-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_bench_middv3.cu
executable file
·340 lines (289 loc) · 10.9 KB
/
main_bench_middv3.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
#include "ArgsParser.h"
#include "Evaluator.h"
#include "hbp_isp.hpp"
#include "segment.hpp"
#include "stereo_cost.hpp"
#include "post_process.hpp"
#include <sys/stat.h>
#include <xmmintrin.h>
void medianFilter(cv::Mat &);
bool loadData(const std::string input_dir, cv::Mat &im0, cv::Mat &im1,
cv::Mat &dispGT, cv::Mat &nonocc, Calib &calib)
{
calib = Calib(input_dir + "calib.txt");
if (calib.ndisp <= 0)
{
printf("ndisp is not speficied.\n");
return false;
}
im0 = cv::imread(input_dir + "im0.png");
if (im0.empty())
{
printf("Image im0.png not found in\n");
printf("%s\n", input_dir.c_str());
return false;
}
im1 = cv::imread(input_dir + "im1.png");
if (im1.empty())
{
printf("Image im1.png not found in\n");
printf("%s\n", input_dir.c_str());
return false;
}
dispGT = cvutils::io::read_pfm_file(input_dir + "disp0GT.pfm");
if (dispGT.empty())
dispGT = cv::Mat_<float>::zeros(im0.size());
nonocc = cv::imread(input_dir + "mask0nocc.png", cv::IMREAD_GRAYSCALE);
if (!nonocc.empty())
nonocc = nonocc == 255;
else
nonocc = cv::Mat_<uchar>(im0.size(), 255);
return true;
}
void MidV3(const std::string input_dir, const std::string output_dir, char **argv)
{
cv::Mat im0, im1, disp_WTA, dispGT, nonocc;
Calib calib;
if (!loadData(input_dir, im0, im1, dispGT, nonocc, calib))
return;
printf("ndisp = %d\n", calib.ndisp);
int maxdisp = calib.ndisp;
// maxdisp = 64; // for test on ETH3D
double errorThresh = 1.0;
if (cvutils::contains(input_dir, "trainingQ") || cvutils::contains(input_dir, "testQ"))
errorThresh = errorThresh / 2.0;
else if (cvutils::contains(input_dir, "trainingF") || cvutils::contains(input_dir, "testF"))
errorThresh = errorThresh * 2.0;
printf("errorThresh = %f\n", errorThresh);
Linkage link = static_cast<Linkage>(atoi(argv[3]));
int num_nb = atoi(argv[4]);
double sigma = atof(argv[5]);
const int target_clus = 1;
float alpha = atof(argv[6]);
float tau_smooth = atof(argv[7]);
std::string cost_name(argv[8]);
std::string vol_dir = input_dir + "im0.acrt";
bool use_cost_vol = atoi(argv[9]);
int min_level = atoi(argv[10]);
{
mkdir((output_dir + "debug").c_str(), 0755);
Evaluator *eval = new Evaluator(dispGT, nonocc, "result",
output_dir + "debug/");
eval->setErrorThreshold(errorThresh);
eval->start();
SegHAC *seg_hac = new SegHAC(im0, link, num_nb, sigma, LabelISPFormat,
target_clus, false);
seg_hac->run_ms();
ISPData *isp_data = new ISPData(seg_hac);
delete seg_hac;
StereoCost *stereo_cost = new StereoCost(im0, im1, maxdisp, vol_dir);
stereo_cost->compute_stereo_cost(cost_name);
StereoData *stereo_data = new StereoData(stereo_cost, use_cost_vol);
delete stereo_cost;
auto c0 = std::chrono::steady_clock::now();
HBP_ISP *hbp_isp = new HBP_ISP(isp_data, stereo_data, alpha, tau_smooth);
cv::Mat disp_img = hbp_isp->run_ms(min_level).first;
auto c1 = std::chrono::steady_clock::now();
auto delta_c = c1 - c0;
std::cout << "Time for HBP-ISP inference: " << std::chrono::duration_cast<std::chrono::microseconds>(delta_c).count() /1e3 << " ms" << std::endl;
/*
if (cvutils::contains (input_dir, "training"))
eval->evaluate (disp_img, true, true);
medianFilter (disp_img);
*/
cvutils::io::save_pfm_file(output_dir + "disp0HBP_ISP.pfm", disp_img);
{
FILE *fp = fopen((output_dir + "timeHBP_ISP.txt").c_str(), "w");
if (fp != nullptr)
{
fprintf(fp, "%lf\n", eval->getCurrentTime());
fclose(fp);
}
}
if (cvutils::contains(input_dir, "training"))
eval->evaluate(disp_img, true, true);
delete hbp_isp;
delete stereo_data;
delete isp_data;
delete eval;
}
}
void MidV3_LR(const std::string input_dir, const std::string output_dir,
char **argv)
{
cv::Mat im0, im1, disp_WTA, dispGT, nonocc;
Calib calib;
if (!loadData(input_dir, im0, im1, dispGT, nonocc, calib))
return;
printf("ndisp = %d\n", calib.ndisp);
int maxdisp = calib.ndisp;
// maxdisp = 64; // for test on ETH3D dataset
double errorThresh = 1.0;
if (cvutils::contains(input_dir, "trainingQ") || cvutils::contains(input_dir, "testQ"))
errorThresh = errorThresh / 2.0;
else if (cvutils::contains(input_dir, "trainingF") || cvutils::contains(input_dir, "testF"))
errorThresh = errorThresh * 2.0;
Linkage link = static_cast<Linkage>(atoi(argv[3]));
int num_nb = atoi(argv[4]);
double sigma = atof(argv[5]);
const int target_clus = 1;
float alpha = atof(argv[6]);
