From 8f83c7e46fc3799eb0539c891504ecebba445ffb Mon Sep 17 00:00:00 2001 From: Actarnix Date: Sun, 28 Jan 2024 17:40:44 +0800 Subject: [PATCH] fixes --- NUS_DATATHON_SINGLIFE_Team AwkBBQ.ipynb | 6133 ++++++++++++----------- 1 file changed, 3101 insertions(+), 3032 deletions(-) diff --git a/NUS_DATATHON_SINGLIFE_Team AwkBBQ.ipynb b/NUS_DATATHON_SINGLIFE_Team AwkBBQ.ipynb index 47db4ad..58d0df4 100644 --- a/NUS_DATATHON_SINGLIFE_Team AwkBBQ.ipynb +++ b/NUS_DATATHON_SINGLIFE_Team AwkBBQ.ipynb @@ -10,14 +10,57 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 34, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Collecting xgboost\n", + " Downloading xgboost-2.0.3-py3-none-win_amd64.whl (99.8 MB)\n", + "Requirement already satisfied: numpy in c:\\users\\matthew chuang\\documents\\github\\nus-sds-datathon-singlife\\venv\\lib\\site-packages (from xgboost) (1.26.3)\n", + "Requirement already satisfied: scipy in c:\\users\\matthew chuang\\documents\\github\\nus-sds-datathon-singlife\\venv\\lib\\site-packages (from xgboost) (1.12.0)\n", + "Installing collected packages: xgboost\n", + "Successfully installed xgboost-2.0.3\n", + "Note: you may need to restart the kernel to use updated packages.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "WARNING: You are using pip version 20.2.3; however, version 23.3.2 is available.\n", + "You should consider upgrading via the 'c:\\Users\\Matthew Chuang\\Documents\\Github\\NUS-SDS-Datathon-Singlife\\venv\\Scripts\\python.exe -m pip install --upgrade pip' command.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Requirement already satisfied: scikit-learn in c:\\users\\matthew chuang\\documents\\github\\nus-sds-datathon-singlife\\venv\\lib\\site-packages (1.4.0)\n", + "Requirement already satisfied: threadpoolctl>=2.0.0 in c:\\users\\matthew chuang\\documents\\github\\nus-sds-datathon-singlife\\venv\\lib\\site-packages (from scikit-learn) (3.2.0)\n", + "Requirement already satisfied: scipy>=1.6.0 in c:\\users\\matthew chuang\\documents\\github\\nus-sds-datathon-singlife\\venv\\lib\\site-packages (from scikit-learn) (1.12.0)\n", + "Requirement already satisfied: joblib>=1.2.0 in c:\\users\\matthew chuang\\documents\\github\\nus-sds-datathon-singlife\\venv\\lib\\site-packages (from scikit-learn) (1.3.2)\n", + "Requirement already satisfied: numpy<2.0,>=1.19.5 in c:\\users\\matthew chuang\\documents\\github\\nus-sds-datathon-singlife\\venv\\lib\\site-packages (from scikit-learn) (1.26.3)\n", + "Note: you may need to restart the kernel to use updated packages.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "WARNING: You are using pip version 20.2.3; however, version 23.3.2 is available.\n", + "You should consider upgrading via the 'c:\\Users\\Matthew Chuang\\Documents\\Github\\NUS-SDS-Datathon-Singlife\\venv\\Scripts\\python.exe -m pip install --upgrade pip' command.\n" + ] + } + ], "source": [ - "# %pip install pandas \n", - "# %pip install matplotlib\n", - "# add commented pip installation lines for packages used as shown above for ease of testing\n", - "# the line should be of the format %pip install PACKAGE_NAME " + "# installation of dependencies\n", + "%pip install xgboost\n", + "%pip install scikit-learn\n", + "%pip install pandas \n", + "%pip install matplotlib" ] }, { @@ -31,7 +74,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 35, "metadata": {}, "outputs": [], "source": [ @@ -55,7 +98,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 36, "metadata": {}, "outputs": [ { @@ -395,8 +438,8 @@ " Singapore\n", " P\n", " ACTIVE\n", - " 2017-10-31\n", - " 1974-05-09\n", + " 10/31/2017\n", + " 5/9/1974\n", " Female\n", " 0.0\n", " 0.0\n", @@ -431,102 +474,102 @@ " NaN\n", " 3\n", " NaN\n", + " 0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 551\n", " 0.0\n", - " 0.0\n", - " 0.0\n", - " 551.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 318.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 700.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 318\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", - " 29203.0\n", " 0.0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 700\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", " 0.0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", " 0.0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 29203\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", - " 16854.0\n", + " 0\n", " 0.0\n", + " 0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 16854\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 318.0\n", - " 0.0\n", + " 0\n", " 0.0\n", " 551.0\n", " 0.0\n", - " 0.0\n", + " 0\n", " 0\n", " 1\n", " 0\n", @@ -534,20 +577,20 @@ " 1\n", " 0\n", " 0\n", + " 0\n", + " 0\n", + " 0\n", " 0.0\n", + " 700\n", " 0.0\n", - " 0.0\n", - " 0.0\n", - " 700.0\n", - " 0.0\n", - " 0.0\n", + " 0\n", " 0.0\n", " 16854.0\n", - " 0.0\n", + " 0\n", " 0.0\n", " 29203.0\n", " 0.0\n", - " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", @@ -703,8 +746,8 @@ " Singapore\n", " P\n", " ACTIVE\n", - " 2007-05-23\n", - " 1979-11-11\n", + " 5/23/2007\n", + " 11/11/1979\n", " Male\n", " 0.0\n", " 0.0\n", @@ -739,99 +782,98 @@ " NaN\n", " 1\n", " NaN\n", + " 0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", " 0.0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", " 0.0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", @@ -842,13 +884,21 @@ " 0\n", " 0\n", " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", @@ -865,14 +915,7 @@ " 0.0\n", " 0.0\n", " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 601.0\n", + " 601.0\n", " 0.0\n", " 0.0\n", " 0.0\n", @@ -1011,8 +1054,8 @@ " Singapore\n", " P\n", " ACTIVE\n", - " 2019-08-31\n", - " 1976-01-28\n", + " 8/31/2019\n", + " 1/28/1976\n", " Male\n", " 0.0\n", " 0.0\n", @@ -1047,99 +1090,98 @@ " NaN\n", " 1\n", " NaN\n", + " 0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", " 0.0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", " 0.0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", @@ -1150,20 +1192,21 @@ " 0\n", " 0\n", " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", + " 0\n", " NaN\n", " NaN\n", " NaN\n", @@ -1319,8 +1362,8 @@ " Singapore\n", " P\n", " ACTIVE\n", - " 2021-10-18\n", - " 1976-03-19\n", + " 10/18/2021\n", + " 3/19/1976\n", " Female\n", " 0.0\n", " 0.0\n", @@ -1355,99 +1398,98 @@ " NaN\n", " 1\n", " NaN\n", + " 0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", " 0.0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", " 0.0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", @@ -1458,20 +1500,21 @@ " 0\n", " 0\n", " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", + " 0\n", " NaN\n", " NaN\n", " NaN\n", @@ -1627,8 +1670,8 @@ " Singapore\n", " P\n", " ACTIVE\n", - " 2018-07-20\n", - " 1995-07-31\n", + " 7/20/2018\n", + " 7/31/1995\n", " Female\n", " 0.0\n", " 0.0\n", @@ -1663,102 +1706,102 @@ " NaN\n", " 1\n", " NaN\n", + " 0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 348.0\n", + " 0\n", " 0.0\n", + " 0\n", + " 0\n", " 0.0\n", " 0.0\n", - " 0.0\n", - " 0.0\n", - " 348.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 400000.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 400000\n", " 0.0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", " 0.0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 18444.0\n", + " 0\n", " 0.0\n", + " 0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 348.0\n", - " 0.0\n", + " 0\n", " 0\n", " 0\n", " 0\n", @@ -1766,20 +1809,20 @@ " 0\n", " 1\n", " 0\n", + " 0\n", + " 0\n", + " 0\n", " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", + " 0\n", " 400000.0\n", + " 0\n", " 0.0\n", " 0.0\n", - " 0.0\n", - " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 18444.0\n", - " 0.0\n", + " 0\n", " NaN\n", " NaN\n", " NaN\n", @@ -1940,11 +1983,11 @@ "4 19724 2647a81328 Chinese Singapore P ACTIVE \n", "\n", " min_occ_date cltdob_fix cltsex_fix flg_substandard \\\n", - "0 2017-10-31 1974-05-09 Female 0.0 \n", - "1 2007-05-23 1979-11-11 Male 0.0 \n", - "2 2019-08-31 1976-01-28 Male 0.0 \n", - "3 2021-10-18 1976-03-19 Female 0.0 \n", - "4 2018-07-20 1995-07-31 Female 0.0 \n", + "0 10/31/2017 5/9/1974 Female 0.0 \n", + "1 5/23/2007 11/11/1979 Male 0.0 \n", + "2 8/31/2019 1/28/1976 Male 0.0 \n", + "3 10/18/2021 3/19/1976 Female 0.0 \n", + "4 7/20/2018 7/31/1995 Female 0.0 \n", "\n", " flg_is_borderline_standard flg_is_revised_term flg_is_rental_flat \\\n", "0 0.0 0.0 0.0 \n", @@ -2003,158 +2046,158 @@ "4 0 0 NaN \n", "\n", " recency_cancel tot_inforce_pols tot_cancel_pols ape_gi_42e115 \\\n", - "0 NaN 3 NaN 0.0 \n", - "1 NaN 1 NaN 0.0 \n", - "2 NaN 1 NaN 0.0 \n", - "3 NaN 1 NaN 0.0 \n", - "4 NaN 1 NaN 0.0 \n", + "0 NaN 3 NaN 0 \n", + "1 NaN 1 NaN 0 \n", + "2 NaN 1 NaN 0 \n", + "3 NaN 1 NaN 0 \n", + "4 NaN 1 NaN 0 \n", "\n", " ape_ltc_1280bf ape_grp_6fc3e6 ape_grp_de05ae ape_inv_dcd836 \\\n", - "0 0.0 0.0 0.0 0.0 \n", - "1 0.0 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 0.0 \n", - "4 0.0 0.0 0.0 0.0 \n", + "0 0 0.0 0.0 0 \n", + "1 0 0.0 0.0 0 \n", + "2 0 0.0 0.0 0 \n", + "3 0 0.0 0.0 0 \n", + "4 0 0.0 0.0 0 \n", "\n", " ape_grp_945b5a ape_grp_6a5788 ape_ltc_43b9d5 ape_grp_9cdedf \\\n", - "0 0.0 0.0 551.0 0.0 \n", - "1 0.0 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 0.0 \n", - "4 0.0 0.0 0.0 0.0 \n", + "0 0.0 0.0 551 0.0 \n", + "1 0.0 0.0 0 0.0 \n", + "2 0.0 0.0 0 0.0 \n", + "3 0.0 0.0 0 0.0 \n", + "4 0.0 0.0 0 0.0 \n", "\n", " ape_lh_d0adeb ape_grp_1581d7 ape_grp_22decf ape_lh_507c37 \\\n", - "0 0.0 0.0 0.0 0.0 \n", - "1 0.0 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 0.0 \n", - "4 0.0 0.0 0.0 348.0 \n", + "0 0 0.0 0.0 0.0 \n", + "1 0 0.0 0.0 0.0 \n", + "2 0 0.0 0.0 0.0 \n", + "3 0 0.0 0.0 0.0 \n", + "4 0 0.0 0.0 348.0 \n", "\n", " ape_lh_839f8a ape_inv_e9f316 ape_gi_a10d1b ape_gi_29d435 \\\n", - "0 0.0 0.0 0.0 0.0 \n", - "1 0.0 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 0.0 \n", - "4 0.0 0.0 0.0 0.0 \n", + "0 0 0.0 0 0 \n", + "1 0 0.0 0 0 \n", + "2 0 0.0 0 0 \n", + "3 0 0.0 0 0 \n", + "4 0 0.0 0 0 \n", "\n", " ape_grp_caa6ff ape_grp_fd3bfb ape_lh_e22a6a ape_grp_70e1dd \\\n", - "0 0.0 0.0 318.0 0.0 \n", - "1 0.0 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 0.0 \n", - "4 0.0 0.0 0.0 0.0 \n", + "0 0.0 0.0 318 0.0 \n", + "1 0.0 0.0 0 0.0 \n", + "2 0.0 0.0 0 0.0 \n", + "3 0.0 0.0 0 0.0 \n", + "4 0.0 0.0 0 0.0 \n", "\n", " ape_grp_e04c3a ape_grp_fe5fb8 ape_gi_856320 ape_grp_94baec \\\n", - "0 0.0 0.0 0.0 0.0 \n", - "1 0.0 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 0.0 \n", - "4 0.0 0.0 0.0 0.0 \n", + "0 0.0 0.0 0 0.0 \n", + "1 0.0 0.0 0 0.0 \n", + "2 0.0 0.0 0 0.0 \n", + "3 0.0 0.0 0 0.0 \n", + "4 0.0 0.0 0 0.0 \n", "\n", " ape_gi_058815 ape_grp_e91421 ape_lh_f852af ape_lh_947b15 ape_32c74c \\\n", - "0 0.0 0.0 0.0 0.0 0.0 \n", - "1 0.0 0.0 