-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpost_process.cu
390 lines (345 loc) · 12.6 KB
/
post_process.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
#include "post_process.hpp"
#include <omp.h>
void PostProcess::doConsistencyCheck(const cv::Mat &dispL, const cv::Mat &dispR,
cv::Mat &failL, cv::Mat &failR,
double dispThreshold)
{
cv::Mat fail[2];
cv::Mat disp[2] =
{dispL, dispR};
for (int i = 0; i < 2; i++)
{
fail[i] = cv::Mat::zeros(cv::Size(width, height), CV_8U);
}
for (int i = 0; i < 2; i++)
{
float sign = (i ? -1.0f : 1.0f);
for (int y = 0; y < height; y++)
for (int x = 0; x < width; x++)
{
cv::Point p(x, y);
float ds = disp[i].at<float>(p);
int rx = int((float)x - ds * sign + 0.5f);
cv::Point q(rx, y);
if (imageDomain.contains(q))
{
float dsr = disp[1 - i].at<float>(q);
if (fabs(dsr - ds) > dispThreshold)
{
fail[i].at<uchar>(p) = 255;
}
}
}
}
failL = fail[0];
failR = fail[1];
}
float GetZ(cv::Vec3f &v, cv::Point &p)
{
return v[0] * p.x + v[1] * p.y + v[2];
}
void PostProcess::left_right_check(std::pair<cv::Mat, cv::Mat> &results_left,
std::pair<cv::Mat, cv::Mat> &results_right)
{
cv::Mat disp[2] =
{results_left.first, results_right.first};
cv::Mat LR[2] =
{results_left.second, results_right.second};
// LR-consistency check
cv::Mat fail2[2];
for (int i = 0; i < 2; i++)
{
fail[i] = cv::Mat::zeros(cv::Size(width, height), CV_8U);
fail2[i] = cv::Mat::zeros(cv::Size(width, height), CV_8U);
}
doConsistencyCheck(disp[0], disp[1], fail[0], fail[1], lrc_thresh);
fail[0] = fail[0] > 0;
fail[1] = fail[1] > 0;
cv::dilate(fail[0], fail2[0], cv::Mat());
cv::dilate(fail[1], fail2[1], cv::Mat());
//// horizontal NN-interpolation
for (int i = 0; i < 1; i++)
{
#pragma omp parallel for
for (int y = 0; y < height; y++)
for (int x = 0; x < width; x++)
{
cv::Point p(x, y);
if (fail[i].at<uchar>(p) == 0)
continue;
cv::Vec3f *pl = NULL, *pr = NULL;
int xx;
for (xx = x; xx >= 0 && fail2[i].at<uchar>(y, xx) == 255;
xx--)
;
if (xx >= 0)
pl = &LR[i].at<cv::Vec3f>(y, xx);
for (xx = x; xx < width && fail2[i].at<uchar>(y, xx) == 255;
xx++)
;
if (xx < width)
pr = &LR[i].at<cv::Vec3f>(y, xx);
if (pl == NULL && pr == NULL)
// LR[i][s] = *pr;
;
else if (pl == NULL)
LR[i].at<cv::Vec3f>(p) = *pr;
else if (pr == NULL)
LR[i].at<cv::Vec3f>(p) = *pl;
else if (GetZ(*pl, p) < GetZ(*pr, p))
LR[i].at<cv::Vec3f>(p) = *pl;
else
LR[i].at<cv::Vec3f>(p) = *pr;
}
}
}
float PostProcess::computePatchWeight(const cv::Point &s, const cv::Point &t,
const int mode) const
{
const cv::Mat &I = this->I[mode];
cv::Vec3f dI = I.at<cv::Vec3f>(s) - I.at<cv::Vec3f>(t);
float absdiff = fabs(dI[0]) + fabs(dI[1]) + fabs(dI[2]);
return std::exp(-absdiff / omega);
}
cv::Rect
getLargerRect(cv::Rect rect, int margin)
{
return cv::Rect(rect.x - margin, rect.y - margin, rect.width + margin * 2,
rect.height + margin * 2);
}
void PostProcess::median_filter(std::pair<cv::Mat, cv::Mat> &results_left,
std::pair<cv::Mat, cv::Mat> &results_right)
{
cv::Mat LR[2] =
{results_left.second, results_right.second};
using Triplet = std::tuple<cv::Vec3f, float, float>;
//// median filter
for (int i = 0; i < 1; i++)
{
cv::Mat LRcopy = LR[i].clone();
#pragma omp parallel for
for (int y = 0; y < height; y++)
for (int x = 0; x < width; x++)
{
cv::Point p(x, y);
