forked from 2022-SOJUNGDAE/deep-text-recognition-SOJUNGDAE
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.out
292 lines (291 loc) · 19 KB
/
train.out
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
--------------------------------------------------------------------------------
dataset_root: data_lmdb/train
opt.select_data: ['/']
opt.batch_ratio: ['1']
--------------------------------------------------------------------------------
dataset_root: data_lmdb/train dataset: /
sub-directory: /. num samples: 9712
num total samples of /: 9712 x 1.0 (total_data_usage_ratio) = 9712
num samples of / per batch: 256 x 1.0 (batch_ratio) = 256
--------------------------------------------------------------------------------
Total_batch_size: 256 = 256
--------------------------------------------------------------------------------
dataset_root: data_lmdb/validation dataset: /
sub-directory: /. num samples: 2427
--------------------------------------------------------------------------------
model input parameters 100 100 20 1 512 256 975 25 TPS ResNet BiLSTM Attn
Skip Transformation.LocalizationNetwork.localization_fc2.weight as it is aeady initialized
Skip Transformation.LocalizationNetwork.localization_fc2.bias as it is aeady initialized
loading pretrained model from /home/jet981217/Downloads/TPS-ResNet-BiLSTM-Attn.pth
Model:
DataParallel(
(module): Model(
(Transformation): TPS_SpatialTransformerNetwork(
(LocalizationNetwork): LocalizationNetwork(
(conv): Sequential(
(0): Conv2d(1, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU(inplace=True)
(3): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(4): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(5): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): ReLU(inplace=True)
(7): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(8): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(9): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(10): ReLU(inplace=True)
(11): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(12): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(13): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(14): ReLU(inplace=True)
(15): AdaptiveAvgPool2d(output_size=1)
)
(localization_fc1): Sequential(
(0): Linear(in_features=512, out_features=256, bias=True)
(1): ReLU(inplace=True)
)
(localization_fc2): Linear(in_features=256, out_features=40, bias=True)
)
(GridGenerator): GridGenerator()
)
(FeatureExtraction): ResNet_FeatureExtractor(
(ConvNet): ResNet(
(conv0_1): Conv2d(1, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn0_1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv0_2): Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn0_2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(maxpool1): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(layer1): Sequential(
(0): BasicBlock(
(conv1): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(downsample): Sequential(
(0): Conv2d(64, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
)
(conv1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(maxpool2): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(layer2): Sequential(
(0): BasicBlock(
(conv1): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(downsample): Sequential(