float tau_smooth = atof(argv[7]);
std::string cost_name(argv[8]);
std::string vol_dir = input_dir + "im0.acrt";
bool use_cost_vol = atoi(argv[9]);
int min_level = atoi(argv[10]);
{
mkdir((output_dir + "debug").c_str(), 0755);
Evaluator *eval = new Evaluator(dispGT, nonocc, "result",
output_dir + "debug/");
eval->setErrorThreshold(errorThresh);
eval->start();
SegHAC *seg_hac = new SegHAC(im0, link, num_nb, sigma, LabelISPFormat,
target_clus, false);
seg_hac->run_ms();
ISPData *isp_data = new ISPData(seg_hac);
delete seg_hac;
StereoCost *stereo_cost = new StereoCost(im0, im1, maxdisp, vol_dir);
stereo_cost->compute_stereo_cost(cost_name);
StereoData *stereo_data = new StereoData(stereo_cost, use_cost_vol);
delete stereo_cost;
HBP_ISP *hbp_isp = new HBP_ISP(isp_data, stereo_data, alpha, tau_smooth);
auto results_left = hbp_isp->run_ms(min_level);
cv::Mat disp_left = results_left.first;
delete hbp_isp;
delete stereo_data;
delete isp_data;
// right
SegHAC *seg_hac_r = new SegHAC(im1, link, num_nb, sigma,
LabelISPFormat, target_clus, false);
seg_hac_r->run_ms();
ISPData *isp_data_r = new ISPData(seg_hac_r);
delete seg_hac_r;
StereoCost *stereo_cost_r = new StereoCost(im0, im1, maxdisp, vol_dir);
stereo_cost_r->compute_stereo_cost(cost_name);
stereo_cost_r->cost_to_right();
StereoData *stereo_data_r = new StereoData(stereo_cost_r,
use_cost_vol);
delete stereo_cost_r;
HBP_ISP *pmbp_isp_r = new HBP_ISP(isp_data_r, stereo_data_r, alpha, tau_smooth);
auto results_right = pmbp_isp_r->run_ms(min_level);
cv::Mat disp_right = results_right.first;
delete pmbp_isp_r;
delete stereo_data_r;
delete isp_data_r;
if (cvutils::contains(input_dir, "training"))
eval->evaluate(disp_left, true, true);
PostProcess *post_process = new PostProcess(im0, im1);
post_process->left_right_check(results_left, results_right);
post_process->plane_label_to_disp(results_left, results_right);
if (cvutils::contains(input_dir, "training"))
eval->evaluate(results_left.first, true, true);
post_process->median_filter(results_left, results_right);
post_process->plane_label_to_disp(results_left, results_right);
cv::Mat disp_img = results_left.first.clone();
cvutils::io::save_pfm_file(output_dir + "disp0HBP_ISP.pfm", disp_img);
{
FILE *fp = fopen((output_dir + "timeHBP_ISP.txt").c_str(), "w");
if (fp != nullptr)
{
fprintf(fp, "runtime %lf\n", eval->getCurrentTime());
fclose(fp);
}
}
if (cvutils::contains(input_dir, "training"))
eval->evaluate(disp_img, true, true);
delete eval;
}
}
void medianFilter(cv::Mat &D)
{
// get disparity image dimensions
int32_t D_width = D.cols;
int32_t D_height = D.rows;
// temporary memory
cv::Mat D_temp(D.rows, D.cols, CV_32FC1, cv::Scalar::all(0));
int32_t window_size = 3;
float *vals = new float[window_size * 2 + 1];
int32_t i, j;
float temp;
// first step: horizontal median filter
for (int32_t u = window_size; u < D_width - window_size; u++)
{
for (int32_t v = window_size; v < D_height - window_size; v++)
{
if (D.at<float>(v, u) >= 0)
{
j = 0;
for (int32_t u2 = u - window_size; u2 <= u + window_size; u2++)
{
temp = D.at<float>(v, u2);
i = j - 1;
while (i >= 0 && *(vals + i) > temp)
{
*(vals + i + 1) = *(vals + i);
i--;
}
*(vals + i + 1) = temp;
j++;
}
D_temp.at<float>(v, u) = *(vals + window_size);
}
else
{
D_temp.at<float>(v, u) = D.at<float>(v, u);
}
}
}
// second step: vertical median filter
for (int32_t u = window_size; u < D_width - window_size; u++)
{
for (int32_t v = window_size; v < D_height - window_size; v++)
{
if (D.at<float>(v, u) >= 0)
{
j = 0;
for (int32_t v2 = v - window_size; v2 <= v + window_size; v2++)
{
temp = D_temp.at<float>(v2, u);
i = j - 1;
while (i >= 0 && *(vals + i) > temp)
{
*(vals + i + 1) = *(vals + i);
i--;
}
*(vals + i + 1) = temp;
j++;
}
D.at<float>(v, u) = *(vals + window_size);
}
else
{
D.at<float>(v, u) = D.at<float>(v, u);
}
}
}
delete[] vals;
}
int main(int argc, char **argv)
{
if (argc != 11)
{
std::cerr << "usage: " << argv[0]
<< " input_dir output_dir linkage num_nb sigma alpha tau_smooth "
"cost_name use_cost_vol min_level\n"
"linkage: 0 - MinLink, 1 - MaxLink, 2- CentoridLink, 3 - "
"WardLink\n";
exit(1);
}
std::string input_dir(argv[1]);
std::string output_dir(argv[2]);
std::cout << "processing: " << input_dir << std::endl;
if (output_dir.length())
mkdir((output_dir).c_str(), 0755);
cudaSetDevice(0);
cudaDeviceSynchronize();
MidV3(input_dir, output_dir, argv);
// MidV3_LR (input_dir, output_dir, argv);
return 0;
}