q2+q1)
J = Matrix([
[-self.l2*c12-self.l1*cos(q1), -self.l2*c12],
[-self.l2*s12-self.l1*sin(q1), -self.l2*s12]
])
#Jacobian=Matrix([[diff(x,q1),diff(x,q2)],[diff(y,q1),diff(y,q2)]])
pos_ee=Matrix([x,y])
vel_ee=J@Matrix([q1_dot,q2_dot])
state= Matrix([pos_ee, vel_ee])
delta_x = state - Matrix(self.xg)
cost=0.5*delta_x.T@Q@delta_x
if control:
cost += 0.5 * Matrix([u1,u2]).T @R @ Matrix([u1,u2])
# to_return=lambdify([q1,q2,q1_dot ,q2_dot],state, "numpy"), lambdify([q1,q2,q1_dot ,q2_dot, u1, u2, Q, R, xg],cost, "numpy")
return lambdify([q1,q2,q1_dot ,q2_dot,Q, R, u1, u2,xg],cost, "numpy")
return to_return
else:
# return lambdify([q1,q2,q1_dot ,q2_dot],state, "numpy"), lambdify([q1,q2,q1_dot ,q2_dot, Q, xg],cost, "numpy")
return lambdify([q1,q2,q1_dot ,q2_dot, Q, xg],cost, "numpy")
# This was used when all the expressions of the cost were in an external file
# def value(self, x: np.ndarray, u: np.ndarray = None, timestep: int = None):
# currQ = self.get_currQ(u,timestep)
# if u is None:
# cost_value=cost_control_off(x[0],x[1],x[2],x[3],currQ,self.xg)
# else:
# cost_value=cost_control_in(x[0],x[1],x[2],x[3],u,currQ,self.R,self.xg)
# return cost_value
def current_state(self,x: np.ndarray):
[q1,q2,q1_d,q2_d]=x
c12 = np.cos(q2+q1)
s12 = np.sin(q2+q1)
J = Matrix([
[-self.l2*c12-self.l1*np.cos(q1), -self.l2*c12],
[-self.l2*s12-self.l1*np.sin(q1), -self.l2*s12]
])
v=J@x[2:4]
x= np.array([-self.l2*np.sin(q2+q1)-self.l1*np.sin(q1),\
self.l2*np.cos(q2+q1)+self.l1*np.cos(q1)])
return np.concatenate((x,v))
def value(self, x: np.ndarray, u: np.ndarray = None, timestep: int = None):
currQ = self.get_currQ(u,timestep)
if u is None:
cost_value=self.cost_control_off_eval(x[0],x[1],x[2],x[3],currQ,self.xg)
else:
cost_value=self.cost_control_in_eval(x[0],x[1],x[2],x[3],currQ,self.R,u[0],u[1],self.xg)
self.saved_cost.append([cost_value[0][0]])
return cost_value[0][0]
# Is used by the hessian to find the symbolic derivative of the gradient
def symbolic_gradient(self,control=True):
q1, q2, q1_dot, q2_dot, u1, u2= symbols('q1 q2 q1_dot q2_dot u1 u2')
if(control):
cost=self.cost_control_in
gradient = Matrix(BlockMatrix([diff(cost, q1), diff(cost, q2), diff(cost, q1_dot), diff(cost, q2_dot), diff(cost, u1), diff(cost, u2)]))
return gradient
else:
cost=self.cost_control_off
gradient = Matrix(BlockMatrix([diff(cost, q1), diff(cost, q2), diff(cost, q1_dot), diff(cost, q2_dot)]))
return gradient
# Evaluated version, computed once, evaluated online
def symbolic_gradient_eval(self,control=True):
q1, q2, q1_dot, q2_dot, u1, u2= symbols('q1 q2 q1_dot q2_dot u1 u2')
Q= MatrixSymbol('Q',4,4)
R= MatrixSymbol('R',2,2)
xg=MatrixSymbol('xg',4,1)
if(control):
cost=self.cost_control_in #symbolic expression
gradient = Matrix(BlockMatrix([diff(cost, q1), diff(cost, q2), diff(cost, q1_dot), diff(cost, q2_dot), diff(cost, u1), diff(cost, u2)]))
to_return= lambdify([q1,q2,q1_dot ,q2_dot, Q,R,u1,u2],gradient, "numpy")
return to_return
else:
cost=self.cost_control_off
gradient = Matrix(BlockMatrix([diff(cost, q1), diff(cost, q2), diff(cost, q1_dot), diff(cost, q2_dot)]))
return lambdify([q1,q2,q1_dot ,q2_dot, Q],gradient, "numpy")
def gradient(self,x: np.ndarray, u: np.ndarray = None, timestep: int = None):
currQ = self.get_currQ(u,timestep)
if u is None:
symbolic_grad=self.grad_control_off_eval #ready to evaluate expression
gradient_val= symbolic_grad(x[0], x[1],x[2], x[3],currQ)
else:
symbolic_grad=self.grad_control_in_eval
gradient_val= symbolic_grad(x[0], x[1],x[2], x[3],currQ, self.R, u[0], u[1])
self.saved_grad.append(gradient_val)
return gradient_val[0]
# def gradient(self,x: np.ndarray, u: np.ndarray = None, timestep: int = None):
# # q1, q2, q1_dot, q2_dot, u1, u2= symbols('q1 q2 q1_dot q2_dot u1 u2')
# # Q= MatrixSymbol('Q',4,4)
# currQ = self.get_currQ(u,timestep)
# if u is None:
# gradient_val=gradient_cost_off(x[0],x[1],x[2],x[3],currQ,self.xg)
# else:
# gradient_val=gradient_cost_in(x[0],x[1],x[2],x[3],u[0],u[1],currQ,self.R,self.xg)
# return gradient_val
def symbolic_hessian(self, control=True):
q1, q2, q1_dot, q2_dot, u1, u2= symbols('q1 q2 q1_dot q2_dot u1 u2')
if(control):
cost=self.cost_control_in #symbolic version
hessian = Matrix(BlockMatrix([[diff(cost, q1_, q2_) for q1_ in [q1, q2, q1_dot, q2_dot, u1, u2]] for q2_ in [q1, q2, q1_dot, q2_dot, u1, u2]]))
return hessian
else:
cost=self.cost_control_off
hessian= Matrix(BlockMatrix([[diff(cost, q1_, q2_) for q1_ in [q1, q2, q1_dot, q2_dot]] for q2_ in [q1, q2, q1_dot, q2_dot]]))
return hessian
def symbolic_hessian_eval(self, control=True):
q1, q2, q1_dot, q2_dot, u1, u2= symbols('q1 q2 q1_dot q2_dot u1 u2')
Q= MatrixSymbol('Q',4,4)
R= MatrixSymbol('R',2,2)
xg=MatrixSymbol('xg',4,1)
if(control):
cost=self.cost_control_in
hessian = Matrix(BlockMatrix([[diff(cost, q1_, q2_) for q1_ in [q1, q2, q1_dot, q2_dot, u1, u2]] for q2_ in [q1, q2, q1_dot, q2_dot, u1, u2]]))
return lambdify([q1,q2,q1_dot ,q2_dot, u1, u2, Q, R, xg],hessian, "numpy")
else:
cost=self.cost_control_off
hessian= Matrix(BlockMatrix([[diff(cost, q1_, q2_) for q1_ in [q1, q2, q1_dot, q2_dot]] for q2_ in [q1, q2, q1_dot, q2_dot]]))
return lambdify([q1,q2,q1_dot ,q2_dot, Q, xg],hessian, "numpy")
def hessian(self,x: np.ndarray, u: np.ndarray = None, timestep: int = None):
currQ = self.get_currQ(u,timestep)
# if (self.simplified_hess):
# grad= self.gradient(x,u)
# n=grad.shape[0]
# grad=grad.reshape((n,1))
# self.saved_simple_hess.append(simplified_hess)
# else:
if u is None:
symbolic_hess=self.hess_control_off_eval #ready to evaluate hess
hessian_val= symbolic_hess(x[0], x[1],x[2], x[3],currQ, self.xg)
else:
symbolic_hess=self.hess_control_in_eval
hessian_val= symbolic_hess(x[0], x[1],x[2], x[3], u[0], u[1],currQ, self.R, self.xg)
self.saved_hess.append(hessian_val)
return hessian_val
# def hessian(self,x: np.ndarray, u: np.ndarray = None, timestep: int = None):
# currQ = self.get_currQ(u,timestep)
# if u is None:
# hessian_eval=hessian_cost_off(x[0],x[1],x[2],x[3],currQ,self.xg)
# else:
# hessian_eval=hessian_cost_in(x[0],x[1],x[2],x[3],u[0],u[1],currQ,self.R,self.xg)
# return hessian_eval
def get_currQ(self, u = None, timestep = None):
last_state = isinstance(u,type(None))
shifted_QF = (not isinstance(timestep,type(None)) \
and not isinstance(self.QF_start,type(None)) \
and timestep >= self.QF_start)
use_QF = last_state or shifted_QF
currQ = self.QF if use_QF else self.Q
return currQ
def increase_QF(self, multiplier: float = 2.0):
self.QF *= multiplier
self.increaseCount_QF += 1
return self.increaseCount_QF
def increase_Q(self, multiplier: float = 2.0):