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 0.0 0.0 \n", - "4 0.0 0.0 0.0 0.0 0.0 \n", + "0 0 0.0 0.0 0.0 0 \n", + "1 0 0.0 0.0 0.0 0 \n", + "2 0 0.0 0.0 0.0 0 \n", + "3 0 0.0 0.0 0.0 0 \n", + "4 0 0.0 0.0 0.0 0 \n", "\n", " sumins_gi_42e115 sumins_ltc_1280bf sumins_grp_6fc3e6 sumins_grp_de05ae \\\n", - "0 0.0 0.0 0.0 0.0 \n", - "1 0.0 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 0.0 \n", - "4 0.0 0.0 0.0 0.0 \n", + "0 0 0 0 0 \n", + "1 0 0 0 0 \n", + "2 0 0 0 0 \n", + "3 0 0 0 0 \n", + "4 0 0 0 0 \n", "\n", " sumins_inv_dcd836 sumins_grp_945b5a sumins_grp_6a5788 sumins_ltc_43b9d5 \\\n", - "0 0.0 0.0 0.0 700.0 \n", - "1 0.0 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 0.0 \n", - "4 0.0 0.0 0.0 0.0 \n", + "0 0 0 0 700 \n", + "1 0 0 0 0 \n", + "2 0 0 0 0 \n", + "3 0 0 0 0 \n", + "4 0 0 0 0 \n", "\n", " sumins_grp_9cdedf sumins_lh_d0adeb sumins_grp_1581d7 sumins_grp_22decf \\\n", - "0 0.0 0.0 0.0 0.0 \n", - "1 0.0 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 0.0 \n", - "4 0.0 0.0 0.0 0.0 \n", + "0 0 0 0 0 \n", + "1 0 0 0 0 \n", + "2 0 0 0 0 \n", + "3 0 0 0 0 \n", + "4 0 0 0 0 \n", "\n", " sumins_lh_507c37 sumins_inv_e9f316 sumins_gi_a10d1b sumins_gi_29d435 \\\n", - "0 0.0 0.0 0.0 0.0 \n", - "1 0.0 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 0.0 \n", - "4 400000.0 0.0 0.0 0.0 \n", + "0 0 0.0 0 0 \n", + "1 0 0.0 0 0 \n", + "2 0 0.0 0 0 \n", + "3 0 0.0 0 0 \n", + "4 400000 0.0 0 0 \n", "\n", " sumins_grp_caa6ff sumins_grp_fd3bfb sumins_lh_e22a6a sumins_grp_70e1dd \\\n", - "0 0.0 0.0 0.0 0.0 \n", - "1 0.0 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 0.0 \n", - "4 0.0 0.0 0.0 0.0 \n", + "0 0 0 0 0.0 \n", + "1 0 0 0 0.0 \n", + "2 0 0 0 0.0 \n", + "3 0 0 0 0.0 \n", + "4 0 0 0 0.0 \n", "\n", " sumins_grp_e04c3a sumins_grp_fe5fb8 sumins_gi_856320 sumins_grp_94baec \\\n", - "0 0.0 0.0 0.0 0.0 \n", - "1 0.0 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 0.0 \n", - "4 0.0 0.0 0.0 0.0 \n", + "0 0 0 0 0 \n", + "1 0 0 0 0 \n", + "2 0 0 0 0 \n", + "3 0 0 0 0 \n", + "4 0 0 0 0 \n", "\n", " sumins_gi_058815 sumins_grp_e91421 sumins_lh_f852af sumins_lh_947b15 \\\n", - "0 0.0 0.0 0.0 0.0 \n", - "1 0.0 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 0.0 \n", - "4 0.0 0.0 0.0 0.0 \n", + "0 0 0 0 0 \n", + "1 0 0 0 0 \n", + "2 0 0 0 0 \n", + "3 0 0 0 0 \n", + "4 0 0 0 0 \n", "\n", " sumins_32c74c prempaid_gi_42e115 prempaid_ltc_1280bf \\\n", - "0 0.0 0.0 0.0 \n", - "1 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 \n", - "4 0.0 0.0 0.0 \n", + "0 0 0 0 \n", + "1 0 0 0 \n", + "2 0 0 0 \n", + "3 0 0 0 \n", + "4 0 0 0 \n", "\n", " prempaid_grp_6fc3e6 prempaid_grp_de05ae prempaid_inv_dcd836 \\\n", - "0 0.0 0.0 0.0 \n", - "1 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 \n", - "4 0.0 0.0 0.0 \n", + "0 0.0 0.0 0 \n", + "1 0.0 0.0 0 \n", + "2 0.0 0.0 0 \n", + "3 0.0 0.0 0 \n", + "4 0.0 0.0 0 \n", "\n", " prempaid_grp_945b5a prempaid_grp_6a5788 prempaid_ltc_43b9d5 \\\n", - "0 0.0 0.0 29203.0 \n", - "1 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 \n", - "4 0.0 0.0 0.0 \n", + "0 0.0 0.0 29203 \n", + "1 0.0 0.0 0 \n", + "2 0.0 0.0 0 \n", + "3 0.0 0.0 0 \n", + "4 0.0 0.0 0 \n", "\n", " prempaid_grp_9cdedf prempaid_lh_d0adeb prempaid_grp_1581d7 \\\n", - "0 0.0 0.0 0.0 \n", - "1 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 \n", - "4 0.0 0.0 0.0 \n", + "0 0.0 0 0.0 \n", + "1 0.0 0 0.0 \n", + "2 0.0 0 0.0 \n", + "3 0.0 0 0.0 \n", + "4 0.0 0 0.0 \n", "\n", " prempaid_grp_22decf prempaid_lh_507c37 prempaid_lh_839f8a \\\n", - "0 0.0 0.0 0.0 \n", - "1 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 \n", - "4 0.0 18444.0 0.0 \n", + "0 0.0 0.0 0 \n", + "1 0.0 0.0 0 \n", + "2 0.0 0.0 0 \n", + "3 0.0 0.0 0 \n", + "4 0.0 18444.0 0 \n", "\n", " prempaid_inv_e9f316 prempaid_gi_a10d1b prempaid_gi_29d435 \\\n", - "0 0.0 0.0 0.0 \n", - "1 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 \n", - "4 0.0 0.0 0.0 \n", + "0 0.0 0 0 \n", + "1 0.0 0 0 \n", + "2 0.0 0 0 \n", + "3 0.0 0 0 \n", + "4 0.0 0 0 \n", "\n", " prempaid_grp_caa6ff prempaid_grp_fd3bfb prempaid_lh_e22a6a \\\n", - "0 0.0 0.0 16854.0 \n", - "1 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 \n", - "4 0.0 0.0 0.0 \n", + "0 0.0 0.0 16854 \n", + "1 0.0 0.0 0 \n", + "2 0.0 0.0 0 \n", + "3 0.0 0.0 0 \n", + "4 0.0 0.0 0 \n", "\n", " prempaid_grp_70e1dd prempaid_grp_e04c3a prempaid_grp_fe5fb8 \\\n", "0 0.0 0.0 0.0 \n", @@ -2164,11 +2207,11 @@ "4 0.0 0.0 0.0 \n", "\n", " prempaid_gi_856320 prempaid_grp_94baec prempaid_gi_058815 \\\n", - "0 0.0 0.0 0.0 \n", - "1 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 \n", - "4 0.0 0.0 0.0 \n", + "0 0 0.0 0 \n", + "1 0 0.0 0 \n", + "2 0 0.0 0 \n", + "3 0 0.0 0 \n", + "4 0 0.0 0 \n", "\n", " prempaid_grp_e91421 prempaid_lh_f852af prempaid_lh_947b15 \\\n", "0 0.0 0.0 0.0 \n", @@ -2178,46 +2221,46 @@ "4 0.0 0.0 0.0 \n", "\n", " prempaid_32c74c ape_839f8a ape_e22a6a ape_d0adeb ape_c4bda5 ape_ltc \\\n", - "0 0.0 0.0 318.0 0.0 0.0 551.0 \n", - "1 0.0 0.0 0.0 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 0.0 0.0 0.0 \n", - "4 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "0 0 0.0 318.0 0 0.0 551.0 \n", + "1 0 0.0 0.0 0 0.0 0.0 \n", + "2 0 0.0 0.0 0 0.0 0.0 \n", + "3 0 0.0 0.0 0 0.0 0.0 \n", + "4 0 0.0 0.0 0 0.0 0.0 \n", "\n", " ape_507c37 ape_gi f_hold_839f8a f_hold_e22a6a f_hold_d0adeb \\\n", - "0 0.0 0.0 0 1 0 \n", - "1 0.0 0.0 0 0 0 \n", - "2 0.0 0.0 0 0 0 \n", - "3 0.0 0.0 0 0 0 \n", - "4 348.0 0.0 0 0 0 \n", + "0 0.0 0 0 1 0 \n", + "1 0.0 0 0 0 0 \n", + "2 0.0 0 0 0 0 \n", + "3 0.0 0 0 0 0 \n", + "4 348.0 0 0 0 0 \n", "\n", " f_hold_c4bda5 f_hold_ltc f_hold_507c37 f_hold_gi sumins_839f8a \\\n", - "0 0 1 0 0 0.0 \n", - "1 0 0 0 0 0.0 \n", - "2 0 0 0 0 0.0 \n", - "3 0 0 0 0 0.0 \n", - "4 0 0 1 0 0.0 \n", + "0 0 1 0 0 0 \n", + "1 0 0 0 0 0 \n", + "2 0 0 0 0 0 \n", + "3 0 0 0 0 0 \n", + "4 0 0 1 0 0 \n", "\n", " sumins_e22a6a sumins_d0adeb sumins_c4bda5 sumins_ltc sumins_507c37 \\\n", - "0 0.0 0.0 0.0 700.0 0.0 \n", - "1 0.0 0.0 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 0.0 0.0 \n", - "4 0.0 0.0 0.0 0.0 400000.0 \n", + "0 0 0 0.0 700 0.0 \n", + "1 0 0 0.0 0 0.0 \n", + "2 0 0 0.0 0 0.0 \n", + "3 0 0 0.0 0 0.0 \n", + "4 0 0 0.0 0 400000.0 \n", "\n", " sumins_gi prempaid_839f8a prempaid_e22a6a prempaid_d0adeb \\\n", - "0 0.0 0.0 16854.0 0.0 \n", - "1 0.0 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 0.0 \n", - "4 0.0 0.0 0.0 0.0 \n", + "0 0 0.0 16854.0 0 \n", + "1 0 0.0 0.0 0 \n", + "2 0 0.0 0.0 0 \n", + "3 0 0.0 0.0 0 \n", + "4 0 0.0 0.0 0 \n", "\n", " prempaid_c4bda5 prempaid_ltc prempaid_507c37 prempaid_gi \\\n", - "0 0.0 29203.0 0.0 0.0 \n", - "1 0.0 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 0.0 \n", - "4 0.0 0.0 18444.0 0.0 \n", + "0 0.0 29203.0 0.0 0 \n", + "1 0.0 0.0 0.0 0 \n", + "2 0.0 0.0 0.0 0 \n", + "3 0.0 0.0 0.0 0 \n", + "4 0.0 0.0 18444.0 0 \n", "\n", " lapse_ape_ltc_1280bf lapse_ape_grp_6fc3e6 lapse_ape_grp_de05ae \\\n", "0 0.0 0.0 0.0 \n", @@ -2654,7 +2697,7 @@ "4 NaN NaN " ] }, - "execution_count": 4, + "execution_count": 36, "metadata": {}, "output_type": "execute_result" } @@ -2681,7 +2724,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 37, "metadata": {}, "outputs": [ { @@ -2729,6 +2772,7 @@ "today = pd.Timestamp(datetime.today().date())\n", "df['years_since_first_interaction'] = (today - df['min_occ_date']) / pd.Timedelta(days=365.25)\n", "df['years_since_first_interaction'] = df['years_since_first_interaction'].round().astype(int)\n", + "\n", "# Drop the 'min_occ_date' column\n", "df.drop('min_occ_date', axis=1, inplace=True)\n", "\n", @@ -2738,9 +2782,9 @@ "df['race_desc_encoded'] = label_encoder.fit_transform(df['race_desc'])\n", "df.drop(columns=['stat_flag', 'cltsex_fix', 'race_desc'], inplace=True)\n", "\n", + "print(\"New Number of Cols: \", len(df.columns), \"\\nNew Number of Rows: \", len(df))\n", "# final row and cols\n", - "df.head() # print df \n", - "print(\"New Number of Cols: \", len(df.columns), \"\\nNew Number of Rows: \", len(df))" + "df.head() # print df \n" ] }, { @@ -2753,7 +2797,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 38, "metadata": {}, "outputs": [ { @@ -2788,7 +2832,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 39, "metadata": {}, "outputs": [ { @@ -3154,102 +3198,102 @@ " NaN\n", " 3\n", " NaN\n", + " 0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 551\n", " 0.0\n", - " 0.0\n", - " 0.0\n", - " 551.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 318.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 700.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 318\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", - " 29203.0\n", " 0.0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 700\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", " 0.0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", " 0.0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 29203\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", - " 16854.0\n", + " 0\n", " 0.0\n", + " 0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 16854\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 318.0\n", - " 0.0\n", + " 0\n", " 0.0\n", " 551.0\n", " 0.0\n", - " 0.0\n", + " 0\n", " 0\n", " 1\n", " 0\n", @@ -3257,20 +3301,20 @@ " 1\n", " 0\n", " 0\n", + " 0\n", + " 0\n", + " 0\n", " 0.0\n", + " 700\n", " 0.0\n", - " 0.0\n", - " 0.0\n", - " 700.0\n", - " 0.0\n", - " 0.0\n", + " 0\n", " 0.0\n", " 16854.0\n", - " 0.0\n", + " 0\n", " 0.0\n", " 29203.0\n", " 0.0\n", - " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", @@ -3455,99 +3499,98 @@ " NaN\n", " 1\n", " NaN\n", + " 0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", " 0.0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", " 0.0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", @@ -3558,20 +3601,21 @@ " 0\n", " 0\n", " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", @@ -3756,99 +3800,98 @@ " NaN\n", " 1\n", " NaN\n", + " 0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", " 0.0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", " 0.0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", @@ -3859,20 +3902,21 @@ " 0\n", " 0\n", " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", + " 0\n", " NaN\n", " NaN\n", " NaN\n", @@ -4057,99 +4101,98 @@ " NaN\n", " 1\n", " NaN\n", + " 0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", " 0.0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", " 0.0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", @@ -4160,20 +4203,21 @@ " 0\n", " 0\n", " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", + " 0\n", " NaN\n", " NaN\n", " NaN\n", @@ -4358,102 +4402,102 @@ " NaN\n", " 1\n", " NaN\n", + " 0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 348.0\n", + " 0\n", " 0.0\n", + " 0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 400000\n", " 0.0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", " 0.0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 400000.