-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.m
529 lines (485 loc) · 22.5 KB
/
main.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
clear all;
close all;
% Should we get video and image?
vid = false;
viz = true;
draw = false;
planner_name = 'meta';
base_learner = 'human'; % option: greedy or human
%vid_name = strcat(strcat('video\two_vs_three_', planner_name),'_test.mp4');
vid_name = strcat(strcat('video\one_vs_one_', planner_name),'_test.mp4');
% mode = 'analysis';
mode = 'experiment';
% Experiment parameters
Horizon = 100;
num_rep = 10;
run_len = 2000;
dT = Horizon / run_len;
num_robot = 2;
num_tg = 4;
map_size = 100;
type_tg = "normal";
rng(1,'philox');
% Action set for robots
% [Vx, Vy] = meshgrid([1, 0, -1],[1, 0, -1]);
% ACTION_SET = transpose([Vx(:), Vy(:)]);
% ACTION_SET = normalize(ACTION_SET, 1, "norm");
% ACTION_SET(isnan(ACTION_SET)) = 0;
directions = [0:5] * pi/3;
ACTION_SET = [cos(directions); sin(directions)];
% Visibility map
vis_map = init_blank_ndmap([-1000; -1000],[1400; 1400],0.25,'logical');
% Initial pose for robots
x_true = zeros(run_len+1, num_robot,3,num_rep); % robots
% Initial position for targets
tg_true = zeros(3,num_tg,run_len+1,num_rep); % dynamic target
% first two are position, last one is id
human_pred = zeros(2,num_robot,run_len,num_rep);
% human_pred(:,1,1,:) = repmat([-20;-90],1,num_rep);
% human_pred(:,2,1,:) = repmat([20;-90],1,num_rep);
% Measurement History Data
z_d_save = cell(run_len,num_robot,num_rep); % target measurements(range-bearing)
u_save = zeros(run_len,num_robot,2,num_rep); % control
% Esitimate Data
estm_tg_save = cell(run_len,num_rep);
estm_tg_cov_save = cell(run_len,num_rep);
all_tg_cov = zeros(2*num_tg, 2*num_tg, run_len, num_rep);
reward = zeros(num_robot, run_len, num_rep);
min_dist = zeros(num_tg, run_len, num_rep);
% planner_name = 'bsg';
for rep = 1:num_rep
if strcmp(mode, 'analysis')
viz = false;
vid = false;
if strcmp(base_learner, 'human')
if rep <= num_rep / 2
planner_name = 'bsg';
else
planner_name = 'meta';
end
else
if rep <= num_rep / 3
planner_name = 'bsg';
elseif rep <= 2/3 * num_rep
planner_name = 'greedy';
else
planner_name = 'meta';
end
end
end
[x_true_init, tg_true_init, v_robot, r_senses, fovs, v_tg, yaw_tg, motion_tg, human_pred_init, viz_axis] = scenarios_settings(num_robot, num_tg, type_tg, Horizon, run_len);
x_true(1, :, :, rep) = x_true_init;
tg_true(:,:, 1, rep) = tg_true_init;
human_pred( :, :, :, rep) = human_pred_init;
% Create Robots and Planners
dT_robo = Horizon / run_len * ones(num_robot, 1);
R = init_robots_array(num_robot, reshape(squeeze(x_true(1, :, :, rep)), num_robot, 3), r_senses, fovs, dT_robo);
for r = 1:num_robot
P(r) = bsg_planner_nx_v1(num_robot,r, v_robot(r)*ACTION_SET, run_len, R(r).T, R(r).r_sense,...
R(r).fov,[R(r).r_sigma;R(r).b_sigma]);
G(r) = greedy_planner_v2(num_robot, r, v_robot(r)*ACTION_SET, R(r).T, R(r).r_sense,...
