-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataset3.py
57 lines (53 loc) · 2.34 KB
/
dataset3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import os
import random
class DataWarpper():
def __init__(self, contextSize, folderpath, bigRAM = True):
self.contextSize = contextSize
self.file_index = -1
self.file_list = []
self.bin_p = 0
self.bin = []
self.totalBinSize = 0
self.bigRAM = bigRAM
for i in os.walk(folderpath):
for j in i[2]:
if j.endswith('.py') or j.endswith('.txt'):
self.file_list.append(os.path.join(i[0], j))
self.totalBinSize += os.path.getsize(os.path.join(i[0], j))
print('Total find files: {}'.format(len(self.file_list)))
print('Total bin size: {}'.format(self.totalBinSize))
# shuffle file list
np.random.shuffle(self.file_list)
if self.bigRAM:
print('Wow Big RAM')
self.bin_list = []
for f in self.file_list:
self.bin_list.append(open(f, 'rb').read())
def makeBatch(self, batchSize):
sourceBatch = []
targetBatch = []
for _ in range(batchSize):
while not len(self.bin) - self.bin_p > 0: # No leaving data in buffer, seek next non-empty file
self.bin_p = 0
self.file_index += 1
self.file_index %= len(self.file_list)
#print('Loading file: {}'.format(self.file_list[self.file_index]))
if self.bigRAM:
self.bin = self.bin_list[self.file_index]
else:
self.bin = open(self.file_list[self.file_index], 'rb').read()
sourceBatch.append(list(self.bin[self.bin_p:self.bin_p + self.contextSize]))
targetBatch.append(list(self.bin[self.bin_p:self.bin_p + self.contextSize]))
sourceBatch[-1][-1] = -128
if len(sourceBatch[-1]) < self.contextSize:
sourceBatch[-1] += [0] * (self.contextSize - len(sourceBatch[-1]))
targetBatch[-1] += [0] * (self.contextSize - len(targetBatch[-1]))
self.bin_p += self.contextSize
return torch.tensor(sourceBatch, dtype=torch.float32) / 255, torch.tensor(targetBatch, dtype=torch.float32) / 255
if __name__ == '__main__':
dataset = DataWarpper(8, './')
print(dataset.makeBatch(4))