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 18444.0\n", + " 0\n", " 0.0\n", + " 0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 348.0\n", - " 0.0\n", + " 0\n", " 0\n", " 0\n", " 0\n", @@ -4461,20 +4505,20 @@ " 0\n", " 1\n", " 0\n", + " 0\n", + " 0\n", + " 0\n", " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", + " 0\n", " 400000.0\n", + " 0\n", " 0.0\n", " 0.0\n", - " 0.0\n", - " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 18444.0\n", - " 0.0\n", + " 0\n", " NaN\n", " NaN\n", " NaN\n", @@ -4690,186 +4734,186 @@ "4 0 NaN NaN 1 \n", "\n", " tot_cancel_pols ape_gi_42e115 ape_ltc_1280bf ape_grp_6fc3e6 \\\n", - "0 NaN 0.0 0.0 0.0 \n", - "1 NaN 0.0 0.0 0.0 \n", - "2 NaN 0.0 0.0 0.0 \n", - "3 NaN 0.0 0.0 0.0 \n", - "4 NaN 0.0 0.0 0.0 \n", + "0 NaN 0 0 0.0 \n", + "1 NaN 0 0 0.0 \n", + "2 NaN 0 0 0.0 \n", + "3 NaN 0 0 0.0 \n", + "4 NaN 0 0 0.0 \n", "\n", " ape_grp_de05ae ape_inv_dcd836 ape_grp_945b5a ape_grp_6a5788 \\\n", - "0 0.0 0.0 0.0 0.0 \n", - "1 0.0 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 0.0 \n", - "4 0.0 0.0 0.0 0.0 \n", + "0 0.0 0 0.0 0.0 \n", + "1 0.0 0 0.0 0.0 \n", + "2 0.0 0 0.0 0.0 \n", + "3 0.0 0 0.0 0.0 \n", + "4 0.0 0 0.0 0.0 \n", "\n", " ape_ltc_43b9d5 ape_grp_9cdedf ape_lh_d0adeb ape_grp_1581d7 \\\n", - "0 551.0 0.0 0.0 0.0 \n", - "1 0.0 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 0.0 \n", - "4 0.0 0.0 0.0 0.0 \n", + "0 551 0.0 0 0.0 \n", + "1 0 0.0 0 0.0 \n", + "2 0 0.0 0 0.0 \n", + "3 0 0.0 0 0.0 \n", + "4 0 0.0 0 0.0 \n", "\n", " ape_grp_22decf ape_lh_507c37 ape_lh_839f8a ape_inv_e9f316 \\\n", - "0 0.0 0.0 0.0 0.0 \n", - "1 0.0 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 0.0 \n", - "4 0.0 348.0 0.0 0.0 \n", + "0 0.0 0.0 0 0.0 \n", + "1 0.0 0.0 0 0.0 \n", + "2 0.0 0.0 0 0.0 \n", + "3 0.0 0.0 0 0.0 \n", + "4 0.0 348.0 0 0.0 \n", "\n", " ape_gi_a10d1b ape_gi_29d435 ape_grp_caa6ff ape_grp_fd3bfb \\\n", - "0 0.0 0.0 0.0 0.0 \n", - "1 0.0 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 0.0 \n", - "4 0.0 0.0 0.0 0.0 \n", + "0 0 0 0.0 0.0 \n", + "1 0 0 0.0 0.0 \n", + "2 0 0 0.0 0.0 \n", + "3 0 0 0.0 0.0 \n", + "4 0 0 0.0 0.0 \n", "\n", " ape_lh_e22a6a ape_grp_70e1dd ape_grp_e04c3a ape_grp_fe5fb8 \\\n", - "0 318.0 0.0 0.0 0.0 \n", - "1 0.0 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 0.0 \n", - "4 0.0 0.0 0.0 0.0 \n", + "0 318 0.0 0.0 0.0 \n", + "1 0 0.0 0.0 0.0 \n", + "2 0 0.0 0.0 0.0 \n", + "3 0 0.0 0.0 0.0 \n", + "4 0 0.0 0.0 0.0 \n", "\n", " ape_gi_856320 ape_grp_94baec ape_gi_058815 ape_grp_e91421 \\\n", - "0 0.0 0.0 0.0 0.0 \n", - "1 0.0 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 0.0 \n", - "4 0.0 0.0 0.0 0.0 \n", + "0 0 0.0 0 0.0 \n", + "1 0 0.0 0 0.0 \n", + "2 0 0.0 0 0.0 \n", + "3 0 0.0 0 0.0 \n", + "4 0 0.0 0 0.0 \n", "\n", " ape_lh_f852af ape_lh_947b15 ape_32c74c sumins_gi_42e115 \\\n", - "0 0.0 0.0 0.0 0.0 \n", - "1 0.0 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 0.0 \n", - "4 0.0 0.0 0.0 0.0 \n", + "0 0.0 0.0 0 0 \n", + "1 0.0 0.0 0 0 \n", + "2 0.0 0.0 0 0 \n", + "3 0.0 0.0 0 0 \n", + "4 0.0 0.0 0 0 \n", "\n", " sumins_ltc_1280bf sumins_grp_6fc3e6 sumins_grp_de05ae sumins_inv_dcd836 \\\n", - "0 0.0 0.0 0.0 0.0 \n", - "1 0.0 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 0.0 \n", - "4 0.0 0.0 0.0 0.0 \n", + "0 0 0 0 0 \n", + "1 0 0 0 0 \n", + "2 0 0 0 0 \n", + "3 0 0 0 0 \n", + "4 0 0 0 0 \n", "\n", " sumins_grp_945b5a sumins_grp_6a5788 sumins_ltc_43b9d5 sumins_grp_9cdedf \\\n", - "0 0.0 0.0 700.0 0.0 \n", - "1 0.0 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 0.0 \n", - "4 0.0 0.0 0.0 0.0 \n", + "0 0 0 700 0 \n", + "1 0 0 0 0 \n", + "2 0 0 0 0 \n", + "3 0 0 0 0 \n", + "4 0 0 0 0 \n", "\n", " sumins_lh_d0adeb sumins_grp_1581d7 sumins_grp_22decf sumins_lh_507c37 \\\n", - "0 0.0 0.0 0.0 0.0 \n", - "1 0.0 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 0.0 \n", - "4 0.0 0.0 0.0 400000.0 \n", + "0 0 0 0 0 \n", + "1 0 0 0 0 \n", + "2 0 0 0 0 \n", + "3 0 0 0 0 \n", + "4 0 0 0 400000 \n", "\n", " sumins_inv_e9f316 sumins_gi_a10d1b sumins_gi_29d435 sumins_grp_caa6ff \\\n", - "0 0.0 0.0 0.0 0.0 \n", - "1 0.0 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 0.0 \n", - "4 0.0 0.0 0.0 0.0 \n", + "0 0.0 0 0 0 \n", + "1 0.0 0 0 0 \n", + "2 0.0 0 0 0 \n", + "3 0.0 0 0 0 \n", + "4 0.0 0 0 0 \n", "\n", " sumins_grp_fd3bfb sumins_lh_e22a6a sumins_grp_70e1dd sumins_grp_e04c3a \\\n", - "0 0.0 0.0 0.0 0.0 \n", - "1 0.0 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 0.0 \n", - "4 0.0 0.0 0.0 0.0 \n", + "0 0 0 0.0 0 \n", + "1 0 0 0.0 0 \n", + "2 0 0 0.0 0 \n", + "3 0 0 0.0 0 \n", + "4 0 0 0.0 0 \n", "\n", " sumins_grp_fe5fb8 sumins_gi_856320 sumins_grp_94baec sumins_gi_058815 \\\n", - "0 0.0 0.0 0.0 0.0 \n", - "1 0.0 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 0.0 \n", - "4 0.0 0.0 0.0 0.0 \n", + "0 0 0 0 0 \n", + "1 0 0 0 0 \n", + "2 0 0 0 0 \n", + "3 0 0 0 0 \n", + "4 0 0 0 0 \n", "\n", " sumins_grp_e91421 sumins_lh_f852af sumins_lh_947b15 sumins_32c74c \\\n", - "0 0.0 0.0 0.0 0.0 \n", - "1 0.0 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 0.0 \n", - "4 0.0 0.0 0.0 0.0 \n", + "0 0 0 0 0 \n", + "1 0 0 0 0 \n", + "2 0 0 0 0 \n", + "3 0 0 0 0 \n", + "4 0 0 0 0 \n", "\n", " prempaid_gi_42e115 prempaid_ltc_1280bf prempaid_grp_6fc3e6 \\\n", - "0 0.0 0.0 0.0 \n", - "1 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 \n", - "4 0.0 0.0 0.0 \n", + "0 0 0 0.0 \n", + "1 0 0 0.0 \n", + "2 0 0 0.0 \n", + "3 0 0 0.0 \n", + "4 0 0 0.0 \n", "\n", " prempaid_grp_de05ae prempaid_inv_dcd836 prempaid_grp_945b5a \\\n", - "0 0.0 0.0 0.0 \n", - "1 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 \n", - "4 0.0 0.0 0.0 \n", + "0 0.0 0 0.0 \n", + "1 0.0 0 0.0 \n", + "2 0.0 0 0.0 \n", + "3 0.0 0 0.0 \n", + "4 0.0 0 0.0 \n", "\n", " prempaid_grp_6a5788 prempaid_ltc_43b9d5 prempaid_grp_9cdedf \\\n", - "0 0.0 29203.0 0.0 \n", - "1 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 \n", - "4 0.0 0.0 0.0 \n", + "0 0.0 29203 0.0 \n", + "1 0.0 0 0.0 \n", + "2 0.0 0 0.0 \n", + "3 0.0 0 0.0 \n", + "4 0.0 0 0.0 \n", "\n", " prempaid_lh_d0adeb prempaid_grp_1581d7 prempaid_grp_22decf \\\n", - "0 0.0 0.0 0.0 \n", - "1 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 \n", - "4 0.0 0.0 0.0 \n", + "0 0 0.0 0.0 \n", + "1 0 0.0 0.0 \n", + "2 0 0.0 0.0 \n", + "3 0 0.0 0.0 \n", + "4 0 0.0 0.0 \n", "\n", " prempaid_lh_507c37 prempaid_lh_839f8a prempaid_inv_e9f316 \\\n", - "0 0.0 0.0 0.0 \n", - "1 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 \n", - "4 18444.0 0.0 0.0 \n", + "0 0.0 0 0.0 \n", + "1 0.0 0 0.0 \n", + "2 0.0 0 0.0 \n", + "3 0.0 0 0.0 \n", + "4 18444.0 0 0.0 \n", "\n", " prempaid_gi_a10d1b prempaid_gi_29d435 prempaid_grp_caa6ff \\\n", - "0 0.0 0.0 0.0 \n", - "1 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 \n", - "4 0.0 0.0 0.0 \n", + "0 0 0 0.0 \n", + "1 0 0 0.0 \n", + "2 0 0 0.0 \n", + "3 0 0 0.0 \n", + "4 0 0 0.0 \n", "\n", " prempaid_grp_fd3bfb prempaid_lh_e22a6a prempaid_grp_70e1dd \\\n", - "0 0.0 16854.0 0.0 \n", - "1 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 \n", - "4 0.0 0.0 0.0 \n", + "0 0.0 16854 0.0 \n", + "1 0.0 0 0.0 \n", + "2 0.0 0 0.0 \n", + "3 0.0 0 0.0 \n", + "4 0.0 0 0.0 \n", "\n", " prempaid_grp_e04c3a prempaid_grp_fe5fb8 prempaid_gi_856320 \\\n", - "0 0.0 0.0 0.0 \n", - "1 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 \n", - "4 0.0 0.0 0.0 \n", + "0 0.0 0.0 0 \n", + "1 0.0 0.0 0 \n", + "2 0.0 0.0 0 \n", + "3 0.0 0.0 0 \n", + "4 0.0 0.0 0 \n", "\n", " prempaid_grp_94baec prempaid_gi_058815 prempaid_grp_e91421 \\\n", - "0 0.0 0.0 0.0 \n", - "1 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 \n", - "4 0.0 0.0 0.0 \n", + "0 0.0 0 0.0 \n", + "1 0.0 0 0.0 \n", + "2 0.0 0 0.0 \n", + "3 0.0 0 0.0 \n", + "4 0.0 0 0.0 \n", "\n", " prempaid_lh_f852af prempaid_lh_947b15 prempaid_32c74c ape_839f8a \\\n", - "0 0.0 0.0 0.0 0.0 \n", - "1 0.0 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 0.0 \n", - "4 0.0 0.0 0.0 0.0 \n", + "0 0.0 0.0 0 0.0 \n", + "1 0.0 0.0 0 0.0 \n", + "2 0.0 0.0 0 0.0 \n", + "3 0.0 0.0 0 0.0 \n", + "4 0.0 0.0 0 0.0 \n", "\n", " ape_e22a6a ape_d0adeb ape_c4bda5 ape_ltc ape_507c37 ape_gi \\\n", - "0 318.0 0.0 0.0 551.0 0.0 0.0 \n", - "1 0.0 0.0 0.0 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 0.0 0.0 0.0 \n", - "4 0.0 0.0 0.0 0.0 348.0 0.0 \n", + "0 318.0 0 0.0 551.0 0.0 0 \n", + "1 0.0 0 0.0 0.0 0.0 0 \n", + "2 0.0 0 0.0 0.0 0.0 0 \n", + "3 0.0 0 0.0 0.0 0.0 0 \n", + "4 0.0 0 0.0 0.0 348.0 0 \n", "\n", " f_hold_839f8a f_hold_e22a6a f_hold_d0adeb f_hold_c4bda5 f_hold_ltc \\\n", "0 0 1 0 0 1 \n", @@ -4879,32 +4923,32 @@ "4 0 0 0 0 0 \n", "\n", " f_hold_507c37 f_hold_gi sumins_839f8a sumins_e22a6a sumins_d0adeb \\\n", - "0 0 0 0.0 0.0 0.0 \n", - "1 0 0 0.0 0.0 0.0 \n", - "2 0 0 0.0 0.0 0.0 \n", - "3 0 0 0.0 0.0 0.0 \n", - "4 1 0 0.0 0.0 0.0 \n", + "0 0 0 0 0 0 \n", + "1 0 0 0 0 0 \n", + "2 0 0 0 0 0 \n", + "3 0 0 0 0 0 \n", + "4 1 0 0 0 0 \n", "\n", " sumins_c4bda5 sumins_ltc sumins_507c37 sumins_gi prempaid_839f8a \\\n", - "0 0.0 700.0 0.0 0.0 0.0 \n", - "1 0.0 0.0 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 0.0 0.0 \n", - "4 0.0 0.0 400000.0 0.0 0.0 \n", + "0 0.0 700 0.0 0 0.0 \n", + "1 0.0 0 0.0 0 0.0 \n", + "2 0.0 0 0.0 0 0.0 \n", + "3 0.0 0 0.0 0 0.0 \n", + "4 0.0 0 400000.0 0 0.0 \n", "\n", " prempaid_e22a6a prempaid_d0adeb prempaid_c4bda5 prempaid_ltc \\\n", - "0 16854.0 0.0 0.0 29203.0 \n", - "1 0.0 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 0.0 \n", - "4 0.0 0.0 0.0 0.0 \n", + "0 16854.0 0 0.0 29203.0 \n", + "1 0.0 0 0.0 0.0 \n", + "2 0.0 0 0.0 0.0 \n", + "3 0.0 0 0.0 0.0 \n", + "4 0.0 0 0.0 0.0 \n", "\n", " prempaid_507c37 prempaid_gi lapse_ape_ltc_1280bf lapse_ape_grp_6fc3e6 \\\n", - "0 0.0 0.0 0.0 0.0 \n", - "1 0.0 0.0 0.0 0.0 \n", - "2 0.0 0.0 NaN NaN \n", - "3 0.0 0.0 NaN NaN \n", - "4 18444.0 0.0 NaN NaN \n", + "0 0.0 0 0.0 0.0 \n", + "1 0.0 0 0.0 0.0 \n", + "2 0.0 0 NaN NaN \n", + "3 0.0 0 NaN NaN \n", + "4 18444.0 0 NaN NaN \n", "\n", " lapse_ape_grp_de05ae lapse_ape_inv_dcd836 lapse_ape_grp_945b5a \\\n", "0 0.0 0.0 0.0 \n", @@ -5348,7 +5392,7 @@ "4 0 3.0 " ] }, - "execution_count": 7, + "execution_count": 39, "metadata": {}, "output_type": "execute_result" } @@ -5385,21 +5429,14 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 40, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Rows dropped: " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 454\n", + "Rows dropped: 454\n", "New Number of Cols: 297 \n", "New Number of Rows: 13182\n" ] @@ -5755,102 +5792,102 @@ " NaN\n", " 3\n", " NaN\n", + " 0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 551\n", " 0.0\n", - " 0.0\n", - " 0.0\n", - " 551.0\n", - " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 318\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", - " 318.