R(r).fov);
M(r) = meta_v1(v_robot(r)*ACTION_SET, 2, run_len);
end
dT_tg = Horizon / run_len * ones(num_tg, 1);
T = init_targets_array(num_tg, type_tg, v_tg, tg_true(:, :, 1, rep), yaw_tg, run_len, motion_tg, dT_tg);
memory_len = 4;
memory_noise = 0.05;
predict_horizon = 1 / Horizon * run_len; % unit: time step
human_expert = human_nx(num_tg, memory_len, memory_noise, predict_horizon);
SG_pred = tg_true(1:2, :, 1, rep);
% Visualization
if viz
logo_size = 25;
figure('Color',[1 1 1],'Position',[0,0,900,800]);
hold on;
h0.viz = imagesc([vis_map.pos{1}(1);vis_map.pos{1}(end)],...
[vis_map.pos{2}(1);vis_map.pos{2}(end)],vis_map.map.');
cbone = bone; colormap(cbone(end:-1:(end-30),:));
axis(viz_axis);
for r = 1:num_robot
if r == 1
r_color = 'b';
elseif r == 2
r_color = 'r';
end
h0.rob(r) = draw_pose_nx([],permute(x_true(1,r,:,rep),[3 2 1]),r_color,logo_size);
h0.fov(r) = draw_fov_nx([],permute(x_true(1,r,:,rep),[3 2 1]),R(r).fov,R(r).r_sense, r_color);
end
%h0.xe = draw_traj_nx([],permute(x_save(1,:,:,rep),[1 3 2]),'r:');
h0.tg_cov = [];
h0.tg = [];
h0.ye = [];
h0.pred = [];
for kk = 1:num_tg
h0.tg(kk) = draw_pose_nx([], T(kk).get_pose(1)','g',logo_size);
end
if strcmp(planner_name, 'bsg')
title('BSG: 2 Robots vs. 2 Non-Adversarial Targets [2X]', 'FontSize', 15);
elseif strcmp(planner_name, 'greedy')
title('SG-Heuristic: 2 Robots vs. 2 Non-Adversarial Targets [2X]', 'FontSize', 15);
else
title('Meta: 2 Robots vs. 2 Non-Adversarial Targets [2X]', 'FontSize', 15);
end
subtitle(sprintf('Time: %.2fs, Time Step: %d',0*dT, 0));
xlabel('x [m]','FontSize',15);
ylabel('y [m]','FontSize',15);
drawnow;
if vid
writerObj = VideoWriter(vid_name, 'MPEG-4');
writerObj.FrameRate = 40;
open(writerObj);
currFrame = getframe(gcf);
writeVideo(writerObj, currFrame);
end
end
viz = false;
% Sense -> Log Measurements -> Plan Moves -> Move Targets -> Move Robots
for t = 1:run_len
if t==run_len-2
if strcmp(mode, 'experiment')
viz = true;
else
viz = false;
end
end
% scenarios settings -> trajectory specification
% if num_tg == 3 && strcmp(type_tg, 'normal')
% if t == floor(490/2000 * run_len)
% T(3).set_v(10);
% T(3).set_yaw(t-1, deg2rad(90));
% T(3).set_type('straight');
% end
% end
% Move Targets and get targets' positions at t
if t > 1
for kk = 1:num_tg
T(kk).move(t-1, reshape(squeeze(x_true(t-1, :, :, rep)), num_robot,[]));
tg_true(:, kk, t, rep) = T(kk).get_position(t)';
%human_pred(:,kk,t,rep) = tg_true(1:2, kk, t, rep);
% if kk == 1
% human_pred(:, kk, t, rep) = human_pred(:, kk, t-1, rep) + [0; v_tg(1)]*dT;
% else
% human_pred(:, kk, t, rep) = human_pred(:, kk, t-1, rep) + [v_tg(2); 0]*dT;
% end
end
end
% Plan Moves -> compute u_save(t, r, :, rep)
% both BSG and Greedy only know targets' positions at t
prev_robot_states = zeros(3, 0);
prev_r_senses = zeros(1, 0);
prev_fovs = zeros(1, 0);
for r = 1:num_robot
if strcmp(planner_name, 'greedy')
if t > 1
% Greedy: select actions based on targets' positions at t-1,
% so for Greedy, targets should move to positions at t
% after Greedy selects actions
prev_r_senses = [prev_r_senses R(r).r_sense];
prev_fovs = [prev_fovs R(r).fov];