(0): Conv2d(128, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(1): BasicBlock(
(conv1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(maxpool3): MaxPool2d(kernel_size=2, stride=(2, 1), padding=(0, 1), dilation=1, ceil_mode=False)
(layer3): Sequential(
(0): BasicBlock(
(conv1): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(downsample): Sequential(
(0): Conv2d(256, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(1): BasicBlock(
(conv1): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(2): BasicBlock(
(conv1): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(3): BasicBlock(
(conv1): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(4): BasicBlock(
(conv1): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
)
(conv3): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(layer4): Sequential(
(0): BasicBlock(
(conv1): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(1): BasicBlock(
(conv1): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(2): BasicBlock(
(conv1): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
)
(conv4_1): Conv2d(512, 512, kernel_size=(2, 2), stride=(2, 1), padding=(0, 1), bias=False)
(bn4_1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv4_2): Conv2d(512, 512, kernel_size=(2, 2), stride=(1, 1), bias=False)
(bn4_2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(AdaptiveAvgPool): AdaptiveAvgPool2d(output_size=(None, 1))
(SequenceModeling): Sequential(
(0): BidirectionalLSTM(
(rnn): LSTM(512, 256, batch_first=True, bidirectional=True)
(linear): Linear(in_features=512, out_features=256, bias=True)
)
(1): BidirectionalLSTM(
(rnn): LSTM(256, 256, batch_first=True, bidirectional=True)
(linear): Linear(in_features=512, out_features=256, bias=True)
)
)
(Prediction): Attention(
(attention_cell): AttentionCell(
(i2h): Linear(in_features=256, out_features=256, bias=False)
(h2h): Linear(in_features=256, out_features=256, bias=True)
(score): Linear(in_features=256, out_features=1, bias=False)
(rnn): LSTMCell(1231, 256)
)
(generator): Linear(in_features=256, out_features=975, bias=True)
)
)
)
Trainable params num : 50755479
Optimizer:
Adadelta (
Parameter Group 0
eps: 1e-08
lr: 1
rho: 0.95
weight_decay: 0
)
------------ Options -------------
exp_name: ./4
train_data: data_lmdb/train
valid_data: data_lmdb/validation
manualSeed: 1111
workers: 0
batch_size: 256
num_iter: 300000
valInterval: 200
saved_model: /home/jet981217/Downloads/TPS-ResNet-BiLSTM-Attn.pth
FT: True
adam: False
lr: 1
beta1: 0.9
rho: 0.95
eps: 1e-08
grad_clip: 5
baiduCTC: False
select_data: ['/']
batch_ratio: ['1']
total_data_usage_ratio: 1.0
batch_max_length: 25
imgH: 100
imgW: 100
rgb: False
character: 가각간갇갈감갑값갓강갖같갚갛개객걀걔거걱건걷걸검겁것겉게겨격겪견결겹경곁계고곡곤곧골곰곱곳공과관광괜괴굉교구국군굳굴굵굶굽궁권귀귓규균귤그극근글긁금급긋긍기긴길김깅깊까깍깎깐깔깜깝깡깥깨꺼꺾껌껍껏껑께껴꼬꼭꼴꼼꼽꽂꽃꽉꽤꾸꾼꿀꿈뀌끄끈끊끌끓끔끗끝끼낌나낙낚난날낡남납낫낭낮낯낱낳내냄냇냉냐냥너넉넌널넓넘넣네넥넷녀녁년념녕노녹논놀놈농높놓놔뇌뇨누눈눕뉘뉴늄느늑는늘늙능늦늬니닐님다닥닦단닫달닭닮담답닷당닿대댁댐댓더덕던덜덟덤덥덧덩덮데델도독돈돌돕돗동돼되된두둑둘둠둡둥뒤뒷드득든듣들듬듭듯등디딩딪따딱딴딸땀땅때땜떠떡떤떨떻떼또똑뚜뚫뚱뛰뜨뜩뜯뜰뜻띄라락란람랍랑랗래랜램랫략량러럭런럴럼럽럿렁렇레렉렌려력련렬렵령례로록론롬롭롯료루룩룹룻뤄류륙률륭르른름릇릎리릭린림립릿링마막만많말맑맘맙맛망맞맡맣매맥맨맵맺머먹먼멀멈멋멍멎메멘멩며면멸명몇모목몬몰몸몹못몽묘무묵묶문묻물뭄뭇뭐뭘뭣므미민믿밀밉밌및밑바박밖반받발밝밟밤밥방밭배백뱀뱃뱉버번벌범법벗베벤벨벼벽변별볍병볕보복볶본볼봄봇봉뵈뵙부북분불붉붐붓붕붙뷰브븐블비빌빔빗빚빛빠빡빨빵빼뺏뺨뻐뻔뻗뼈뼉뽑뿌뿐쁘쁨사삭산살삶삼삿상새색샌생샤서석섞선설섬섭섯성세섹센셈셋셔션소속손솔솜솟송솥쇄쇠쇼수숙순숟술숨숫숭숲쉬쉰쉽슈스슨슬슴습슷승시식신싣실싫심십싯싱싶싸싹싼쌀쌍쌓써썩썰썹쎄쏘쏟쑤쓰쓴쓸씀씌씨씩씬씹씻아악안앉않알앓암압앗앙앞애액앨야약얀얄얇양얕얗얘어억언얹얻얼엄업없엇엉엊엌엎에엔엘여역연열엷염엽엿영옆예옛오옥온올옮옳옷옹와완왕왜왠외왼요욕용우욱운울움웃웅워원월웨웬위윗유육율으윽은을음응의이익인일읽잃임입잇있잊잎자작잔잖잘잠잡잣장잦재쟁쟤저적전절젊점접젓정젖제젠젯져조족존졸좀좁종좋좌죄주죽준줄줌줍중쥐즈즉즌즐즘증지직진질짐집짓징짙짚짜짝짧째쨌쩌쩍쩐쩔쩜쪽쫓쭈쭉찌찍찢차착찬찮찰참찻창찾채책챔챙처척천철첩첫청체쳐초촉촌촛총촬최추축춘출춤춥춧충취츠측츰층치칙친칠침칫칭카칸칼캄캐캠커컨컬컴컵컷케켓켜코콘콜콤콩쾌쿄쿠퀴크큰클큼키킬타탁탄탈탑탓탕태택탤터턱턴털텅테텍텔템토톤톨톱통퇴투툴툼퉁튀튜트특튼튿틀틈티틱팀팅파팎판팔팝패팩팬퍼퍽페펜펴편펼평폐포폭폰표푸푹풀품풍퓨프플픔피픽필핏핑하학한할함합항해핵핸햄햇행향허헌험헤헬혀현혈협형혜호혹혼홀홈홉홍화확환활황회획횟횡효후훈훌훔훨휘휴흉흐흑흔흘흙흡흥흩희흰히힘