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 700\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", " 0.0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", " 0.0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 29203\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", + " 0\n", " 0.0\n", " 0.0\n", - " 0.0\n", - " 700.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 29203.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 16854.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", + " 16854\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 318.0\n", - " 0.0\n", + " 0\n", " 0.0\n", " 551.0\n", " 0.0\n", - " 0.0\n", + " 0\n", " 0\n", " 1\n", " 0\n", @@ -5858,20 +5895,20 @@ " 1\n", " 0\n", " 0\n", + " 0\n", + " 0\n", + " 0\n", " 0.0\n", + " 700\n", " 0.0\n", - " 0.0\n", - " 0.0\n", - " 700.0\n", - " 0.0\n", - " 0.0\n", + " 0\n", " 0.0\n", " 16854.0\n", - " 0.0\n", + " 0\n", " 0.0\n", " 29203.0\n", " 0.0\n", - " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", @@ -6055,99 +6092,98 @@ " NaN\n", " 1\n", " NaN\n", + " 0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", " 0.0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", " 0.0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", @@ -6158,20 +6194,21 @@ " 0\n", " 0\n", " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", @@ -6355,99 +6392,98 @@ " NaN\n", " 1\n", " NaN\n", + " 0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", " 0.0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", " 0.0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", @@ -6458,20 +6494,21 @@ " 0\n", " 0\n", " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", + " 0\n", " NaN\n", " NaN\n", " NaN\n", @@ -6655,99 +6692,98 @@ " NaN\n", " 1\n", " NaN\n", + " 0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", " 0.0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", " 0.0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", @@ -6758,20 +6794,21 @@ " 0\n", " 0\n", " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", + " 0\n", " NaN\n", " NaN\n", " NaN\n", @@ -6955,123 +6992,123 @@ " NaN\n", " 1\n", " NaN\n", + " 0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 348.0\n", + " 0\n", " 0.0\n", + " 0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", - " 348.0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 400000\n", " 0.0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", " 0.0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 18444.0\n", + " 0\n", " 0.0\n", + " 0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 348.0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 1\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", " 0.0\n", + " 0\n", " 400000.0\n", + " 0\n", " 0.0\n", " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 18444.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 348.0\n", - " 0.0\n", - " 0\n", - " 0\n", - " 0\n", " 0\n", - " 0\n", - " 1\n", - " 0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 400000.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 18444.0\n", - " 0.0\n", " NaN\n", " NaN\n", " NaN\n", @@ -7280,186 +7317,186 @@ "4 0 NaN NaN 1 \n", "\n", " tot_cancel_pols ape_gi_42e115 ape_ltc_1280bf ape_grp_6fc3e6 \\\n", - "0 NaN 0.0 0.0 0.0 \n", - "1 NaN 0.0 0.0 0.0 \n", - "2 NaN 0.0 0.0 0.0 \n", - "3 NaN 0.0 0.0 0.0 \n", - "4 NaN 0.0 0.0 0.0 \n", + "0 NaN 0 0 0.0 \n", + "1 NaN 0 0 0.0 \n", + "2 NaN 0 0 0.0 \n", + "3 NaN 0 0 0.0 \n", + "4 NaN 0 0 0.0 \n", "\n", " ape_grp_de05ae ape_inv_dcd836 ape_grp_945b5a ape_grp_6a5788 \\\n", - "0 0.0 0.0 0.0 0.0 \n", - "1 0.0 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 0.0 \n", - "4 0.0 0.0 0.0 0.0 \n", + "0 0.0 0 0.0 0.0 \n", + "1 0.0 0 0.0 0.0 \n", + "2 0.0 0 0.0 0.0 \n", + "3 0.0 0 0.0 0.0 \n", + "4 0.0 0 0.0 0.0 \n", "\n", " ape_ltc_43b9d5 ape_grp_9cdedf ape_lh_d0adeb ape_grp_1581d7 \\\n", - "0 551.0 0.0 0.0 0.0 \n", - "1 0.0 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 0.0 \n", - "4 0.0 0.0 0.0 0.0 \n", + "0 551 0.0 0 0.0 \n", + "1 0 0.0 0 0.0 \n", + "2 0 0.0 0 0.0 \n", + "3 0 0.0 0 0.0 \n", + "4 0 0.0 0 0.0 \n", "\n", " ape_grp_22decf ape_lh_507c37 ape_lh_839f8a ape_inv_e9f316 \\\n", - "0 0.0 0.0 0.0 0.0 \n", - "1 0.0 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 0.0 \n", - "4 0.0 348.0 0.0 0.0 \n", + "0 0.0 0.0 0 0.0 \n", + "1 0.0 0.0 0 0.0 \n", + "2 0.0 0.0 0 0.0 \n", + "3 0.0 0.0 0 0.0 \n", + "4 0.0 348.0 0 0.0 \n", "\n", " ape_gi_a10d1b ape_gi_29d435 ape_grp_caa6ff ape_grp_fd3bfb \\\n", - "0 0.0 0.0 0.0 0.0 \n", - "1 0.0 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 0.0 \n", - "4 0.0 0.0 0.0 0.0 \n", + "0 0 0 0.0 0.0 \n", + "1 0 0 0.0 0.0 \n", + "2 0 0 0.0 0.0 \n", + "3 0 0 0.0 0.0 \n", + "4 0 0 0.0 0.0 \n", "\n", " ape_lh_e22a6a ape_grp_70e1dd ape_grp_e04c3a ape_grp_fe5fb8 \\\n", - "0 318.0 0.0 0.0 0.0 \n", - "1 0.0 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 0.0 \n", - "4 0.0 0.0 0.0 0.0 \n", + "0 318 0.0 0.0 0.0 \n", + "1 0 0.0 0.0 0.0 \n", + "2 0 0.0 0.0 0.0 \n", + "3 0 0.0 0.0 0.0 \n", + "4 0 0.0 0.0 0.0 \n", "\n", " ape_gi_856320 ape_grp_94baec ape_gi_058815 ape_grp_e91421 \\\n", - "0 0.0 0.0 0.0 0.0 \n", - "1 0.0 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 0.0 \n", - "4 0.0 0.0 0.0 0.0 \n", + "0 0 0.0 0 0.0 \n", + "1 0 0.0 0 0.0 \n", + "2 0 0.0 0 0.0 \n", + "3 0 0.0 0 0.0 \n", + "4 0 0.0 0 0.0 \n", "\n", " ape_lh_f852af ape_lh_947b15 ape_32c74c sumins_gi_42e115 \\\n", - "0 0.0 0.0 0.0 0.0 \n", - "1 0.0 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 0.0 \n", - "4 0.0 0.0 0.0 0.0 \n", + "0 0.0 0.0 0 0 \n", + "1 0.0 0.0 0 0 \n", + "2 0.0 0.0 0 0 \n", + "3 0.0 0.0 0 0 \n", + "4 0.0 0.0 0 0 \n", "\n", " sumins_ltc_1280bf sumins_grp_6fc3e6 sumins_grp_de05ae sumins_inv_dcd836 \\\n", - "0 0.0 0.0 0.0 0.0 \n", - "1 0.0 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 0.0 \n", - "4 0.0 0.0 0.0 0.0 \n", + "0 0 0 0 0 \n", + "1 0 0 0 0 \n", + "2 0 0 0 0 \n", + "3 0 0 0 0 \n", + "4 0 0 0 0 \n", "\n", " sumins_grp_945b5a sumins_grp_6a5788 sumins_ltc_43b9d5 sumins_grp_9cdedf \\\n", - "0 0.0 0.0 700.0 0.0 \n", - "1 0.0 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 0.0 \n", - "4 0.0 0.0 0.0 0.0 \n", + "0 0 0 700 0 \n", + "1 0 0 0 0 \n", + "2 0 0 0 0 \n", + "3 0 0 0 0 \n", + "4 0 0 0 0 \n", "\n", " sumins_lh_d0adeb sumins_grp_1581d7 sumins_grp_22decf sumins_lh_507c37 \\\n", - "0 0.0 0.0 0.0 0.0 \n", - "1 0.0 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 0.0 \n", - "4 0.0 0.0 0.0 400000.0 \n", + "0 0 0 0 0 \n", + "1 0 0 0 0 \n", + "2 0 0 0 0 \n", + "3 0 0 0 0 \n", + "4 0 0 0 400000 \n", "\n", " sumins_inv_e9f316 sumins_gi_a10d1b sumins_gi_29d435 sumins_grp_caa6ff \\\n", - "0 0.0 0.0 0.0 0.0 \n", - "1 0.0 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 0.0 \n", - "4 0.0 0.0 0.0 0.0 \n", + "0 0.0 0 0 0 \n", + "1 0.0 0 0 0 \n", + "2 0.0 0 0 0 \n", + "3 0.0 0 0 0 \n", + "4 0.0 0 0 0 \n", "\n", " sumins_grp_fd3bfb sumins_lh_e22a6a sumins_grp_70e1dd sumins_grp_e04c3a \\\n", - "0 0.0 0.0 0.0 0.0 \n", - "1 0.0 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 0.0 \n", - "4 0.0 0.0 0.0 0.0 \n", + "0 0 0 0.0 0 \n", + "1 0 0 0.0 0 \n", + "2 0 0 0.0 0 \n", + "3 0 0 0.0 0 \n", + "4 0 0 0.0 0 \n", "\n", " sumins_grp_fe5fb8 sumins_gi_856320 sumins_grp_94baec sumins_gi_058815 \\\n", - "0 0.0 0.0 0.0 0.0 \n", - "1 0.0 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 0.0 \n", - "4 0.0 0.0 0.0 0.0 \n", + "0 0 0 0 0 \n", + "1 0 0 0 0 \n", + "2 0 0 0 0 \n", + "3 0 0 0 0 \n", + "4 0 0 0 0 \n", "\n", " sumins_grp_e91421 sumins_lh_f852af sumins_lh_947b15 sumins_32c74c \\\n", - "0 0.0 0.0 0.0 0.0 \n", - "1 0.0 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 0.0 \n", - "4 0.0 0.0 0.0 0.0 \n", + "0 0 0 0 0 \n", + "1 0 0 0 0 \n", + "2 0 0 0 0 \n", + "3 0 0 0 0 \n", + "4 0 0 0 0 \n", "\n", " prempaid_gi_42e115 prempaid_ltc_1280bf prempaid_grp_6fc3e6 \\\n", - "0 0.0 0.0 0.0 \n", - "1 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 \n", - "4 0.0 0.0 0.0 \n", + "0 0 0 0.0 \n", + "1 0 0 0.0 \n", + "2 0 0 0.0 \n", + "3 0 0 0.0 \n", + "4 0 0 0.0 \n", "\n", " prempaid_grp_de05ae prempaid_inv_dcd836 prempaid_grp_945b5a \\\n", - "0 0.0 0.0 0.0 \n", - "1 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 \n", - "4 0.0 0.0 0.0 \n", + "0 0.0 0 0.0 \n", + "1 0.0 0 0.0 \n", + "2 0.0 0 0.0 \n", + "3 0.0 0 0.0 \n", + "4 0.0 0 0.0 \n", "\n", " prempaid_grp_6a5788 prempaid_ltc_43b9d5 prempaid_grp_9cdedf \\\n", - "0 0.0 29203.0 0.0 \n", - "1 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 \n", - "4 0.0 0.0 0.0 \n", + "0 0.0 29203 0.0 \n", + "1 0.0 0 0.0 \n", + "2 0.0 0 0.0 \n", + "3 0.0 0 0.0 \n", + "4 0.0 0 0.0 \n", "\n", " prempaid_lh_d0adeb prempaid_grp_1581d7 prempaid_grp_22decf \\\n", - "0 0.0 0.0 0.0 \n", - "1 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 \n", - "4 0.0 0.0 0.0 \n", + "0 0 0.0 0.0 \n", + "1 0 0.0 0.0 \n", + "2 0 0.0 0.0 \n", + "3 0 0.0 0.0 \n", + "4 0 0.0 0.0 \n", "\n", " prempaid_lh_507c37 prempaid_lh_839f8a prempaid_inv_e9f316 \\\n", - "0 0.0 0.0 0.0 \n", - "1 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 \n", - "4 18444.0 0.0 0.0 \n", + "0 0.0 0 0.0 \n", + "1 0.0 0 0.0 \n", + "2 0.0 0 0.0 \n", + "3 0.0 0 0.0 \n", + "4 18444.0 0 0.0 \n", "\n", " prempaid_gi_a10d1b prempaid_gi_29d435 prempaid_grp_caa6ff \\\n", - "0 0.0 0.0 0.0 \n", - "1 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 \n", - "4 0.0 0.0 0.0 \n", + "0 0 0 0.0 \n", + "1 0 0 0.0 \n", + "2 0 0 0.0 \n", + "3 0 0 0.0 \n", + "4 0 0 0.0 \n", "\n", " prempaid_grp_fd3bfb prempaid_lh_e22a6a prempaid_grp_70e1dd \\\n", - "0 0.0 16854.0 0.0 \n", - "1 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 \n", - "4 0.0 0.0 0.0 \n", + "0 0.0 16854 0.0 \n", + "1 0.0 0 0.0 \n", + "2 0.0 0 0.0 \n", + "3 0.0 0 0.0 \n", + "4 0.0 0 0.0 \n", "\n", " prempaid_grp_e04c3a prempaid_grp_fe5fb8 prempaid_gi_856320 \\\n", - "0 0.0 0.0 0.0 \n", - "1 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 \n", - "4 0.0 0.0 0.0 \n", + "0 0.0 0.0 0 \n", + "1 0.0 0.0 0 \n", + "2 0.0 0.0 0 \n", + "3 0.0 0.0 0 \n", + "4 0.0 0.0 0 \n", "\n", " prempaid_grp_94baec prempaid_gi_058815 prempaid_grp_e91421 \\\n", - "0 0.0 0.0 0.0 \n", - "1 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 \n", - "4 0.0 0.0 0.0 \n", + "0 0.0 0 0.0 \n", + "1 0.0 0 0.0 \n", + "2 0.0 0 0.0 \n", + "3 0.0 0 0.0 \n", + "4 0.0 0 0.0 \n", "\n", " prempaid_lh_f852af prempaid_lh_947b15 prempaid_32c74c ape_839f8a \\\n", - "0 0.0 0.0 0.0 0.0 \n", - "1 0.0 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 0.0 \n", - "4 0.0 0.0 0.0 0.0 \n", + "0 0.0 0.0 0 0.0 \n", + "1 0.0 0.0 0 0.0 \n", + "2 0.0 0.0 0 0.0 \n", + "3 0.0 0.0 0 0.0 \n", + "4 0.0 0.0 0 0.0 \n", "\n", " ape_e22a6a ape_d0adeb ape_c4bda5 ape_ltc ape_507c37 ape_gi \\\n", - "0 318.0 0.0 0.0 551.0 0.0 0.0 \n", - "1 0.0 0.0 0.0 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 0.0 0.0 0.0 \n", - "4 0.0 0.0 0.0 0.0 348.0 0.0 \n", + "0 318.0 0 0.0 551.0 0.0 0 \n", + "1 0.0 0 0.0 0.0 0.0 0 \n", + "2 0.0 0 0.0 0.0 0.0 0 \n", + "3 0.0 0 0.0 0.0 0.0 0 \n", + "4 0.0 0 0.0 0.0 348.0 0 \n", "\n", " f_hold_839f8a f_hold_e22a6a f_hold_d0adeb f_hold_c4bda5 f_hold_ltc \\\n", "0 0 1 0 0 1 \n", @@ -7469,32 +7506,32 @@ "4 0 0 0 0 0 \n", "\n", " f_hold_507c37 f_hold_gi sumins_839f8a sumins_e22a6a sumins_d0adeb \\\n", - "0 0 0 0.0 0.0 0.0 \n", - "1 0 0 0.0 0.0 0.0 \n", - "2 0 0 0.0 0.0 0.0 \n", - "3 0 0 0.0 0.0 0.0 \n", - "4 1 0 0.0 0.0 0.0 \n", + "0 0 0 0 0 0 \n", + "1 0 0 0 0 0 \n", + "2 0 0 0 0 0 \n", + "3 0 0 0 0 0 \n", + "4 1 0 0 0 0 \n", "\n", " sumins_c4bda5 sumins_ltc sumins_507c37 sumins_gi prempaid_839f8a \\\n", - "0 0.0 700.0 0.0 0.0 0.0 \n", - "1 0.0 0.0 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 0.0 0.0 \n", - "4 0.0 0.0 400000.0 0.0 0.0 \n", + "0 0.0 700 0.0 0 0.0 \n", + "1 0.0 0 0.0 0 0.0 \n", + "2 0.0 0 0.0 0 0.0 \n", + "3 0.0 0 0.0 0 0.0 \n", + "4 0.0 0 400000.0 0 0.0 \n", "\n", " prempaid_e22a6a prempaid_d0adeb prempaid_c4bda5 prempaid_ltc \\\n", - "0 16854.0 0.0 0.0 29203.0 \n", - "1 0.0 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 0.0 \n", - "4 0.0 0.0 0.0 0.0 \n", + "0 16854.0 0 0.0 29203.0 \n", + "1 0.0 0 0.0 0.0 \n", + "2 0.0 0 0.0 0.0 \n", + "3 0.0 0 0.0 0.0 \n", + "4 0.0 0 0.0 0.0 \n", "\n", " prempaid_507c37 prempaid_gi lapse_ape_ltc_1280bf lapse_ape_grp_6fc3e6 \\\n", - "0 0.0 0.0 0.0 0.0 \n", - "1 0.0 0.0 0.0 0.0 \n", - "2 0.0 0.0 NaN NaN \n", - "3 0.0 0.0 NaN NaN \n", - "4 18444.0 0.0 NaN NaN \n", + "0 0.0 0 0.0 0.0 \n", + "1 0.0 0 0.0 0.0 \n", + "2 0.0 0 NaN NaN \n", + "3 0.0 0 NaN NaN \n", + "4 18444.0 0 NaN NaN \n", "\n", " lapse_ape_grp_de05ae lapse_ape_inv_dcd836 lapse_ape_grp_945b5a \\\n", "0 0.0 0.0 0.0 \n", @@ -7938,7 +7975,7 @@ "4 0 3.0 " ] }, - "execution_count": 8, + "execution_count": 40, "metadata": {}, "output_type": "execute_result" } @@ -7986,15 +8023,15 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 41, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "New Number of Cols: 294 \n", - "New Number of Rows: 13182\n" + "New Number of Cols: 295 \n", + "New Number of Rows: 13174\n" ] }, { @@ -8039,6 +8076,7 @@ " hh_size\n", " hh_size_est\n", " annual_income_est\n", + " n_months_last_bought_products\n", " flg_latest_being_lapse\n", " flg_latest_being_cancel\n", " tot_inforce_pols\n", @@ -8338,106 +8376,107 @@ " 1.402778\n", " 1\n", " 3\n", + " 1\n", " 0\n", " 0\n", " 3\n", " 0.0\n", + " 0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 551\n", " 0.0\n", - " 0.0\n", - " 0.0\n", - " 551.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 318.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 700.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 318\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", - " 29203.0\n", " 0.0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 700\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", " 0.0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", " 0.0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 29203\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", - " 16854.0\n", + " 0\n", " 0.0\n", + " 0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 16854\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 318.0\n", - " 0.0\n", + " 0\n", " 0.0\n", " 551.0\n", " 0.0\n", - " 0.0\n", + " 0\n", " 0\n", " 1\n", " 0\n", @@ -8445,20 +8484,20 @@ " 1\n", " 0\n", " 0\n", + " 0\n", + " 0\n", + " 0\n", " 0.0\n", + " 700\n", " 0.0\n", - " 0.0\n", - " 0.0\n", - " 700.0\n", - " 0.0\n", - " 0.0\n", + " 0\n", " 0.0\n", " 16854.0\n", - " 0.0\n", + " 0\n", " 0.0\n", " 29203.0\n", " 0.0\n", - " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", @@ -8635,127 +8674,128 @@ " 3.137255\n", " 3\n", " 4\n", + " 45\n", " 0\n", " 0\n", " 1\n", " 0.0\n", + " 0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", " 0.0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", " 0.0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0\n", - " 0\n", " 0\n", - " 0\n", - " 0\n", - " 0\n", - " 0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", " 0.0\n", " 0.0\n", " 0.0\n", @@ -8932,103 +8972,103 @@ " 2.887097\n", " 3\n", " 1\n", + " 47\n", " 0\n", " 0\n", " 1\n", " 0.0\n", + " 0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", " 0.0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", " 0.0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", @@ -9039,20 +9079,21 @@ " 0\n", " 0\n", " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", + " 0\n", " NaN\n", " NaN\n", " NaN\n", @@ -9229,127 +9270,128 @@ " 4.000000\n", " 4\n", " 2\n", + " 22\n", " 0\n", " 0\n", " 1\n", " 0.0\n", + " 0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", " 0.0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", " 0.0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0\n", - " 0\n", - " 0\n", - " 0\n", " 0\n", - " 0\n", - " 0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", " NaN\n", " NaN\n", " NaN\n", @@ -9526,106 +9568,107 @@ " 4.192982\n", " 5\n", " 5\n", + " 62\n", " 0\n", " 0\n", " 1\n", " 0.0\n", + " 0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 348.0\n", + " 0\n", " 0.0\n", + " 0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 400000\n", " 0.0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", " 0.0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 400000.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 18444.0\n", + " 0\n", " 0.0\n", + " 0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 348.0\n", - " 0.0\n", + " 0\n", " 0\n", " 0\n", " 0\n", @@ -9633,20 +9676,20 @@ " 0\n", " 1\n", " 0\n", + " 0\n", + " 0\n", + " 0\n", " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", + " 0\n", " 400000.0\n", + " 0\n", " 0.0\n", " 0.0\n", - " 0.0\n", - " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 18444.0\n", - " 0.0\n", + " 0\n", " NaN\n", " NaN\n", " NaN\n", @@ -9840,285 +9883,292 @@ "3 1.0 0.0 1.0 4.0 4.000000 4 \n", "4 1.0 0.0 114.0 478.0 4.192982 5 \n", "\n", - " annual_income_est flg_latest_being_lapse flg_latest_being_cancel \\\n", - "0 3 0 0 \n", - "1 4 0 0 \n", - "2 1 0 0 \n", - "3 2 0 0 \n", - "4 5 0 0 \n", + " annual_income_est n_months_last_bought_products flg_latest_being_lapse \\\n", + "0 3 1 0 \n", + "1 4 45 0 \n", + "2 1 47 0 \n", + "3 2 22 0 \n", + "4 5 62 0 \n", "\n", - " tot_inforce_pols tot_cancel_pols ape_gi_42e115 ape_ltc_1280bf \\\n", - "0 3 0.0 0.0 0.0 \n", - "1 1 0.0 0.0 0.0 \n", - "2 1 0.0 0.0 0.0 \n", - "3 1 0.0 0.0 0.0 \n", - "4 1 0.0 0.0 0.0 \n", + " flg_latest_being_cancel tot_inforce_pols tot_cancel_pols ape_gi_42e115 \\\n", + "0 0 3 0.0 0 \n", + "1 0 1 0.0 0 \n", + "2 0 1 0.0 0 \n", + "3 0 1 0.0 0 \n", + "4 0 1 0.0 0 \n", "\n", - " ape_grp_6fc3e6 ape_grp_de05ae ape_inv_dcd836 ape_grp_945b5a \\\n", - "0 0.0 0.0 0.0 0.0 \n", - "1 0.0 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 0.0 \n", - "4 0.0 0.0 0.0 0.0 \n", + " ape_ltc_1280bf ape_grp_6fc3e6 ape_grp_de05ae ape_inv_dcd836 \\\n", + "0 0 0.0 0.0 0 \n", + "1 0 0.0 0.0 0 \n", + "2 0 0.0 0.0 0 \n", + "3 0 0.0 0.0 0 \n", + "4 0 0.0 0.0 0 \n", "\n", - " ape_grp_6a5788 ape_ltc_43b9d5 ape_grp_9cdedf ape_lh_d0adeb \\\n", - "0 0.0 551.0 0.0 0.0 \n", - "1 0.0 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 0.0 \n", - "4 0.0 0.0 0.0 0.0 \n", + " ape_grp_945b5a ape_grp_6a5788 ape_ltc_43b9d5 ape_grp_9cdedf \\\n", + "0 0.0 0.0 551 0.0 \n", + "1 0.0 0.0 0 0.0 \n", + "2 0.0 0.0 0 0.0 \n", + "3 0.0 0.0 0 0.0 \n", + "4 0.0 0.0 0 0.0 \n", "\n", - " ape_grp_1581d7 ape_grp_22decf ape_lh_507c37 ape_lh_839f8a \\\n", - "0 0.0 0.0 0.0 0.0 \n", - "1 0.0 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 0.0 \n", - "4 0.0 0.0 348.0 0.0 \n", + " ape_lh_d0adeb ape_grp_1581d7 ape_grp_22decf ape_lh_507c37 \\\n", + "0 0 0.0 0.0 0.0 \n", + "1 0 0.0 0.0 0.0 \n", + "2 0 0.0 0.0 0.0 \n", + "3 0 0.0 0.0 0.0 \n", + "4 0 0.0 0.0 348.0 \n", "\n", - " ape_inv_e9f316 ape_gi_a10d1b ape_gi_29d435 ape_grp_caa6ff \\\n", - "0 0.0 0.0 0.0 0.0 \n", - "1 0.0 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 0.0 \n", - "4 0.0 0.0 0.0 0.0 \n", + " ape_lh_839f8a ape_inv_e9f316 ape_gi_a10d1b ape_gi_29d435 \\\n", + "0 0 0.0 0 0 \n", + "1 0 0.0 0 0 \n", + "2 0 0.0 0 0 \n", + "3 0 0.0 0 0 \n", + "4 0 0.0 0 0 \n", "\n", - " ape_grp_fd3bfb ape_lh_e22a6a ape_grp_70e1dd ape_grp_e04c3a \\\n", - "0 0.0 318.0 0.0 0.0 \n", - "1 0.0 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 0.0 \n", - "4 0.0 0.0 0.0 0.0 \n", + " ape_grp_caa6ff ape_grp_fd3bfb ape_lh_e22a6a ape_grp_70e1dd \\\n", + "0 0.0 0.0 318 0.0 \n", + "1 0.0 0.0 0 0.0 \n", + "2 0.0 0.0 0 0.0 \n", + "3 0.0 0.0 0 0.0 \n", + "4 0.0 0.0 0 0.0 \n", "\n", - " ape_grp_fe5fb8 ape_gi_856320 ape_grp_94baec ape_gi_058815 \\\n", - "0 0.0 0.0 0.0 0.0 \n", - "1 0.0 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 0.0 \n", - "4 0.0 0.0 0.0 0.0 \n", + " ape_grp_e04c3a ape_grp_fe5fb8 ape_gi_856320 ape_grp_94baec \\\n", + "0 0.0 0.0 0 0.0 \n", + "1 0.0 0.0 0 0.0 \n", + "2 0.0 0.0 0 0.0 \n", + "3 0.0 0.0 0 0.0 \n", + "4 0.0 0.0 0 0.0 \n", "\n", - " ape_grp_e91421 ape_lh_f852af ape_lh_947b15 ape_32c74c sumins_gi_42e115 \\\n", - "0 0.0 0.0 0.0 0.0 0.0 \n", - "1 0.0 0.0 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 0.0 0.0 \n", - "4 0.0 0.0 0.0 0.0 0.0 \n", + " ape_gi_058815 ape_grp_e91421 ape_lh_f852af ape_lh_947b15 ape_32c74c \\\n", + "0 0 0.0 0.0 0.0 0 \n", + "1 0 0.0 0.0 0.0 0 \n", + "2 0 0.0 0.0 0.0 0 \n", + "3 0 0.0 0.0 0.0 0 \n", + "4 0 0.0 0.0 0.0 0 \n", "\n", - " sumins_ltc_1280bf sumins_grp_6fc3e6 sumins_grp_de05ae sumins_inv_dcd836 \\\n", - "0 0.0 0.0 0.0 0.0 \n", - "1 0.0 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 0.0 \n", - "4 0.0 0.0 0.0 0.0 \n", + " sumins_gi_42e115 sumins_ltc_1280bf sumins_grp_6fc3e6 sumins_grp_de05ae \\\n", + "0 0 0 0 0 \n", + "1 0 0 0 0 \n", + "2 0 0 0 0 \n", + "3 0 0 0 0 \n", + "4 0 0 0 0 \n", "\n", - " sumins_grp_945b5a sumins_grp_6a5788 sumins_ltc_43b9d5 sumins_grp_9cdedf \\\n", - "0 0.0 0.0 700.0 0.0 \n", - "1 0.0 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 0.0 \n", - "4 0.0 0.0 0.0 0.0 \n", + " sumins_inv_dcd836 sumins_grp_945b5a sumins_grp_6a5788 sumins_ltc_43b9d5 \\\n", + "0 0 0 0 700 \n", + "1 0 0 0 0 \n", + "2 0 0 0 0 \n", + "3 0 0 0 0 \n", + "4 0 0 0 0 \n", "\n", - " sumins_lh_d0adeb sumins_grp_1581d7 sumins_grp_22decf sumins_lh_507c37 \\\n", - "0 0.0 0.0 0.0 0.0 \n", - "1 0.0 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 0.0 \n", - "4 0.0 0.0 0.0 400000.0 \n", + " sumins_grp_9cdedf