% [next_action_idx, next_state] = G(r).greedy_action(t, squeeze(x_true(t-1, r, :, rep)), estm_tg_save{t-1, rep}, prev_robot_states, prev_r_senses, prev_fovs);
[next_action_idx, next_state] = G(r).greedy_action(t, squeeze(x_true(t-1, r, :, rep)), SG_pred, prev_robot_states, prev_r_senses, prev_fovs);
% [next_action_idx, next_state] = G(r).greedy_action(t, squeeze(x_true(t-1, r, :, rep)), squeeze(human_pred(:,r,t-1, rep)), prev_robot_states, prev_r_senses, prev_fovs);
% prepare for planning for next robot
prev_robot_states = [prev_robot_states next_state];
u_save(t, r, :, rep) = v_robot(r) * ACTION_SET(:, next_action_idx);
else
num_action = size(ACTION_SET, 2);
prob_dist = 1/num_action * ones(num_action, 1);
next_action_idx = discretesample(prob_dist, 1);
u_save(t, r, :, rep) = v_robot(r) * ACTION_SET(:, next_action_idx);
end
elseif strcmp(planner_name, 'bsg')
% BSG: sample actions from p(t) that is based on targets'
% positions from 1 to t-1
P(r).update_action_prob_dist(t);
P(r).selected_action_index(t) = discretesample(P(r).action_prob_dist(t,:), 1);
u_save(t, r, :, rep) = v_robot(r) * ACTION_SET(:, P(r).selected_action_index(t));
elseif strcmp(planner_name, 'meta') % meta
if strcmp(base_learner, 'greedy')
pred = SG_pred;%+ 1000*randn(2, num_tg);
else %human
if t > 1
pred = squeeze(human_pred(:,r,t-1, rep));
end
end
if t > 1
% greedy expert
prev_r_senses = [prev_r_senses R(r).r_sense];
prev_fovs = [prev_fovs R(r).fov];
% [next_action_idx, ~] = G(r).greedy_action(t, squeeze(x_true(t-1, r, :, rep)), reshape(tg_true(1:2,:, t-1, rep), 2, []) + 0*randn(2, num_tg), prev_robot_states, prev_r_senses, prev_fovs);
[next_action_idx, ~] = G(r).greedy_action(t, squeeze(x_true(t-1, r, :, rep)), pred, prev_robot_states, prev_r_senses, prev_fovs);
else
num_action = size(ACTION_SET, 2);
prob_dist = 1/num_action * ones(num_action, 1);
next_action_idx = discretesample(prob_dist, 1);
end
P(r).update_action_prob_dist(t);
% assign prob for greedy-> expert 1 and bsg -> expert 2
M(r).action_weight(t, 1, next_action_idx) = 1;
M(r).action_weight(t, 2, :) = P(r).action_prob_dist(t, :);
M(r).update_action_prob_dist(t);
M(r).selected_action_index(t) = discretesample(M(r).action_prob_dist(t,:), 1);
P(r).selected_action_index(t) = M(r).selected_action_index(t);
u_save(t, r, :, rep) = v_robot(r) * ACTION_SET(:, M(r).selected_action_index(t));
% prepare for planning for next robot
if t > 1
prev_robot_states = [prev_robot_states G(r).smm.f(squeeze(x_true(t-1, r, :, rep)), squeeze(u_save(t, r, :, rep)))];
end
end
end
% Move Robots
for r = 1:num_robot
R(r).move(squeeze(u_save(t, r, :, rep)));
x_true(t,r,:,rep) = R(r).get_x();
end
% Sense
for r = 1:num_robot
% targets
z_d_save{t, r, rep} = R(r).sense(tg_true(:, :, t, rep)');
end
% Log Mearsurement
% Key is robot id, Value is a collection of target ids
target_map = containers.Map('KeyType','double','ValueType','any');
for r = 1:num_robot
Z_d = z_d_save{t, r, rep};
target_map(r) = Z_d;
end
estm_tg = zeros(2, num_tg);
estm_tg_cov = zeros(2, 2, num_tg);
detected = false(1, num_tg);
% Compute variance
for r = 1:num_robot
msrmnt_rb = target_map(r);
if size(msrmnt_rb, 1) == 0
continue;
end
for k = 1 : size(msrmnt_rb, 1)
% third column labels classes of targets.
