-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathserver.r
355 lines (244 loc) · 12.3 KB
/
server.r
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
#
# Author: Linnea Powell, Stephanie Wilcoxen,
# Ignacio Pezo, and Cristian Nuno
# Purpose: Draft Dashboard
#
# Load necessary packages
library( ggthemes)
library( shiny )
library( shinydashboard )
library( leaflet )
library( geojsonio )
library( magrittr )
library( scales )
library( htmltools )
library( htmlwidgets )
library( DT )
library( dplyr )
library( stringr )
library( stringi )
library( MatchIt )
library( plotly )
library( censusapi )
library( ggplot2 )
library( igraph )
library( networkD3 )
library( rCharts )
library( pander )
# Import data from github function
source_github <- function( url ) {
# load package
require(RCurl)
# read script lines from website and evaluate
script <- getURL(url, ssl.verifypeer = FALSE)
eval(parse(text = script), envir=.GlobalEnv)
}
#################################################################
######################## Building the Server ####################
##########aka the Infrastructure of the User Interface ##########
#################################################################
server <- function(input, output) {
######################################
#### State Overview Leaflet Output####
######################################
#### If statement for Dynamic Leaflet Legend ####
observeEvent(input$mymap_groups,{
mymap <- leafletProxy("mymap") %>% clearControls()
if (input$mymap_groups == "Total Spending")
{mymap <- mymap %>% addLegend("bottomleft"
, pal = pal # use the same color palette we made earlier
, values = ny_counties$federal_funding # assign values to the legend
, title = "Total Federal Grant Spending"
, labFormat = labelFormat(prefix = "$")
, opacity = 1
)} # end of if statement
else if (input$mymap_groups == "Per Capita Spending")
{mymap <- mymap %>% addLegend("bottomleft"
, pal = pal_pc # use the same color palette we made earlier
, values = ny_counties$funding_per_capita # assign values to the legend
, title = "Per Capita Federal Grant Spending"
, labFormat = labelFormat(prefix = "$")
, opacity = 1
) } # end of else if statement
}
) # end of observe event
# Render the map
output$mymap <- renderLeaflet({
ny_map
}) # end of render map
#### State Overview Datatable Output ####
# Render the data table
output$tbl <- DT::renderDataTable({
fancy_table
}) # end of render datatable
output$sankey <- renderSankeyNetwork({
if (input$county == "NY State") {
df <- gra16.3
df.2 <- sankeyPrep(df)
sanktify( df.2 )
} else {
df <- dplyr::filter( gra16.3, county == input$county )
df.2 <- sankeyPrep(df)
sanktify( df.2 )
}
})
output$top <- renderInfoBox({
if (input$county == "NY State") {
top.rec <- aggregate(gra16.3$fed_funding_amount, by= list(gra16.3$recipient_name), FUN = sum)
top.rec.2 <- top.rec
top.rec.3 <- arrange(top.rec.2 , desc(x))
top <- top.rec.3[1,]$Group.1
} else {
top.rec <- aggregate(gra16.3$fed_funding_amount, by= list(gra16.3$recipient_name, gra16.3$county), FUN = sum)
top.rec.2 <- filter(top.rec , Group.2 == input$county)
top.rec.3 <- arrange(top.rec.2 , desc(x))
top <- top.rec.3[1,]$Group.1
}
infoBox(
"Top Recipient", paste0(top), icon = icon("users"),
color = "aqua"
)
})
output$top.dollars <- renderInfoBox({
if (input$county == "NY State") {
top.rec <- aggregate(gra16.3$fed_funding_amount, by= list(gra16.3$recipient_name), FUN = sum)
top.rec.2 <- top.rec
top.rec.3 <- arrange(top.rec.2 , desc(x))
top.dollars <- top.rec.3[1,]$x
} else {
top.rec <- aggregate(gra16.3$fed_funding_amount, by= list(gra16.3$recipient_name, gra16.3$county), FUN = sum)
top.rec.2 <- filter(top.rec , Group.2 == input$county)
top.rec.3 <- arrange(top.rec.2 , desc(x))
top.dollars <- top.rec.3[1,]$x
}
infoBox(
"Top Recipient Funding", paste0("$", prettyNum(top.dollars, big.mark = ",")), icon = icon("credit-card"),
color = "purple"
)
})
output$top.num <- renderInfoBox({
if (input$county == "NY State") {
top.rec.num <- aggregate(gra16.3$fed_funding_amount, by= list(gra16.3$recipient_name), FUN = length )
top.rec.num.2 <- top.rec.num
top.rec.num.3 <- arrange(top.rec.num.2 , desc(x))
top.num <- top.rec.num.3[1,]$x
} else {
top.rec.num <- aggregate(gra16.3$fed_funding_amount, by= list(gra16.3$recipient_name, gra16.3$county), FUN = length )
top.rec.num.2 <- filter(top.rec.num , Group.2 == input$county)
top.rec.num.3 <- arrange(top.rec.num.2 , desc(x))
top.num <- top.rec.num.3[1,]$x
}
infoBox(
"Top Recipient Number of Transactions", paste0(top.num), icon = icon("list"),
color = "green"
)
})
# create all county datatable
output$countyTbl <- DT::renderDataTable({
if( input$county == "NY State"){
# filter only positive outlays
# do not filter by county
gra16.all <- filter( gra16.3, fed_funding_amount > 0 )
# display the table
colnames(gra16.all) <- c("Recipient Type", "County", "Funding", "Agency", "Assistance Type", "Recipient Name", "Program")
gra16.all
} else {
# filter only positive outlays
# do filter by county
gra16.all <- filter(gra16.3, county %in% input$county
#, assistance_type == "04: Project grant"
, fed_funding_amount > 0
#, recip_cat_type == input$recipient