if (fail[i].at<uchar>(p) == 0)
continue;
std::vector<Triplet> median;
double sumw = 0;
cv::Rect patch = getLargerRect(cv::Rect(p, cv::Size(1, 1)),
windR) &
imageDomain;
for (int yy = patch.y; yy < patch.br().y; yy++)
for (int xx = patch.x; xx < patch.br().x; xx++)
{
cv::Point q(xx, yy);
float w = computePatchWeight(p, q, i);
sumw += w;
// median.push_back(Triplet(LR[i].at<Plane>(q), w, LR[i].at<Plane>(q).GetZ(p)));
median.push_back(
Triplet(
LRcopy.at<cv::Vec3f>(q), w,
GetZ(LRcopy.at<cv::Vec3f>(q), p)));
}
std::sort(begin(median), end(median), [](const Triplet &a, const Triplet &b)
{ return std::get<2>(a) < std::get<2>(b); });
double center = sumw / 2.0;
sumw = 0;
for (int j = 0; j < median.size(); j++)
{
sumw += std::get<1>(median[j]);
if (sumw > center)
{
LR[i].at<cv::Vec3f>(p) = std::get<0>(median[j]);
break;
}
}
}
}
}
__device__ float4
get_larger_rect(const int x, const int y, const int width, const int height,
const int windR)
{
return make_float4(max(x - windR, 0), max(y - windR, 0),
min(x + windR, width - 1), min(y + windR, height - 1));
}
__forceinline__ __device__ float
compute_patch_weight(const int x, const int y, const int xx, const int yy,
const float *const img_d, const int width,
const int height, const float omega)
{
int s_id = y * width + x;
int t_id = yy * width + xx;
float s_0 = img_d[s_id * 3];
float s_1 = img_d[s_id * 3 + 1];
float s_2 = img_d[s_id * 3 + 2];
float t_0 = img_d[t_id * 3];
float t_1 = img_d[t_id * 3 + 1];
float t_2 = img_d[t_id * 3 + 2];
float absdiff = fabsf(s_0 - t_0) + fabsf(s_1 - t_1) + fabsf(s_2 - t_2);
return expf(-absdiff / omega);
}
__forceinline__ __device__ float
get_z(const int x, const int y, const int xx, const int yy,
const float *const label_buf_d, const int width)
{
int l_id = yy * width + xx;
float a = label_buf_d[l_id * 3];
float b = label_buf_d[l_id * 3 + 1];
float c = label_buf_d[l_id * 3 + 2];
return a * x + b * y + c;
}
__device__ void
bubble_sort(float3 *const median, const int size)
{
for (int i = 0; i < size - 1; ++i)
{
for (int j = i + 1; j < size; ++j)
{
if (median[j].z < median[i].z)
{
float3 tmp = median[i];
median[i] = median[j];
median[j] = tmp;
}
}
}
}
__forceinline__ __device__ int
get_new_id(const int l_id, const float4 patch, const int width)
{
int patch_w = patch.z - patch.x + 1;
int x = l_id % patch_w + patch.x;
int y = l_id / patch_w + patch.y;
return y * width + x;
}
__global__ void
median_filter_k(float3 *const median_d, float *const label_d,
const float *const label_buf_d, const float *const img_d,
const int *const im_id_d, const int num_occ, const int width,
const int height, const int windR, const float omega)
{
int id = blockIdx.x * blockDim.x + threadIdx.x;
if (id >= num_occ)
return;
int im_id = im_id_d[id];
int y = im_id / width;
int x = im_id % width;
float sumw = 0.f;
float4 patch = get_larger_rect(x, y, width, height, windR);
int size = (patch.z - patch.x + 1) * (patch.w - patch.y + 1);
int win_step = (windR * 2 + 1) * (windR * 2 + 1);
float3 *median = &median_d[id * win_step];
int i = 0;
for (int yy = patch.y; yy <= patch.w; yy++)
for (int xx = patch.x; xx <= patch.z; xx++)
{
float w = compute_patch_weight(x, y, xx, yy, img_d, width, height,
omega);
sumw += w;
median[i] = make_float3(i, w,
get_z(x, y, xx, yy, label_buf_d, width));