sumins_lh_d0adeb sumins_grp_1581d7 sumins_grp_22decf \\\n", + "0 0 0 0 0 \n", + "1 0 0 0 0 \n", + "2 0 0 0 0 \n", + "3 0 0 0 0 \n", + "4 0 0 0 0 \n", "\n", - " sumins_inv_e9f316 sumins_gi_a10d1b sumins_gi_29d435 sumins_grp_caa6ff \\\n", - "0 0.0 0.0 0.0 0.0 \n", - "1 0.0 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 0.0 \n", - "4 0.0 0.0 0.0 0.0 \n", + " sumins_lh_507c37 sumins_inv_e9f316 sumins_gi_a10d1b sumins_gi_29d435 \\\n", + "0 0 0.0 0 0 \n", + "1 0 0.0 0 0 \n", + "2 0 0.0 0 0 \n", + "3 0 0.0 0 0 \n", + "4 400000 0.0 0 0 \n", "\n", - " sumins_grp_fd3bfb sumins_lh_e22a6a sumins_grp_70e1dd sumins_grp_e04c3a \\\n", - "0 0.0 0.0 0.0 0.0 \n", - "1 0.0 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 0.0 \n", - "4 0.0 0.0 0.0 0.0 \n", + " sumins_grp_caa6ff sumins_grp_fd3bfb sumins_lh_e22a6a sumins_grp_70e1dd \\\n", + "0 0 0 0 0.0 \n", + "1 0 0 0 0.0 \n", + "2 0 0 0 0.0 \n", + "3 0 0 0 0.0 \n", + "4 0 0 0 0.0 \n", "\n", - " sumins_grp_fe5fb8 sumins_gi_856320 sumins_grp_94baec sumins_gi_058815 \\\n", - "0 0.0 0.0 0.0 0.0 \n", - "1 0.0 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 0.0 \n", - "4 0.0 0.0 0.0 0.0 \n", + " sumins_grp_e04c3a sumins_grp_fe5fb8 sumins_gi_856320 sumins_grp_94baec \\\n", + "0 0 0 0 0 \n", + "1 0 0 0 0 \n", + "2 0 0 0 0 \n", + "3 0 0 0 0 \n", + "4 0 0 0 0 \n", "\n", - " sumins_grp_e91421 sumins_lh_f852af sumins_lh_947b15 sumins_32c74c \\\n", - "0 0.0 0.0 0.0 0.0 \n", - "1 0.0 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 0.0 \n", - "4 0.0 0.0 0.0 0.0 \n", + " sumins_gi_058815 sumins_grp_e91421 sumins_lh_f852af sumins_lh_947b15 \\\n", + "0 0 0 0 0 \n", + "1 0 0 0 0 \n", + "2 0 0 0 0 \n", + "3 0 0 0 0 \n", + "4 0 0 0 0 \n", "\n", - " prempaid_gi_42e115 prempaid_ltc_1280bf prempaid_grp_6fc3e6 \\\n", - "0 0.0 0.0 0.0 \n", - "1 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 \n", - "4 0.0 0.0 0.0 \n", + " sumins_32c74c prempaid_gi_42e115 prempaid_ltc_1280bf \\\n", + "0 0 0 0 \n", + "1 0 0 0 \n", + "2 0 0 0 \n", + "3 0 0 0 \n", + "4 0 0 0 \n", "\n", - " prempaid_grp_de05ae prempaid_inv_dcd836 prempaid_grp_945b5a \\\n", + " prempaid_grp_6fc3e6 prempaid_grp_de05ae prempaid_inv_dcd836 \\\n", + "0 0.0 0.0 0 \n", + "1 0.0 0.0 0 \n", + "2 0.0 0.0 0 \n", + "3 0.0 0.0 0 \n", + "4 0.0 0.0 0 \n", + "\n", + " prempaid_grp_945b5a prempaid_grp_6a5788 prempaid_ltc_43b9d5 \\\n", + "0 0.0 0.0 29203 \n", + "1 0.0 0.0 0 \n", + "2 0.0 0.0 0 \n", + "3 0.0 0.0 0 \n", + "4 0.0 0.0 0 \n", + "\n", + " prempaid_grp_9cdedf prempaid_lh_d0adeb prempaid_grp_1581d7 \\\n", + "0 0.0 0 0.0 \n", + "1 0.0 0 0.0 \n", + "2 0.0 0 0.0 \n", + "3 0.0 0 0.0 \n", + "4 0.0 0 0.0 \n", + "\n", + " prempaid_grp_22decf prempaid_lh_507c37 prempaid_lh_839f8a \\\n", + "0 0.0 0.0 0 \n", + "1 0.0 0.0 0 \n", + "2 0.0 0.0 0 \n", + "3 0.0 0.0 0 \n", + "4 0.0 18444.0 0 \n", + "\n", + " prempaid_inv_e9f316 prempaid_gi_a10d1b prempaid_gi_29d435 \\\n", + "0 0.0 0 0 \n", + "1 0.0 0 0 \n", + "2 0.0 0 0 \n", + "3 0.0 0 0 \n", + "4 0.0 0 0 \n", + "\n", + " prempaid_grp_caa6ff prempaid_grp_fd3bfb prempaid_lh_e22a6a \\\n", + "0 0.0 0.0 16854 \n", + "1 0.0 0.0 0 \n", + "2 0.0 0.0 0 \n", + "3 0.0 0.0 0 \n", + "4 0.0 0.0 0 \n", + "\n", + " prempaid_grp_70e1dd prempaid_grp_e04c3a prempaid_grp_fe5fb8 \\\n", "0 0.0 0.0 0.0 \n", "1 0.0 0.0 0.0 \n", "2 0.0 0.0 0.0 \n", "3 0.0 0.0 0.0 \n", "4 0.0 0.0 0.0 \n", "\n", - " prempaid_grp_6a5788 prempaid_ltc_43b9d5 prempaid_grp_9cdedf \\\n", - "0 0.0 29203.0 0.0 \n", - "1 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 \n", - "4 0.0 0.0 0.0 \n", + " prempaid_gi_856320 prempaid_grp_94baec prempaid_gi_058815 \\\n", + "0 0 0.0 0 \n", + "1 0 0.0 0 \n", + "2 0 0.0 0 \n", + "3 0 0.0 0 \n", + "4 0 0.0 0 \n", "\n", - " prempaid_lh_d0adeb prempaid_grp_1581d7 prempaid_grp_22decf \\\n", - "0 0.0 0.0 0.0 \n", - "1 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 \n", - "4 0.0 0.0 0.0 \n", + " prempaid_grp_e91421 prempaid_lh_f852af prempaid_lh_947b15 \\\n", + "0 0.0 0.0 0.0 \n", + "1 0.0 0.0 0.0 \n", + "2 0.0 0.0 0.0 \n", + "3 0.0 0.0 0.0 \n", + "4 0.0 0.0 0.0 \n", "\n", - " prempaid_lh_507c37 prempaid_lh_839f8a prempaid_inv_e9f316 \\\n", - "0 0.0 0.0 0.0 \n", - "1 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 \n", - "4 18444.0 0.0 0.0 \n", + " prempaid_32c74c ape_839f8a ape_e22a6a ape_d0adeb ape_c4bda5 ape_ltc \\\n", + "0 0 0.0 318.0 0 0.0 551.0 \n", + "1 0 0.0 0.0 0 0.0 0.0 \n", + "2 0 0.0 0.0 0 0.0 0.0 \n", + "3 0 0.0 0.0 0 0.0 0.0 \n", + "4 0 0.0 0.0 0 0.0 0.0 \n", "\n", - " prempaid_gi_a10d1b prempaid_gi_29d435 prempaid_grp_caa6ff \\\n", - "0 0.0 0.0 0.0 \n", - "1 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 \n", - "4 0.0 0.0 0.0 \n", - "\n", - " prempaid_grp_fd3bfb prempaid_lh_e22a6a prempaid_grp_70e1dd \\\n", - "0 0.0 16854.0 0.0 \n", - "1 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 \n", - "4 0.0 0.0 0.0 \n", - "\n", - " prempaid_grp_e04c3a prempaid_grp_fe5fb8 prempaid_gi_856320 \\\n", - "0 0.0 0.0 0.0 \n", - "1 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 \n", - "4 0.0 0.0 0.0 \n", - "\n", - " prempaid_grp_94baec prempaid_gi_058815 prempaid_grp_e91421 \\\n", - "0 0.0 0.0 0.0 \n", - "1 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 \n", - "4 0.0 0.0 0.0 \n", - "\n", - " prempaid_lh_f852af prempaid_lh_947b15 prempaid_32c74c ape_839f8a \\\n", - "0 0.0 0.0 0.0 0.0 \n", - "1 0.0 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 0.0 \n", - "4 0.0 0.0 0.0 0.0 \n", - "\n", - " ape_e22a6a ape_d0adeb ape_c4bda5 ape_ltc ape_507c37 ape_gi \\\n", - "0 318.0 0.0 0.0 551.0 0.0 0.0 \n", - "1 0.0 0.0 0.0 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 0.0 0.0 0.0 \n", - "4 0.0 0.0 0.0 0.0 348.0 0.0 \n", - "\n", - " f_hold_839f8a f_hold_e22a6a f_hold_d0adeb f_hold_c4bda5 f_hold_ltc \\\n", - "0 0 1 0 0 1 \n", - "1 0 0 0 0 0 \n", - "2 0 0 0 0 0 \n", - "3 0 0 0 0 0 \n", - "4 0 0 0 0 0 \n", + " ape_507c37 ape_gi f_hold_839f8a f_hold_e22a6a f_hold_d0adeb \\\n", + "0 0.0 0 0 1 0 \n", + "1 0.0 0 0 0 0 \n", + "2 0.0 0 0 0 0 \n", + "3 0.0 0 0 0 0 \n", + "4 348.0 0 0 0 0 \n", "\n", - " f_hold_507c37 f_hold_gi sumins_839f8a sumins_e22a6a sumins_d0adeb \\\n", - "0 0 0 0.0 0.0 0.0 \n", - "1 0 0 0.0 0.0 0.0 \n", - "2 0 0 0.0 0.0 0.0 \n", - "3 0 0 0.0 0.0 0.0 \n", - "4 1 0 0.0 0.0 0.0 \n", + " f_hold_c4bda5 f_hold_ltc f_hold_507c37 f_hold_gi sumins_839f8a \\\n", + "0 0 1 0 0 0 \n", + "1 0 0 0 0 0 \n", + "2 0 0 0 0 0 \n", + "3 0 0 0 0 0 \n", + "4 0 0 1 0 0 \n", "\n", - " sumins_c4bda5 sumins_ltc sumins_507c37 sumins_gi prempaid_839f8a \\\n", - "0 0.0 700.0 0.0 0.0 0.0 \n", - "1 0.0 0.0 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 0.0 0.0 \n", - "4 0.0 0.0 400000.0 0.0 0.0 \n", + " sumins_e22a6a sumins_d0adeb sumins_c4bda5 sumins_ltc sumins_507c37 \\\n", + "0 0 0 0.0 700 0.0 \n", + "1 0 0 0.0 0 0.0 \n", + "2 0 0 0.0 0 0.0 \n", + "3 0 0 0.0 0 0.0 \n", + "4 0 0 0.0 0 400000.0 \n", "\n", - " prempaid_e22a6a prempaid_d0adeb prempaid_c4bda5 prempaid_ltc \\\n", - "0 16854.0 0.0 0.0 29203.0 \n", - "1 0.0 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 0.0 \n", - "4 0.0 0.0 0.0 0.0 \n", + " sumins_gi prempaid_839f8a prempaid_e22a6a prempaid_d0adeb \\\n", + "0 0 0.0 16854.0 0 \n", + "1 0 0.0 0.0 0 \n", + "2 0 0.0 0.0 0 \n", + "3 0 0.0 0.0 0 \n", + "4 0 0.0 0.0 0 \n", "\n", - " prempaid_507c37 prempaid_gi lapse_ape_ltc_1280bf lapse_ape_grp_6fc3e6 \\\n", - "0 0.0 0.0 0.0 0.0 \n", - "1 0.0 0.0 0.0 0.0 \n", - "2 0.0 0.0 NaN NaN \n", - "3 0.0 0.0 NaN NaN \n", - "4 18444.0 0.0 NaN NaN \n", + " prempaid_c4bda5 prempaid_ltc prempaid_507c37 prempaid_gi \\\n", + "0 0.0 29203.0 0.0 0 \n", + "1 0.0 0.0 0.0 0 \n", + "2 0.0 0.0 0.0 0 \n", + "3 0.0 0.0 0.0 0 \n", + "4 0.0 0.0 18444.0 0 \n", "\n", - " lapse_ape_grp_de05ae lapse_ape_inv_dcd836 lapse_ape_grp_945b5a \\\n", + " lapse_ape_ltc_1280bf lapse_ape_grp_6fc3e6 lapse_ape_grp_de05ae \\\n", "0 0.0 0.0 0.0 \n", "1 0.0 0.0 0.0 \n", "2 NaN NaN NaN \n", "3 NaN NaN NaN \n", "4 NaN NaN NaN \n", "\n", - " lapse_ape_grp_6a5788 lapse_ape_ltc_43b9d5 lapse_ape_grp_9cdedf \\\n", + " lapse_ape_inv_dcd836 lapse_ape_grp_945b5a lapse_ape_grp_6a5788 \\\n", "0 0.0 0.0 0.0 \n", "1 0.0 0.0 0.0 \n", "2 NaN NaN NaN \n", "3 NaN NaN NaN \n", "4 NaN NaN NaN \n", "\n", - " lapse_ape_lh_d0adeb lapse_ape_grp_1581d7 lapse_ape_grp_22decf \\\n", + " lapse_ape_ltc_43b9d5 lapse_ape_grp_9cdedf lapse_ape_lh_d0adeb \\\n", + "0 0.0 0.0 0.0 \n", + "1 0.0 0.0 0.0 \n", + "2 NaN NaN NaN \n", + "3 NaN NaN NaN \n", + "4 NaN NaN NaN \n", + "\n", + " lapse_ape_grp_1581d7 lapse_ape_grp_22decf lapse_ape_lh_507c37 \\\n", + "0 0.0 0.0 0.0 \n", + "1 0.0 0.0 0.0 \n", + "2 NaN NaN NaN \n", + "3 NaN NaN NaN \n", + "4 NaN NaN NaN \n", + "\n", + " lapse_ape_lh_839f8a lapse_ape_inv_e9f316 lapse_ape_grp_caa6ff \\\n", "0 0.0 0.0 0.0 \n", "1 0.0 0.0 0.0 \n", "2 NaN NaN NaN \n", "3 NaN NaN NaN \n", "4 NaN NaN NaN \n", "\n", - " lapse_ape_lh_507c37 lapse_ape_lh_839f8a lapse_ape_inv_e9f316 \\\n", - "0 0.0 0.0 0.0 \n", - "1 0.0 0.0 0.0 \n", - "2 NaN NaN NaN \n", - "3 NaN NaN NaN \n", - "4 NaN NaN NaN \n", - "\n", - " lapse_ape_grp_caa6ff lapse_ape_grp_fd3bfb lapse_ape_lh_e22a6a \\\n", - "0 0.0 0.0 0.0 \n", - "1 0.0 0.0 601.0 \n", - "2 NaN NaN NaN \n", - "3 NaN NaN NaN \n", - "4 NaN NaN NaN \n", + " lapse_ape_grp_fd3bfb lapse_ape_lh_e22a6a lapse_ape_grp_70e1dd \\\n", + "0 0.0 0.0 0.0 \n", + "1 0.0 601.0 0.0 \n", + "2 NaN NaN NaN \n", + "3 NaN NaN NaN \n", + "4 NaN NaN NaN \n", "\n", - " lapse_ape_grp_70e1dd lapse_ape_grp_e04c3a lapse_ape_grp_fe5fb8 \\\n", + " lapse_ape_grp_e04c3a lapse_ape_grp_fe5fb8 lapse_ape_grp_94baec \\\n", "0 0.0 0.0 0.0 \n", "1 0.0 0.0 0.0 \n", "2 NaN NaN NaN \n", "3 NaN NaN NaN \n", "4 NaN NaN NaN \n", "\n", - " lapse_ape_grp_94baec lapse_ape_grp_e91421 lapse_ape_lh_f852af \\\n", - "0 0.0 0.0 0.0 \n", - "1 0.0 0.0 0.0 \n", - "2 NaN NaN NaN \n", - "3 NaN NaN NaN \n", - "4 NaN NaN NaN \n", + " lapse_ape_grp_e91421 lapse_ape_lh_f852af lapse_ape_lh_947b15 \\\n", + "0 0.0 0.0 0.0 \n", + "1 0.0 0.0 0.0 \n", + "2 NaN NaN NaN \n", + "3 NaN NaN NaN \n", + "4 NaN NaN NaN \n", "\n", - " lapse_ape_lh_947b15 lapse_ape_32c74c n_months_since_lapse_ltc_1280bf \\\n", - "0 0.0 0.0 9999.0 \n", - "1 0.0 0.0 9999.0 \n", - "2 NaN NaN NaN \n", - "3 NaN NaN NaN \n", - "4 NaN NaN NaN \n", + " lapse_ape_32c74c n_months_since_lapse_ltc_1280bf \\\n", + "0 0.0 9999.0 \n", + "1 0.0 9999.0 \n", + "2 NaN NaN \n", + "3 NaN NaN \n", + "4 NaN NaN \n", "\n", " n_months_since_lapse_grp_6fc3e6 n_months_since_lapse_grp_de05ae \\\n", "0 9999.0 9999.0 \n", @@ -10506,13 +10556,15 @@ "4 0 3.0 " ] }, - "execution_count": 9, + "execution_count": 41, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "df.drop(columns=['n_months_last_bought_products', 'recency_lapse', 'recency_cancel'], inplace=True)\n", + "df.drop(columns=['recency_lapse', 'recency_cancel'], inplace=True)\n", + "\n", + "df = df[df['n_months_last_bought_products'] >= 0]\n", "\n", "# Fill missing values in 'tot_inforce_pols', 'tot_cancel_pols', and 'f_ever_declined_la' with zeros\n", "df['tot_inforce_pols'] = df['tot_inforce_pols'].fillna(0)\n", @@ -10535,7 +10587,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 42, "metadata": {}, "outputs": [ { @@ -10543,7 +10595,7 @@ "output_type": "stream", "text": [ "New Number of Cols: 183 \n", - "New Number of Rows: 13182\n" + "New Number of Rows: 13174\n" ] }, { @@ -10780,102 +10832,102 @@ " 0\n", " 3\n", " 0.0\n", + " 0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 551\n", " 0.0\n", - " 0.0\n", - " 0.0\n", - " 551.