self.Q *= multiplier
self.increaseCount_Q += 1
return self.increaseCount_Q
def reset_increase_count_QF(self):
self.increaseCount_QF = 0
def reset_increase_count_Q(self):
self.increaseCount_Q = 0
def shift_QF_start(self, shift: float = -1.0):
self.QF_start += shift
self.QF_start = max(self.QF_start, 0)
return self.QF_start
#-------------------------------------------------------------------URDF COST ----------------------------------------------------------------------------------------------------------------
# For now works only with numpy, no overloading
class UrdfCost(TrajoptCost):
def __init__(self, plant: URDFPlant , Q_in: np.ndarray, QF_in: np.ndarray, R_in: np.ndarray, xg_in: np.ndarray, QF_start = None, overloading=False):
self.plant=plant
self.Q = Q_in
self.QF = QF_in
self.R = R_in
self.xg = xg_in
self.increaseCount_Q = 0
self.increaseCount_QF = 0
self.QF_start = QF_start
self.saved_cost=[]
self.saved_grad=[]
self.saved_hess=[]
self.saved_Jacobian_tot_state=[]
self.saved_dx=[]
self.n=self.plant.get_num_pos() # n joints
self.offsets=[np.matrix([[0,1,0,1]])] # May need to be updated if change in URDF
self.plant.rbdReference.overloading = overloading
self.overloading=overloading
self.hess_mode=0
# 0: approximate
# 1: exacte
# 2: grad.T@grad
# 3: No hess
def compute_J(self,q): # online value of the Jacobian
J=self.plant.rbdReference.Jacobian(q,offsets = self.offsets)
return J
def value(self, x: np.ndarray, u: np.ndarray = None, timestep: int = None, iter_1=0, iter_2=0, iter_3=0):
dx=self.delta_x(x)
currQ = self.get_currQ(u,timestep)
if(self.overloading):
cost = 0.5*( dx.transpose()@(currQ@dx))
if not isinstance(u, type(None)):
cost = cost+(0.5*( u.transpose()@(self.R@u)))
self.saved_cost.append({'value':cost,'iteration':iter_1,'outer_iteration':iter_2, 'line_search_iteration': iter_3})
self.saved_dx.append({'value':dx,'iteration':iter_1,'outer_iteration':iter_2, 'line_search_iteration': iter_3})
return np.float64(cost)
else:
cost = 0.5*np.matmul(dx.transpose(),np.matmul(currQ,dx))
if not isinstance(u, type(None)):
cost += 0.5*np.matmul(u.transpose(),np.matmul(self.R,u))
self.saved_cost.append({'value':cost,'iteration':iter_1,'outer_iteration':iter_2, 'line_search_iteration': iter_3})
self.saved_dx.append({'value':dx,'iteration':iter_1,'outer_iteration':iter_2, 'line_search_iteration': iter_3})
return cost
def delta_x(self, x: np.ndarray):
pos = self.plant.rbdReference.end_effector_positions(x[:self.n],self.offsets)
if(self.overloading):
vel = ( self.compute_J(x[:self.n])@x[self.n:] )
vel= vel.reshape((self.n,1))# v=J*qd
X = matrix_.vstack(pos,vel)
X=X.reshape((2*self.n,))
else:
vel = (self.compute_J(x[:self.n])@x[self.n:]).transpose() # v=J*qd
X = np.array(np.vstack((pos,vel))).reshape(2*self.n,)
return X - self.xg
def gradient(self, x: np.ndarray, u: np.ndarray = None, timestep: int = None, iter_1=0, iter_2=0, iter_3=0):
dx=self.delta_x(x)
currQ = self.get_currQ(u,timestep)
J_tot=self.plant.rbdReference.jacobian_tot_state(x[:self.n],x[self.n:])
if(self.overloading):
top=( dx.transpose()@currQ@J_tot ).reshape((2*self.n,))
if u is None:
grad= top
else:
bottom = ( u.transpose()@self.R ).reshape((self.n,))
grad= matrix_.hstack(top,bottom)
else:
top=np.array(dx.transpose()@currQ@J_tot).reshape(2*self.n,)