target_id = msrmnt_rb(k, end);
if(estm_tg_cov(:,:,target_id) == zeros(2,2))
% first measurement
estm_tg(:, target_id) = inverse_rb(squeeze(x_true(t, r, :, rep))', msrmnt_rb(k,1:2))';
cov_z = [R(r).r_sigma 0; 0 R(r).b_sigma];
estm_tg_cov(:, :, target_id) = inv_rb_cov(squeeze(x_true(t, r, :, rep)), msrmnt_rb(k,1:2), zeros(3,3), cov_z);
detected(target_id) = true;
else
% sensor fusion
estm_tg_1 = estm_tg(:, target_id);
estm_tg_cov_1 = estm_tg_cov(:,:,target_id);
estm_tg_2 = inverse_rb(squeeze(x_true(t, r, :, rep))', msrmnt_rb(k,1:2))';
cov_z = [R(r).r_sigma 0; 0 R(r).b_sigma];
estm_tg_cov_2 = squeeze(inv_rb_cov(squeeze(x_true(t, r, :, rep)), msrmnt_rb(k,1:2), zeros(3,3), cov_z));
beta = (estm_tg_cov_1 + estm_tg_cov_2)\estm_tg_cov_2;
estm_tg(:, target_id) = beta*estm_tg_1 + (eye(2) - beta)*estm_tg_2;
estm_tg_cov(:, :, target_id) = beta*estm_tg_cov_1*beta' + (eye(2)-beta)*estm_tg_cov_2*(eye(2)-beta)';
end
end
end
% Log covariance
estm_tg_cov_save{t, rep} = estm_tg_cov(:,:,detected);
estm_tg_save{t, rep} = estm_tg(:, detected);
estm_tg = estm_tg(:, detected);
id_array = 1:num_tg;
ids = id_array;
if strcmp(base_learner, 'greedy')
human_expert.memorize(t, tg_true(1:2, :, t, rep), ids);
SG_pred = human_expert.predictBezier;
if isempty(SG_pred)
SG_pred = tg_true(1:2, :, t, rep);
else
SG_pred = SG_pred(2:3,:);
end
end
for kk = 1:num_tg
if ~detected(kk)
cov_z = [R(r).r_sigma 0; 0 R(r).b_sigma];
% estm_tg_cov( :, :, kk) = inv_rb_cov([0;0;0], [300*sqrt(2) 3], zeros(3,3), cov_z);
estm_tg_cov( :, :, kk) = 1e6*eye(2);
end
all_tg_cov(kk*2-1:kk*2, kk*2-1:kk*2, t, rep) = estm_tg_cov(:, :, kk);
end
% At every time step t, first compute objective function using the robots'
% positions at t (planned at t-1) and the environment at t
% only detected targets can be considered.