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 318.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 700.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 318\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", - " 29203.0\n", " 0.0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 700\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", " 0.0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", " 0.0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 29203\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", - " 16854.0\n", + " 0\n", " 0.0\n", + " 0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 16854\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 318.0\n", - " 0.0\n", + " 0\n", " 0.0\n", " 551.0\n", " 0.0\n", - " 0.0\n", + " 0\n", " 0\n", " 1\n", " 0\n", @@ -10883,20 +10935,20 @@ " 1\n", " 0\n", " 0\n", + " 0\n", + " 0\n", + " 0\n", " 0.0\n", + " 700\n", " 0.0\n", - " 0.0\n", - " 0.0\n", - " 700.0\n", - " 0.0\n", - " 0.0\n", + " 0\n", " 0.0\n", " 16854.0\n", - " 0.0\n", + " 0\n", " 0.0\n", " 29203.0\n", " 0.0\n", - " 0.0\n", + " 0\n", " 0\n", " 0\n", " 1\n", @@ -10936,7 +10988,7 @@ " 0\n", " 0.0\n", " 4\n", - " 8749.5625\n", + " 8484.454545\n", " 9999.00\n", " \n", " \n", @@ -10966,99 +11018,98 @@ " 0\n", " 1\n", " 0.0\n", + " 0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", " 0.0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", " 0.0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", @@ -11069,20 +11120,21 @@ " 0\n", " 0\n", " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", + " 0\n", " 0\n", " 0\n", " 1\n", @@ -11122,7 +11174,7 @@ " 0\n", " 0.0\n", " 2\n", - " 9382.8125\n", + " 9099.848485\n", " 9601.16\n", " \n", " \n", @@ -11152,99 +11204,98 @@ " 0\n", " 1\n", " 0.0\n", + " 0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", " 0.0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", " 0.0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", @@ -11255,20 +11306,21 @@ " 0\n", " 0\n", " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", + " 0\n", " 0\n", " 0\n", " 1\n", @@ -11308,7 +11360,7 @@ " 3\n", " 2.0\n", " 0\n", - " 9999.0000\n", + " 9697.424242\n", " 0.00\n", " \n", " \n", @@ -11338,125 +11390,125 @@ " 0\n", " 1\n", " 0.0\n", + " 0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", " 0.0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", " 0.0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0\n", - " 0\n", " 0\n", " 0\n", " 0\n", - " 0\n", - " 0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0\n", - " 0\n", " 1\n", " NaN\n", " NaN\n", @@ -11494,7 +11546,7 @@ " 0\n", " 0.0\n", " 0\n", - " 9999.0000\n", + " 9696.666667\n", " 0.00\n", " \n", " \n", @@ -11524,102 +11576,102 @@ " 0\n", " 1\n", " 0.0\n", + " 0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 348.0\n", + " 0\n", " 0.0\n", + " 0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 400000\n", " 0.0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", " 0.0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 400000.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 18444.0\n", + " 0\n", " 0.0\n", + " 0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 348.0\n", - " 0.0\n", + " 0\n", " 0\n", " 0\n", " 0\n", @@ -11627,20 +11679,20 @@ " 0\n", " 1\n", " 0\n", + " 0\n", + " 0\n", + " 0\n", " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", + " 0\n", " 400000.0\n", + " 0\n", " 0.0\n", " 0.0\n", - " 0.0\n", - " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 18444.0\n", - " 0.0\n", + " 0\n", " 0\n", " 0\n", " 1\n", @@ -11680,7 +11732,7 @@ " 0\n", " 3.0\n", " 2\n", - " 9377.9375\n", + " 9095.636364\n", " 0.00\n", " \n", " \n", @@ -11731,186 +11783,186 @@ "4 5 0 0 \n", "\n", " tot_inforce_pols tot_cancel_pols ape_gi_42e115 ape_ltc_1280bf \\\n", - "0 3 0.0 0.0 0.0 \n", - "1 1 0.0 0.0 0.0 \n", - "2 1 0.0 0.0 0.0 \n", - "3 1 0.0 0.0 0.0 \n", - "4 1 0.0 0.0 0.0 \n", + "0 3 0.0 0 0 \n", + "1 1 0.0 0 0 \n", + "2 1 0.0 0 0 \n", + "3 1 0.0 0 0 \n", + "4 1 0.0 0 0 \n", "\n", " ape_grp_6fc3e6 ape_grp_de05ae ape_inv_dcd836 ape_grp_945b5a \\\n", - "0 0.0 0.0 0.0 0.0 \n", - "1 0.0 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 0.0 \n", - "4 0.0 0.0 0.0 0.0 \n", + "0 0.0 0.0 0 0.0 \n", + "1 0.0 0.0 0 0.0 \n", + "2 0.0 0.0 0 0.0 \n", + "3 0.0 0.0 0 0.0 \n", + "4 0.0 0.0 0 0.0 \n", "\n", " ape_grp_6a5788 ape_ltc_43b9d5 ape_grp_9cdedf ape_lh_d0adeb \\\n", - "0 0.0 551.0 0.0 0.0 \n", - "1 0.0 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 0.0 \n", - "4 0.0 0.0 0.0 0.0 \n", + "0 0.0 551 0.0 0 \n", + "1 0.0 0 0.0 0 \n", + "2 0.0 0 0.0 0 \n", + "3 0.0 0 0.0 0 \n", + "4 0.0 0 0.0 0 \n", "\n", " ape_grp_1581d7 ape_grp_22decf ape_lh_507c37 ape_lh_839f8a \\\n", - "0 0.0 0.0 0.0 0.0 \n", - "1 0.0 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 0.0 \n", - "4 0.0 0.0 348.0 0.0 \n", + "0 0.0 0.0 0.0 0 \n", + "1 0.0 0.0 0.0 0 \n", + "2 0.0 0.0 0.0 0 \n", + "3 0.0 0.0 0.0 0 \n", + "4 0.0 0.0 348.0 0 \n", "\n", " ape_inv_e9f316 ape_gi_a10d1b ape_gi_29d435 ape_grp_caa6ff \\\n", - "0 0.0 0.0 0.0 0.0 \n", - "1 0.0 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 0.0 \n", - "4 0.0 0.0 0.0 0.0 \n", + "0 0.0 0 0 0.0 \n", + "1 0.0 0 0 0.0 \n", + "2 0.0 0 0 0.0 \n", + "3 0.0 0 0 0.0 \n", + "4 0.0 0 0 0.0 \n", "\n", " ape_grp_fd3bfb ape_lh_e22a6a ape_grp_70e1dd ape_grp_e04c3a \\\n", - "0 0.0 318.0 0.0 0.0 \n", - "1 0.0 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 0.0 \n", - "4 0.0 0.0 0.0 0.0 \n", + "0 0.0 318 0.0 0.0 \n", + "1 0.0 0 0.0 0.0 \n", + "2 0.0 0 0.0 0.0 \n", + "3 0.0 0 0.0 0.0 \n", + "4 0.0 0 0.0 0.0 \n", "\n", " ape_grp_fe5fb8 ape_gi_856320 ape_grp_94baec ape_gi_058815 \\\n", - "0 0.0 0.0 0.0 0.0 \n", - "1 0.0 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 0.0 \n", - "4 0.0 0.0 0.0 0.0 \n", + "0 0.0 0 0.0 0 \n", + "1 0.0 0 0.0 0 \n", + "2 0.0 0 0.0 0 \n", + "3 0.0 0 0.0 0 \n", + "4 0.0 0 0.0 0 \n", "\n", " ape_grp_e91421 ape_lh_f852af ape_lh_947b15 ape_32c74c sumins_gi_42e115 \\\n", - "0 0.0 0.0 0.0 0.0 0.0 \n", - "1 0.0 0.0 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 0.0 0.0 \n", - "4 0.0 0.0 0.0 0.0 0.0 \n", + "0 0.0 0.0 0.0 0 0 \n", + "1 0.0 0.0 0.0 0 0 \n", + "2 0.0 0.0 0.0 0 0 \n", + "3 0.0 0.0 0.0 0 0 \n", + "4 0.0 0.0 0.0 0 0 \n", "\n", " sumins_ltc_1280bf sumins_grp_6fc3e6 sumins_grp_de05ae sumins_inv_dcd836 \\\n", - "0 0.0 0.0 0.0 0.0 \n", - "1 0.0 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 0.0 \n", - "4 0.0 0.0 0.0 0.0 \n", + "0 0 0 0 0 \n", + "1 0 0 0 0 \n", + "2 0 0 0 0 \n", + "3 0 0 0 0 \n", + "4 0 0 0 0 \n", "\n", " sumins_grp_945b5a sumins_grp_6a5788 sumins_ltc_43b9d5 sumins_grp_9cdedf \\\n", - "0 0.0 0.0 700.0 0.0 \n", - "1 0.0 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 0.0 \n", - "4 0.0 0.0 0.0 0.0 \n", + "0 0 0 700 0 \n", + "1 0 0 0 0 \n", + "2 0 0 0 0 \n", + "3 0 0 0 0 \n", + "4 0 0 0 0 \n", "\n", " sumins_lh_d0adeb sumins_grp_1581d7 sumins_grp_22decf sumins_lh_507c37 \\\n", - "0 0.0 0.0 0.0 0.0 \n", - "1 0.0 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 0.0 \n", - "4 0.0 0.0 0.0 400000.0 \n", + "0 0 0 0 0 \n", + "1 0 0 0 0 \n", + "2 0 0 0 0 \n", + "3 0 0 0 0 \n", + "4 0 0 0 400000 \n", "\n", " sumins_inv_e9f316 sumins_gi_a10d1b sumins_gi_29d435 sumins_grp_caa6ff \\\n", - "0 0.0 0.0 0.0 0.0 \n", - "1 0.0 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 0.0 \n", - "4 0.0 0.0 0.0 0.0 \n", + "0 0.0 0 0 0 \n", + "1 0.0 0 0 0 \n", + "2 0.0 0 0 0 \n", + "3 0.0 0 0 0 \n", + "4 0.0 0 0 0 \n", "\n", " sumins_grp_fd3bfb sumins_lh_e22a6a sumins_grp_70e1dd sumins_grp_e04c3a \\\n", - "0 0.0 0.0 0.0 0.0 \n", - "1 0.0 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 0.0 \n", - "4 0.0 0.0 0.0 0.0 \n", + "0 0 0 0.0 0 \n", + "1 0 0 0.0 0 \n", + "2 0 0 0.0 0 \n", + "3 0 0 0.0 0 \n", + "4 0 0 0.0 0 \n", "\n", " sumins_grp_fe5fb8 sumins_gi_856320 sumins_grp_94baec sumins_gi_058815 \\\n", - "0 0.0 0.0 0.0 0.0 \n", - "1 0.0 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 0.0 \n", - "4 0.0 0.0 0.0 0.0 \n", + "0 0 0 0 0 \n", + "1 0 0 0 0 \n", + "2 0 0 0 0 \n", + "3 0 0 0 0 \n", + "4 0 0 0 0 \n", "\n", " sumins_grp_e91421 sumins_lh_f852af sumins_lh_947b15 sumins_32c74c \\\n", - "0 0.0 0.0 0.0 0.0 \n", - "1 0.0 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 0.0 \n", - "4 0.0 0.0 0.0 0.0 \n", + "0 0 0 0 0 \n", + "1 0 0 0 0 \n", + "2 0 0 0 0 \n", + "3 0 0 0 0 \n", + "4 0 0 0 0 \n", "\n", " prempaid_gi_42e115 prempaid_ltc_1280bf prempaid_grp_6fc3e6 \\\n", - "0 0.0 0.0 0.0 \n", - "1 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 \n", - "4 0.0 0.0 0.0 \n", + "0 0 0 0.0 \n", + "1 0 0 0.0 \n", + "2 0 0 0.0 \n", + "3 0 0 0.0 \n", + "4 0 0 0.0 \n", "\n", " prempaid_grp_de05ae prempaid_inv_dcd836 prempaid_grp_945b5a \\\n", - "0 0.0 0.0 0.0 \n", - "1 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 \n", - "4 0.0 0.0 0.0 \n", + "0 0.0 0 0.0 \n", + "1 0.0 0 0.0 \n", + "2 0.0 0 0.0 \n", + "3 0.0 0 0.0 \n", + "4 0.0 0 0.0 \n", "\n", " prempaid_grp_6a5788 prempaid_ltc_43b9d5 prempaid_grp_9cdedf \\\n", - "0 0.0 29203.0 0.0 \n", - "1 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 \n", - "4 0.0 0.0 0.0 \n", + "0 0.0 29203 0.0 \n", + "1 0.0 0 0.0 \n", + "2 0.0 0 0.0 \n", + "3 0.0 0 0.0 \n", + "4 0.0 0 0.0 \n", "\n", " prempaid_lh_d0adeb prempaid_grp_1581d7 prempaid_grp_22decf \\\n", - "0 0.0 0.0 0.0 \n", - "1 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 \n", - "4 0.0 0.0 0.0 \n", + "0 0 0.0 0.0 \n", + "1 0 0.0 0.0 \n", + "2 0 0.0 0.0 \n", + "3 0 0.0 0.0 \n", + "4 0 0.0 0.0 \n", "\n", " prempaid_lh_507c37 prempaid_lh_839f8a prempaid_inv_e9f316 \\\n", - "0 0.0 0.0 0.0 \n", - "1 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 \n", - "4 18444.0 0.0 0.0 \n", + "0 0.0 0 0.0 \n", + "1 0.0 0 0.0 \n", + "2 0.0 0 0.0 \n", + "3 0.0 0 0.0 \n", + "4 18444.0 0 0.0 \n", "\n", " prempaid_gi_a10d1b prempaid_gi_29d435 prempaid_grp_caa6ff \\\n", - "0 0.0 0.0 0.0 \n", - "1 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 \n", - "4 0.0 0.0 0.0 \n", + "0 0 0 0.0 \n", + "1 0 0 0.0 \n", + "2 0 0 0.0 \n", + "3 0 0 0.0 \n", + "4 0 0 0.0 \n", "\n", " prempaid_grp_fd3bfb