#, maj_agency_cat == input$maj
)
# call the table
colnames(gra16.all) <- c("Recipient Type", "County", "Funding", "Agency", "Assistance Type", "Recipient Name", "Program")
gra16.all
} # end of else
})
#######################################
#### County Overview Shiny Elements####
#######################################
#Census Table
output$censusTable <- DT::renderDataTable({
census.table <- population[,c("county.name", "Pop", "MHincome", "pov.rate")]
census.table$Pop.rank <- rank(-census.table$Pop)
census.table$MHincome.rank <- rank(-census.table$MHincome)
census.table$pov.rate.rank <- rank(-census.table$pov.rate)
census.table$pov.rate <- round(census.table$pov.rate*100, digits = 1)
census.table <- census.table[,c("county.name", "Pop", "Pop.rank", "MHincome", "MHincome.rank", "pov.rate", "pov.rate.rank")]
colnames(census.table) <- c("County", "Population", "Population Rank", "Median Household Income", "Median Household Income Rank", "Poverty Rate (%)", "Poverty Rate Rank")
census.table
}, options = list(lengthMenu = c(5,10), pageLength = 5, scrollX = TRUE))
#Plotly plot
output$plotlyplot <- renderPlotly({
dem2 <- population
dem2$pov.rate <- round(100*dem2$pov.rate, 1)
hovertxt5 <- paste("County:",dem2$county.name, "
", "Poverty Rate:", paste(dem2$pov.rate
, "%"
, sep=""
)
, "
", "Population:", prettyNum( dem2$Pop
, big.mark = ","
, preserve.width = "none"
)
)
plot_ly(data = dem2, x = ~Pop, y = ~pov.rate, name = "",
marker = list(color = "#F67670", size = 7)) %>%
add_markers(hoverinfo="text", text=hovertxt5) %>%
layout(xaxis = list(title = 'Population (millions)', showticklabels=TRUE, showgrid=FALSE),
yaxis =list(title = 'Poverty Rate (%)', showgrid=FALSE, showticklabels=TRUE))
})
#Percapita bar plot
output$percapPlot <- shiny::renderPlot({
gra16.4 <- filter(gra16.3 , county %in% input$your_county )
pop.filtered <- filter(population , county.name %in% input$your_county )
gra16.4.2 <- mutate(gra16.4 , assistance_type.2 = ifelse( assistance_type == "04: Project grant", "Project Grants" , "Other Grants" ) )
gra16.agg <- agg.county.percap(gra16.4.2 , pop.filtered, gra16.4.2$assistance_type.2) #Function
colnames(gra16.agg)[1] <- "assistance_type.2"
gra16.agg.2 <- gra16.agg[c("assistance_type.2", "fund", "percap", "county")]
gra16.agg.3 <- rbind(gra16.agg.2 , ny.per.2)
cols <- c("#EBEBEB", "#649EFC")
ggplot(gra16.agg.3, aes(x = county, y = percap, fill = assistance_type.2)) +
geom_bar(stat = "identity") +
labs(x="County", y="Per Capita Funding") +
# ggtitle("Per Capita Federal Funding by County") +
scale_y_continuous(labels = scales::dollar_format(prefix="$", big.mark = ",")) +
scale_fill_manual(values = cols) +
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_blank() , legend.title = element_blank())
}) # end of per capita plot
# Render census plot
output$censusPlot <- shiny::renderPlot({
#################### FILTERING THE DATA #######################
x <- population$county.name %in% input$your_county
population_plot_filter <- population[x,]
population_plot_filter$county.name <- factor(population_plot_filter$county.name, ordered= TRUE)
#################### MAKING THE BARPLOT #######################
krzycensuz(population_plot_filter)
}) # end of census plot
output$smallMultiples <- renderPlot({
#filter by county
county.filter <- filter(agg.pop.percap, County %in% input$your_county)
ggplot(county.filter, aes(x=County, y= percap)) + geom_bar( aes(fill=County), stat="identity")+ scale_y_continuous(position = "right", labels = scales::dollar_format(prefix="$", big.mark = ","))+ facet_grid(Agency ~ Recipient_Type, switch="y") + labs(caption = "*This chart excludes negative outlays as well as agencies that had less than 10 entries total across recipient types and counties.") + theme_minimal() + theme (strip.text.y = element_text(size=12, angle = 180), strip.text.x = element_text(size=12), plot.title = element_text(size=16), plot.subtitle = element_text(size=13), legend.position="top", legend.title = element_blank(), axis.title.x=element_blank(), legend.key.size = unit(.5, "line"), legend.text=element_text(size=12),
axis.title.y= element_blank(), axis.ticks=element_blank(), axis.text.x= element_blank(), panel.background = element_rect(colour = 'gray80'),panel.grid.minor = element_blank(), panel.grid.major =element_blank())
})
output$cfdaTable <- DT::renderDataTable({
# edit fancy table 2
# gra16.4 <- filter(gra16.3 , county %in% input$your_county , assistance_type == "04: Project grant", fed_funding_amount > 0, recip_cat_type == input$recipient)
#gra16.5 <- gra16.4[c("county" , "agency_name", "recipient_name", "recip_cat_type", "cfda_program_title", "fed_funding_amount")]
# colnames(gra16.5) <- c("County", "Agency", "Recipient", "Recipient Type", "Program Title", "Funding Recieved")
# gra16.5
# edit fancy table 2
gra16.4 <- filter(gra16.3, county %in% input$your_county
, assistance_type == "04: Project grant"
, fed_funding_amount > 0, recip_cat_type == input$recipient
, maj_agency_cat == input$maj
)
# call the table
colnames(gra16.4) <- c("Recipient Type", "County", "Funding", "Agency", "Assistance Type", "Recipient Name", "Program")
gra16.4
})
} # end of server