r_senses = zeros(1, num_robot);
fovs = zeros(1, num_robot);
for i = 1:num_robot
r_senses(i) = R(r).r_sense;
fovs(i) = R(r).fov;
end
if strcmp(planner_name, 'bsg') || strcmp(planner_name, 'meta')
% BSG: update experts after selecting actions
prev_robot_states = zeros(3, 0);
prev_r_senses = zeros(1, 0);
prev_fovs = zeros(1, 0);
r_v = 1:num_robot;
itr_order = r_v(randperm(length(r_v)));
for r = itr_order%
if size(estm_tg_save{t, rep}, 2) ~= 0
% previous objective function
prev_obj_BSG = objective_function(prev_robot_states, estm_tg_save{t, rep}, prev_r_senses, prev_fovs);
% now consider new robot position
prev_robot_states = [prev_robot_states R(r).get_x()];
prev_r_senses = [prev_r_senses R(r).r_sense];
prev_fovs = [prev_fovs R(r).fov];
% current objective function
curr_obj_BSG = objective_function(prev_robot_states, estm_tg_save{t, rep}, prev_r_senses, prev_fovs);
% compute normalized reward, then loss
reward(r, t, rep) = (curr_obj_BSG - prev_obj_BSG) / (0 - prev_obj_BSG);
if reward(r, t, rep) < 0 || reward(r, t, rep) > 1
error("wrong reward");
end
loss = 1 - reward(r, t, rep);
if strcmp(planner_name, 'bsg')
P(r).loss(t, P(r).selected_action_index(t)) = loss;
elseif strcmp(planner_name, 'meta') % meta
M(r).loss(t, M(r).selected_action_index(t)) = loss;
P(r).loss(t, M(r).selected_action_index(t)) = loss;
end
else
if strcmp(planner_name, 'bsg')
P(r).loss(t, P(r).selected_action_index(t)) = 1;
else % meta
M(r).loss(t, M(r).selected_action_index(t)) = 1;
P(r).loss(t, M(r).selected_action_index(t)) = 1;
end
end
% update experts
P(r).update_experts(t);
if strcmp(planner_name, 'meta')
M(r).update_experts(t);
%M(r).expert_weight(t, :)
end
end
end
% Visualization
if viz
set(h0.viz,'cdata',vis_map.map.');
h0.y = draw_traj_nx([],permute(tg_true(:,:,1:t,rep),[3 1 2 4]),'g--');
if strcmp(base_learner, 'human') && strcmp(planner_name, 'meta')
h0.human_pred = draw_traj_nx([],permute(human_pred(:,:,1:t,rep),[3 1 2 4]),'m-.');
end
for r = 1:num_robot
if r == 1
r_color = 'b';
elseif r == 2
r_color = 'r';
end
h0.r_traj(r) = draw_traj_nx([],permute(x_true(1:t,r,1:2,rep),[1 3 2 4]),strcat(r_color, '-'));
h0.rob(r) = draw_pose_nx(h0.rob(r),permute(x_true(t,r,:,rep),[3 2 1]),r_color,logo_size);
h0.fov(r) = draw_fov_nx(h0.fov(r),permute(x_true(t,r,:,rep),[3 2 1]),R(r).fov,R(r).r_sense);
end
tmp = estm_tg_save{t, rep};
if ~isempty(tmp)
%tmp
h0.tg_cov = draw_covariances_nx(h0.tg_cov, tmp(1:2,:), estm_tg_cov_save{t,rep},'m');
else
delete(h0.tg_cov);
end
for kk = 1 : num_tg
h0.tg(kk) = draw_pose_nx(h0.tg(kk), T(kk).get_pose(t)','g',logo_size);
end
% if ~isempty(SG_pred)
% for kk = 1 : size(pred, 2)
% id = pred(1, kk);
% pred_line = [human_expert.tar_cur(:, kk) SG_pred];
% h0.pred = draw_pred_nx(h0.pred, pred_line);
% end
% end
if strcmp(base_learner, 'human') && strcmp(planner_name, 'meta')
lgd = legend([h0.r_traj(1) h0.r_traj(2) h0.human_pred(1) h0.y(1)], 'Robot 1', 'Robot 2', 'Human', 'Targets', 'location', 'northeast');
else
lgd = legend([h0.r_traj(1) h0.r_traj(2) h0.y(1)], 'Robot 1', 'Robot 2', 'Targets', 'location', 'northeast');
end
lgd.FontSize = 24;
legend boxoff;
axis off;
axis(viz_axis);
% if strcmp(planner_name, 'bsg')
% title('BSG: 2 Robots vs. 3 Non-Adversarial Targets [2X]', 'FontSize', 15);