if u is None:
grad= top
else:
bottom = (np.matmul(u.transpose(),self.R))
grad= np.hstack((top,bottom))
self.saved_grad.append({'value':grad,'iteration':iter_1,'outer_iteration':iter_2, 'line_search_iteration': iter_3})
self.saved_Jacobian_tot_state.append({'value':J_tot,'iteration':iter_1,'outer_iteration':iter_2, 'line_search_iteration': iter_3})
return grad
def dJtotdq(self, q: np.ndarray, qd: np.ndarray):
dJdq=self.plant.rbdReference.dJdq(q, self.offsets)
ddJdq = self.plant.rbdReference.d2Jdq2(q, self.offsets)
n=self.n
if(self.overloading):
A=matrix_.hstack(dJdq, np.zeros((2*n,n))).reshape((n, n, 2*n))
B= matrix_.hstack(dJdq,ddJdq).reshape((n, n, 2*n))
dJtotdq = matrix_(np.zeros((2*n, 2*n, 2*n)))
dJtotdq[0:n, 0:n, :] = A #top left
dJtotdq[0:n, n:2*n, :] = matrix_(np.zeros((n, n, 2*n))) #top right
dJtotdq[n:2*n, 0:n, :] = B #bottom left
dJtotdq[n:2*n, n:2*n, :] = A #bottom right
else:
A=np.hstack((dJdq, np.zeros((2*n,n)))).reshape(n, n, 2*n)
B= np.hstack((dJdq,ddJdq)).reshape(n, n, 2*n)
dJtotdq = np.zeros((2*n, 2*n, 2*n))
dJtotdq[0:n, 0:n, :] = A #top left
dJtotdq[0:n, n:2*n, :] = np.zeros((n, n, 2*n)) #top right
dJtotdq[n:2*n, 0:n, :] = B #bottom left
dJtotdq[n:2*n, n:2*n, :] = A #bottom right
return dJtotdq
def hessian(self, x: np.ndarray, u: np.ndarray = None, timestep: int = None, iter_1=0, iter_2=0, iter_3=0):
q=x[:self.n]
qd=x[self.n:]
nx = self.Q.shape[0]
nu = self.R.shape[0]
currQ = self.get_currQ(u,timestep)
if(self.hess_mode==0):
Jtot=self.plant.rbdReference.jacobian_tot_state(q,qd, self.offsets)
hess_x=((currQ@Jtot).transpose())@Jtot
elif(self.hess_mode==1):
Jtot=self.plant.rbdReference.jacobian_tot_state(q,qd, self.offsets)
dJtotdq=self.dJtotdq(q,qd)
dx=self.delta_x(x).reshape((2*self.n,1))
hess_1=((currQ@Jtot).transpose())@Jtot
hess2=(dx.T@currQ@dJtotdq).reshape((4,4))
hess_x = hess_x+hess2
elif(self.hess_mode==2):
hess_x=self.grad[:nx].transpose()@self.grad[:nx]
elif(self.hess_mode==3):
hess_x= np.zeros((nx,nx))
if u is None:
hess= hess_x
else:
if(self.overloading):
top = matrix_.hstack(hess_x,np.zeros((nx,nu)))
bottom = matrix_.hstack(np.zeros((nu,nx)),self.R)
hess= matrix_.vstack(top,bottom)
else:
top = np.hstack((hess_x,np.zeros((nx,nu))))
bottom = np.hstack((np.zeros((nu,nx)),self.R))
hess= np.vstack((top,bottom))
self.saved_hess.append({'value':hess,'iteration':iter_1,'outer_iteration':iter_2, 'line_search_iteration': iter_3})
self.saved_Jacobian_tot_state.append({'value':Jtot,'iteration':iter_1,'outer_iteration':iter_2, 'line_search_iteration': iter_3})
return hess
# SIMPLIFIED HESSIAN => DOESN'T WORK
# def hessian(self, x: np.ndarray, u: np.ndarray = None, timestep: int = None):
# grad=self.gradient(x,u)
# n=grad.shape[0]
# hess=grad.reshape(n,1)@(grad.reshape(1,n))
# self.saved_hess.append(hess)
# return hess
# HESSIAN FROM EVALUATION FILE => NOT UP TO DATE BC ROTATION AXIS IN THE URDF HAS CHANGED
# def hessian(self,x: np.ndarray, u: np.ndarray = None, timestep: int = None):
# currQ = self.get_currQ(u,timestep)
# if u is None:
# hessian_eval=hessian_cost_off(x[0],x[1],x[2],x[3],currQ,self.xg)
# else:
# hessian_eval=hessian_cost_in(x[0],x[1],x[2],x[3],u[0],u[1],currQ,self.R,self.xg)
# self.saved_hess.append(hessian_eval)
# return hessian_eval
def get_currQ(self, u = None, timestep = None):