sensitive: False
PAD: False
data_filtering_off: True
Transformation: TPS
FeatureExtraction: ResNet
SequenceModeling: BiLSTM
Prediction: Attn
num_fiducial: 20
input_channel: 1
output_channel: 512
hidden_size: 256
num_gpu: 1
num_class: 975
---------------------------------------
[1/300000] Train loss: 6.86867, Valid loss: 6.80481, Elapsed_time: 5.17871
Current_accuracy : 0.124, Current_norm_ED : 0.00
Best_accuracy : 0.124, Best_norm_ED : 0.00
--------------------------------------------------------------------------------
Ground Truth | Prediction | Confidence Score & T/F
--------------------------------------------------------------------------------
더조은치과 | 류식협킬킬킬회회협뜨센뜨센뜨센센센센센센센센센센센 | 0.0000 False
데이터 통신 | 야식협킬킬킬회회회회뜨센뜨센뜨센센센센센센센센센센 | 0.0000 False
일산 토리아 | 류식식킬킬킬킬회협뜨협뜨뜨뜨센뜨센센센센센센센센센 | 0.0000 False
인사이트 | 횟식식번킬넣넣회뜨뜨뜨뜨뜨뜨펼펼펼펼센펼센센센센센 | 0.0000 False
남북한 | 제셋덟킬킬킬킬회회협센센센센센센센센센센센센센센센 | 0.0000 False
--------------------------------------------------------------------------------
[200/300000] Train loss: 4.71737, Valid loss: 4.31139, Elapsed_time: 440.41442
Current_accuracy : 0.989, Current_norm_ED : 0.09
Best_accuracy : 0.989, Best_norm_ED : 0.09
--------------------------------------------------------------------------------
Ground Truth | Prediction | Confidence Score & T/F
--------------------------------------------------------------------------------
의원 | 이 | 0.0505 False
가족의 두 얼굴 | 이 의 | 0.0000 False
페미니즘 | 나리리트 | 0.0000 False
글리쉬 | 부리 | 0.0015 False
럽 | | 0.0000 False
--------------------------------------------------------------------------------
[400/300000] Train loss: 3.56731, Valid loss: 3.24884, Elapsed_time: 847.57109
Current_accuracy : 5.274, Current_norm_ED : 0.29
Best_accuracy : 5.274, Best_norm_ED : 0.29
--------------------------------------------------------------------------------
Ground Truth | Prediction | Confidence Score & T/F
--------------------------------------------------------------------------------
상가 | 상 | 0.2065 False
이해 | 이어 | 0.1660 False
올 | 은 | 0.0522 False
리벨 | 리 | 0.1722 False
당신으로부터 | 당신오로 | 0.0002 False
--------------------------------------------------------------------------------
[600/300000] Train loss: 2.44139, Valid loss: 2.44045, Elapsed_time: 1257.45848
Current_accuracy : 17.882, Current_norm_ED : 0.49
Best_accuracy : 17.882, Best_norm_ED : 0.49
--------------------------------------------------------------------------------
Ground Truth | Prediction | Confidence Score & T/F
--------------------------------------------------------------------------------
설법하는 고양이와 | 살남하는 하하이 | 0.0001 False
하나님 편에 선 인생 | 하나님 에 신인 | 0.0013 False
서비스 | 서비스 | 0.1082 True
홍해 | 중화 | 0.0196 False
공예 | 공 | 0.3296 False
--------------------------------------------------------------------------------
[800/300000] Train loss: 1.74902, Valid loss: 2.07877, Elapsed_time: 1668.52599
Current_accuracy : 25.464, Current_norm_ED : 0.57
Best_accuracy : 25.464, Best_norm_ED : 0.57