% else
% title('SG-Heuristic: 2 Robots vs. 3 Non-Adversarial Targets [2X]', 'FontSize', 15);
% end
subtitle(sprintf('Time: %.2fs, Time Step: %d',t*dT, t));
drawnow;
%pause(0.125)
if vid
currFrame = getframe(gcf);
writeVideo(writerObj, currFrame);
end
end
end
for kk = 1:num_tg
min_dist(kk, 1:end, rep) = T(kk).all_min_dist(:)';
for t = 1:run_len
min_dist(kk, t, rep) = T(kk).min_dist_to_robots(t, squeeze(x_true(t,:,:,rep)));
end
end
if viz && vid
close(writerObj);
end
end
if strcmp(mode, 'analysis')
fnt_sz = 14;
if strcmp(base_learner, 'human')
dist_bsg = zeros(run_len, num_rep/2);
dist_human = zeros(run_len, 1);
dist_meta = zeros(run_len, num_rep/2);
for rep = 1 : num_rep
for t = 1 : run_len
if rep <= num_rep/2
dist_bsg(t, rep) = sum(min_dist(:,t, rep));
else
dist_meta(t, rep - num_rep*1/2) = sum(min_dist(:,t, rep));
end
end
end
% calculate human advice
min_dist_human = zeros(num_tg, run_len);
for kk = 1:num_tg
min_dist_human(kk, 1:end) = T(kk).all_min_dist(:)';
for t = 1:run_len
min_dist_human(kk, t) = T(kk).min_dist_to_robots(t, human_pred(:,:,t, rep)');
end
end
for t = 1:run_len
dist_human(t) = sum(min_dist_human(:, t));
end
figure('Color',[1 1 1],'Position',[1200 200 500 200]);
h6 = plot(dT*[1:run_len], dist_human,'Color',"#D95319", 'LineWidth', 1);
h5 = shadedErrorBar(dT*[1:run_len], mean(dist_bsg', 1), std(dist_bsg'), 'lineprops',{'Color',"#0072BD", 'LineWidth', 1});
% h6 = shadedErrorBar(dT*[1:run_len], mean(dist_greedy', 1), std(dist_greedy'), 'lineprops',{'Color',"#D95319", 'LineWidth', 1});
h7 = shadedErrorBar(dT*[1:run_len], mean(dist_meta', 1), std(dist_meta'), 'lineprops',{'Color',"#77AC30", 'LineWidth', 1});
legend([h5.mainLine h6 h7.mainLine], {'BSG', 'Human','Meta'}, 'location','northwest');
ylabel({'Sum of Minimum Distances'},'FontSize',fnt_sz);
xlabel('Time [s]','FontSize',fnt_sz);
% savefig('figures/mean_cov_2v4_accurate_human.fig');
% exportgraphics(gca,'figures/mean_cov_2v4_accurate_human.png','BackgroundColor','none','ContentType','image')
%title(planner_name);
else
dist_bsg = zeros(run_len, num_rep/3);
dist_greedy = zeros(run_len, num_rep/3);
dist_meta = zeros(run_len, num_rep/3);
for rep = 1 : num_rep
for t = 1 : run_len
if rep <= num_rep/3
dist_bsg(t, rep) = sum(min_dist(:,t, rep));
elseif rep <= num_rep *2/3
dist_greedy(t, rep - num_rep/3) = sum(min_dist(:,t, rep));
else
dist_meta(t, rep - num_rep*2/3) = sum(min_dist(:,t, rep));
end
end
end
figure('Color',[1 1 1],'Position',[1200 200 500 200]);
h5 = shadedErrorBar(dT*[1:run_len], mean(dist_bsg', 1), std(dist_bsg'), 'lineprops',{'Color',"#0072BD", 'LineWidth', 1});
h6 = shadedErrorBar(dT*[1:run_len], mean(dist_greedy', 1), std(dist_greedy'), 'lineprops',{'Color',"#D95319", 'LineWidth', 1});
h7 = shadedErrorBar(dT*[1:run_len], mean(dist_meta', 1), std(dist_meta'), 'lineprops',{'Color',"#77AC30", 'LineWidth', 1});
legend([h5.mainLine h6.mainLine h7.mainLine], 'BSG', 'SG', 'Meta', 'location','northwest');
ylabel({'Sum of Minimum Distances'},'FontSize',fnt_sz);
xlabel('Time [s]','FontSize',fnt_sz);
savefig('figures/mean_cov_2v2_greedy.fig');
exportgraphics(gca,'figures/mean_cov_2v2_greedy.png','BackgroundColor','none','ContentType','image')
end
end