last_state = isinstance(u,type(None))
shifted_QF = (not isinstance(timestep,type(None)) \
and not isinstance(self.QF_start,type(None)) \
and timestep >= self.QF_start)
use_QF = last_state or shifted_QF
currQ = self.QF if use_QF else self.Q
return currQ
def increase_QF(self, multiplier: float = 2.0):
self.QF = self.QF*multiplier
self.increaseCount_QF = self.increaseCount_QF+1
return self.increaseCount_QF
def increase_Q(self, multiplier: float = 2.0):
self.Q = self.Q*multiplier
self.increaseCount_Q = self.increaseCount_Q+1
return self.increaseCount_Q
def reset_increase_count_QF(self):
self.increaseCount_QF = 0
def reset_increase_count_Q(self):
self.increaseCount_Q = 0
def shift_QF_start(self, shift: float = -1.0):
self.QF_start = self.QF_start+shift
self.QF_start = max(self.QF_start, 0)
return self.QF_start
class NumericalCost(TrajoptCost):
def __init__(self, Q_in: np.ndarray, QF_in: np.ndarray, R_in: np.ndarray, xg_in: np.ndarray, QF_start = None):
self.Q = Q_in
self.QF = QF_in
self.R = R_in
self.xg = xg_in
self.increaseCount_Q = 0
self.increaseCount_QF = 0
self.QF_start = QF_start
self.l1=1
self.l2=1
def numerical_gradient(self, f, x,u, h=1e-5):
state=np.concatenate([x, u])
grad = np.zeros_like(state)
for i in range(len(state)):
old_value = state[i]
state[i] = old_value + h
fxh1 = f(state[:4],state[4:])
state[i] = old_value - h
fxh2 = f(state[:4],state[4:])
grad[i] = (fxh1 - fxh2) / (2 * h)
state[i] = old_value
return grad
def cost_function(self, x: np.ndarray, u: np.ndarray):
currQ = self.Q
J=np.zeros((2,2))
J[0,0]=-self.l1*np.cos(x[0])-self.l2*np.cos(x[0]+x[1])
J[0,1]=-self.l2*np.cos(x[0]+x[1])
J[1,0]=-self.l1*np.sin(x[0])-self.l2*np.sin(x[0]+x[1])
J[1,1]=-self.l2*np.sin(x[0]+x[1])
v=J@x[2:4] #q_dot
pos=np.array([-self.l2*np.sin(x[0]+x[1])-self.l1*np.sin(x[0]),\
self.l2*np.cos(x[0]+x[1])+self.l1*np.cos(x[0])])
dx = np.concatenate((pos, v)) - self.xg
cost_func= 0.5*np.matmul(dx.transpose(),np.matmul(currQ,dx))
if not isinstance(u, type(None)):
cost_func += 0.5*np.matmul(u.transpose(),np.matmul(self.R,u))
return cost_func
def value(self, x: np.ndarray, u: np.ndarray = None, timestep: int = None):
return self.cost_function(x,u)
def gradient(self, x: np.ndarray, u: np.ndarray = None, timestep: int = None):
return self.numerical_gradient(self.cost_function, x, u) # control off for now
def hessian(self, x: np.ndarray, u: np.ndarray = None, timestep: int = None):
grad=self.gradient(x,u)
return grad@(grad.transpose())
def get_currQ(self, u = None, timestep = None):
last_state = isinstance(u,type(None))
shifted_QF = (not isinstance(timestep,type(None)) \
and not isinstance(self.QF_start,type(None)) \
and timestep >= self.QF_start)
use_QF = last_state or shifted_QF
currQ = self.QF if use_QF else self.Q
return currQ
def increase_QF(self, multiplier: float = 2.0):
self.QF *= multiplier
self.increaseCount_QF += 1
return self.increaseCount_QF
def increase_Q(self, multiplier: float = 2.0):
self.Q *= multiplier
self.increaseCount_Q += 1
return self.increaseCount_Q
def reset_increase_count_QF(self):
self.increaseCount_QF = 0
def reset_increase_count_Q(self):
self.increaseCount_Q = 0
def shift_QF_start(self, shift: float = -1.0):
self.QF_start += shift
self.QF_start = max(self.QF_start, 0)
return self.QF_start