++i;
}
bubble_sort(median, size);
float center = sumw / 2;
sumw = 0;
for (int j = 0; j < size; j++)
{
sumw += median[j].y;
if (sumw > center)
{
int im_id_ = get_new_id(median[j].x, patch, width);
// printf ("%d %d, ", im_id, im_id_);
label_d[im_id * 3] = label_buf_d[im_id_ * 3];
label_d[im_id * 3 + 1] = label_buf_d[im_id_ * 3 + 1];
label_d[im_id * 3 + 2] = label_buf_d[im_id_ * 3 + 2];
break;
}
}
}
__global__ void
set_im_id_k(int *const im_id_d, int *const predicate_d,
const uchar *const mask_d, const int im_size)
{
int id = blockIdx.x * blockDim.x + threadIdx.x;
if (id >= im_size)
return;
im_id_d[id] = id;
predicate_d[id] = mask_d[id] ? 1 : 0;
}
void PostProcess::median_filter_gpu(std::pair<cv::Mat, cv::Mat> &results_left,
std::pair<cv::Mat, cv::Mat> &results_right)
{
cv::Mat label = results_left.second.clone();
cv::Mat mask = fail[0];
cv::Mat img = I[0];
float *label_d = nullptr;
float *label_buf_d = nullptr;
float *img_d = nullptr;
uchar *mask_d = nullptr;
cudaMalloc(&label_d, sizeof(float) * im_size * 3);
cudaMalloc(&label_buf_d, sizeof(float) * im_size * 3);
cudaMalloc(&img_d, sizeof(float) * im_size * 3);
cudaMalloc(&mask_d, sizeof(uchar) * im_size);
cudaMemcpy(label_d, label.data, sizeof(float) * im_size * 3,
cudaMemcpyHostToDevice);
cudaMemcpy(label_buf_d, label_d, sizeof(float) * im_size * 3,
cudaMemcpyDeviceToDevice);
cudaMemcpy(img_d, img.data, sizeof(float) * im_size * 3,
cudaMemcpyHostToDevice);
cudaMemcpy(mask_d, mask.data, sizeof(uchar) * im_size,
cudaMemcpyHostToDevice);
int *predicate_d = nullptr;
int *pos_scan_d = nullptr;
int *im_id_d = nullptr;
int *im_id_rd_d = nullptr;
cudaMalloc(&predicate_d, sizeof(int) * im_size);
cudaMalloc(&pos_scan_d, sizeof(int) * im_size);
cudaMalloc(&im_id_d, sizeof(int) * im_size);
cudaMalloc(&im_id_rd_d, sizeof(int) * im_size);
int grid = (im_size + m_block - 1) / m_block;
set_im_id_k<<<grid, m_block>>>(im_id_d, predicate_d, mask_d, im_size);
thrust::exclusive_scan(thrust::device, predicate_d, predicate_d + im_size,
pos_scan_d);
int num_occ = get_num_from_scan(predicate_d, pos_scan_d, im_size);
thrust::scatter_if(thrust::device, im_id_d, im_id_d + im_size, pos_scan_d,
predicate_d, im_id_rd_d);
float3 *median_d = nullptr;
cudaMalloc(&median_d,
sizeof(float3) * num_occ * (windR * 2 + 1) * (windR * 2 + 1));
grid = (num_occ + m_block - 1) / m_block;
median_filter_k<<<grid, m_block>>>(median_d, label_d, label_buf_d, img_d,
im_id_rd_d, num_occ, width, height, windR, omega);
cv::Mat label_img_h(height, width, CV_32FC3);
cudaMemcpy(label_img_h.data, label_d, sizeof(float) * im_size * 3,
cudaMemcpyDeviceToHost);
results_left.second = label_img_h.clone();
cudaFree(mask_d);
cudaFree(img_d);
cudaFree(label_buf_d);
cudaFree(label_d);
cudaFree(median_d);
cudaFree(im_id_rd_d);
cudaFree(im_id_d);
cudaFree(pos_scan_d);
cudaFree(predicate_d);
}
void PostProcess::plane_label_to_disp(std::pair<cv::Mat, cv::Mat> &results_left,
std::pair<cv::Mat, cv::Mat> &results_right)
{
cv::Mat disp[2] =
{results_left.first, results_right.first};
cv::Mat LR[2] =
{results_left.second, results_right.second};
for (int i = 0; i < 1; i++)
{
for (int y = 0; y < height; y++)
for (int x = 0; x < width; x++)
{
cv::Point p(x, y);
disp[i].at<float>(p) = GetZ(LR[i].at<cv::Vec3f>(p), p);
}
}
}