prempaid_lh_e22a6a prempaid_grp_70e1dd \\\n", - "0 0.0 16854.0 0.0 \n", - "1 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 \n", - "4 0.0 0.0 0.0 \n", + "0 0.0 16854 0.0 \n", + "1 0.0 0 0.0 \n", + "2 0.0 0 0.0 \n", + "3 0.0 0 0.0 \n", + "4 0.0 0 0.0 \n", "\n", " prempaid_grp_e04c3a prempaid_grp_fe5fb8 prempaid_gi_856320 \\\n", - "0 0.0 0.0 0.0 \n", - "1 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 \n", - "4 0.0 0.0 0.0 \n", + "0 0.0 0.0 0 \n", + "1 0.0 0.0 0 \n", + "2 0.0 0.0 0 \n", + "3 0.0 0.0 0 \n", + "4 0.0 0.0 0 \n", "\n", " prempaid_grp_94baec prempaid_gi_058815 prempaid_grp_e91421 \\\n", - "0 0.0 0.0 0.0 \n", - "1 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 \n", - "4 0.0 0.0 0.0 \n", + "0 0.0 0 0.0 \n", + "1 0.0 0 0.0 \n", + "2 0.0 0 0.0 \n", + "3 0.0 0 0.0 \n", + "4 0.0 0 0.0 \n", "\n", " prempaid_lh_f852af prempaid_lh_947b15 prempaid_32c74c ape_839f8a \\\n", - "0 0.0 0.0 0.0 0.0 \n", - "1 0.0 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 0.0 \n", - "4 0.0 0.0 0.0 0.0 \n", + "0 0.0 0.0 0 0.0 \n", + "1 0.0 0.0 0 0.0 \n", + "2 0.0 0.0 0 0.0 \n", + "3 0.0 0.0 0 0.0 \n", + "4 0.0 0.0 0 0.0 \n", "\n", " ape_e22a6a ape_d0adeb ape_c4bda5 ape_ltc ape_507c37 ape_gi \\\n", - "0 318.0 0.0 0.0 551.0 0.0 0.0 \n", - "1 0.0 0.0 0.0 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 0.0 0.0 0.0 \n", - "4 0.0 0.0 0.0 0.0 348.0 0.0 \n", + "0 318.0 0 0.0 551.0 0.0 0 \n", + "1 0.0 0 0.0 0.0 0.0 0 \n", + "2 0.0 0 0.0 0.0 0.0 0 \n", + "3 0.0 0 0.0 0.0 0.0 0 \n", + "4 0.0 0 0.0 0.0 348.0 0 \n", "\n", " f_hold_839f8a f_hold_e22a6a f_hold_d0adeb f_hold_c4bda5 f_hold_ltc \\\n", "0 0 1 0 0 1 \n", @@ -11920,32 +11972,32 @@ "4 0 0 0 0 0 \n", "\n", " f_hold_507c37 f_hold_gi sumins_839f8a sumins_e22a6a sumins_d0adeb \\\n", - "0 0 0 0.0 0.0 0.0 \n", - "1 0 0 0.0 0.0 0.0 \n", - "2 0 0 0.0 0.0 0.0 \n", - "3 0 0 0.0 0.0 0.0 \n", - "4 1 0 0.0 0.0 0.0 \n", + "0 0 0 0 0 0 \n", + "1 0 0 0 0 0 \n", + "2 0 0 0 0 0 \n", + "3 0 0 0 0 0 \n", + "4 1 0 0 0 0 \n", "\n", " sumins_c4bda5 sumins_ltc sumins_507c37 sumins_gi prempaid_839f8a \\\n", - "0 0.0 700.0 0.0 0.0 0.0 \n", - "1 0.0 0.0 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 0.0 0.0 \n", - "4 0.0 0.0 400000.0 0.0 0.0 \n", + "0 0.0 700 0.0 0 0.0 \n", + "1 0.0 0 0.0 0 0.0 \n", + "2 0.0 0 0.0 0 0.0 \n", + "3 0.0 0 0.0 0 0.0 \n", + "4 0.0 0 400000.0 0 0.0 \n", "\n", " prempaid_e22a6a prempaid_d0adeb prempaid_c4bda5 prempaid_ltc \\\n", - "0 16854.0 0.0 0.0 29203.0 \n", - "1 0.0 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 0.0 \n", - "4 0.0 0.0 0.0 0.0 \n", + "0 16854.0 0 0.0 29203.0 \n", + "1 0.0 0 0.0 0.0 \n", + "2 0.0 0 0.0 0.0 \n", + "3 0.0 0 0.0 0.0 \n", + "4 0.0 0 0.0 0.0 \n", "\n", " prempaid_507c37 prempaid_gi f_elx f_mindef_mha f_retail \\\n", - "0 0.0 0.0 0 0 1 \n", - "1 0.0 0.0 0 0 1 \n", - "2 0.0 0.0 0 0 1 \n", - "3 0.0 0.0 0 0 1 \n", - "4 18444.0 0.0 0 0 1 \n", + "0 0.0 0 0 0 1 \n", + "1 0.0 0 0 0 1 \n", + "2 0.0 0 0 0 1 \n", + "3 0.0 0 0 0 1 \n", + "4 18444.0 0 0 0 1 \n", "\n", " flg_affconnect_show_interest_ever flg_affconnect_ready_to_buy_ever \\\n", "0 NaN NaN \n", @@ -12039,14 +12091,14 @@ "4 0 3.0 2 \n", "\n", " avg_months_last_bought avg_months_since_lapse \n", - "0 8749.5625 9999.00 \n", - "1 9382.8125 9601.16 \n", - "2 9999.0000 0.00 \n", - "3 9999.0000 0.00 \n", - "4 9377.9375 0.00 " + "0 8484.454545 9999.00 \n", + "1 9099.848485 9601.16 \n", + "2 9697.424242 0.00 \n", + "3 9696.666667 0.00 \n", + "4 9095.636364 0.00 " ] }, - "execution_count": 10, + "execution_count": 42, "metadata": {}, "output_type": "execute_result" } @@ -12085,7 +12137,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 43, "metadata": {}, "outputs": [ { @@ -12093,14 +12145,14 @@ "output_type": "stream", "text": [ "New Number of Cols: 168 \n", - "New Number of Rows: 13182\n" + "New Number of Rows: 13174\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "C:\\Users\\nicholassng\\AppData\\Local\\Temp\\ipykernel_3620\\2145126683.py:11: FutureWarning: DataFrame.applymap has been deprecated. Use DataFrame.map instead.\n", + "C:\\Users\\Matthew Chuang\\AppData\\Local\\Temp\\ipykernel_24864\\2180672440.py:28: FutureWarning: DataFrame.applymap has been deprecated. Use DataFrame.map instead.\n", " df[columns_to_update] = df[columns_to_update].applymap(lambda x: x + 1 if not pd.isna(x) else 0)\n" ] }, @@ -12323,102 +12375,102 @@ " 0\n", " 3\n", " 0.0\n", + " 0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 551\n", " 0.0\n", - " 0.0\n", - " 0.0\n", - " 551.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", - " 318.0\n", + " 0\n", " 0.0\n", + " 0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 318\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 700\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", " 0.0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", " 0.0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 29203\n", " 0.0\n", - " 700.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 16854\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 318.0\n", + " 0\n", " 0.0\n", + " 551.0\n", " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 29203.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 16854.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 318.0\n", - " 0.0\n", - " 0.0\n", - " 551.0\n", - " 0.0\n", - " 0.0\n", + " 0\n", " 0\n", " 1\n", " 0\n", @@ -12426,20 +12478,20 @@ " 1\n", " 0\n", " 0\n", + " 0\n", + " 0\n", + " 0\n", " 0.0\n", + " 700\n", " 0.0\n", - " 0.0\n", - " 0.0\n", - " 700.0\n", - " 0.0\n", - " 0.0\n", + " 0\n", " 0.0\n", " 16854.0\n", - " 0.0\n", + " 0\n", " 0.0\n", " 29203.0\n", " 0.0\n", - " 0.0\n", + " 0\n", " 0\n", " 0\n", " 1\n", @@ -12464,7 +12516,7 @@ " 0\n", " 0.0\n", " 4\n", - " 8749.5625\n", + " 8484.454545\n", " 9999.00\n", " \n", " \n", @@ -12494,99 +12546,98 @@ " 0\n", " 1\n", " 0.0\n", + " 0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", " 0.0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", " 0.0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", @@ -12597,20 +12648,21 @@ " 0\n", " 0\n", " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", + " 0\n", " 0\n", " 0\n", " 1\n", @@ -12635,7 +12687,7 @@ " 0\n", " 0.0\n", " 2\n", - " 9382.8125\n", + " 9099.848485\n", " 9601.16\n", " \n", " \n", @@ -12665,99 +12717,32 @@ " 0\n", " 1\n", " 0.0\n", + " 0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", @@ -12768,99 +12753,90 @@ " 0\n", " 0\n", " 0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", " 0\n", " 0\n", - " 1\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " NaN\n", - " 48\n", - " 4\n", " 0\n", - " 1\n", - " 3\n", - " 2.0\n", " 0\n", - " 9999.0000\n", - " 0.00\n", - " \n", - " \n", - " 3\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", + " 0\n", + " 0\n", + " 0\n", " 0.0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", " 0.0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", - " 1.0\n", - " 1.0\n", " 0.0\n", - " 1.0\n", - " 4.0\n", - " 4.000000\n", - " 4\n", - " 2\n", " 0\n", - " 0\n", - " 1\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", + " 0\n", + " 0\n", + " 1\n", " 0.0\n", " 0.0\n", " 0.0\n", @@ -12874,6 +12850,19 @@ " 0.0\n", " 0.0\n", " 0.0\n", + " NaN\n", + " 48\n", + " 4\n", + " 0\n", + " 1\n", + " 3\n", + " 2.0\n", + " 0\n", + " 9697.424242\n", + " 0.00\n", + " \n", + " \n", + " 3\n", " 0.0\n", " 0.0\n", " 0.0\n", @@ -12887,48 +12876,110 @@ " 0.0\n", " 0.0\n", " 0.0\n", + " 1.0\n", + " 1.0\n", " 0.0\n", + " 1.0\n", + " 4.0\n", + " 4.000000\n", + " 4\n", + " 2\n", + " 0\n", + " 0\n", + " 1\n", " 0.0\n", + " 0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", " 0.0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", " 0.0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", @@ -12939,20 +12990,21 @@ " 0\n", " 0\n", " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", + " 0\n", " 0\n", " 0\n", " 1\n", @@ -12977,7 +13029,7 @@ " 0\n", " 0.0\n", " 0\n", - " 9999.0000\n", + " 9696.666667\n", " 0.00\n", " \n", " \n", @@ -13007,102 +13059,102 @@ " 0\n", " 1\n", " 0.0\n", + " 0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 348.0\n", + " 0\n", " 0.0\n", + " 0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 400000\n", " 0.0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", " 0.0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 400000.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 18444.0\n", + " 0\n", " 0.0\n", + " 0\n", + " 0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 348.0\n", - " 0.0\n", + " 0\n", " 0\n", " 0\n", " 0\n", @@ -13110,20 +13162,20 @@ " 0\n", " 1\n", " 0\n", + " 0\n", + " 0\n", + " 0\n", " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", + " 0\n", " 400000.0\n", + " 0\n", " 0.0\n", " 0.0\n", - " 0.0\n", - " 0.0\n", + " 0\n", " 0.0\n", " 0.0\n", " 18444.0\n", - " 0.0\n", + " 0\n", " 0\n", " 0\n", " 1\n", @@ -13148,7 +13200,7 @@ " 0\n", " 3.0\n", " 2\n", - " 9377.9375\n", + " 9095.636364\n", " 0.00\n", " \n", " \n", @@ -13199,186 +13251,186 @@ "4 5 0 0 \n", "\n", " tot_inforce_pols tot_cancel_pols ape_gi_42e115 ape_ltc_1280bf \\\n", - "0 3 0.0 0.0 0.0 \n", - "1 1 0.0 0.0 0.0 \n", - "2 1 0.0 0.0 0.0 \n", - "3 1 0.0 0.0 0.0 \n", - "4 1 0.0 0.0 0.0 \n", + "0 3 0.0 0 0 \n", + "1 1 0.0 0 0 \n", + "2 1 0.0 0 0 \n", + "3 1 0.0 0 0 \n", + "4 1 0.0 0 0 \n", "\n", " ape_grp_6fc3e6 ape_grp_de05ae ape_inv_dcd836 ape_grp_945b5a \\\n", - "0 0.0 0.0 0.0 0.0 \n", - "1 0.0 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 0.0 \n", - "4 0.0 0.0 0.0 0.0 \n", + "0 0.0 0.0 0 0.0 \n", + "1 0.0 0.0 0 0.0 \n", + "2 0.0 0.0 0 0.0 \n", + "3 0.0 0.0 0 0.0 \n", + "4 0.0 0.0 0 0.0 \n", "\n", " ape_grp_6a5788 ape_ltc_43b9d5 ape_grp_9cdedf ape_lh_d0adeb \\\n", - "0 0.0 551.0 0.0 0.0 \n", - "1 0.0 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 0.0 \n", - "4 0.0 0.0 0.0 0.0 \n", + "0 0.0 551 0.0 0 \n", + "1 0.0 0 0.0 0 \n", + "2 0.0 0 0.0 0 \n", + "3 0.0 0 0.0 0 \n", + "4 0.0 0 0.0 0 \n", "\n", " ape_grp_1581d7 ape_grp_22decf ape_lh_507c37 ape_lh_839f8a \\\n", - "0 0.0 0.0 0.0 0.0 \n", - "1 0.0 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 0.0 \n", - "4 0.0 0.0 348.0 0.0 \n", + "0 0.0 0.0 0.0 0 \n", + "1 0.0 0.0 0.0 0 \n", + "2 0.0 0.0 0.0 0 \n", + "3 0.0 0.0 0.0 0 \n", + "4 0.0 0.0 348.0 0 \n", "\n", " ape_inv_e9f316 ape_gi_a10d1b ape_gi_29d435 ape_grp_caa6ff \\\n", - "0 0.0 0.0 0.0 0.0 \n", - "1 0.0 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 0.0 \n", - "4 0.0 0.0 0.0 0.0 \n", + "0 0.0 0 0 0.0 \n", + "1 0.0 0 0 0.0 \n", + "2 0.0 0 0 0.0 \n", + "3 0.0 0 0 0.0 \n", + "4 0.0 0 0 0.0 \n", "\n", " ape_grp_fd3bfb ape_lh_e22a6a ape_grp_70e1dd ape_grp_e04c3a \\\n", - "0 0.0 318.0 0.0 0.0 \n", - "1 0.0 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 0.0 \n", - "4 0.0 0.0 0.0 0.0 \n", + "0 0.0 318 0.0 0.0 \n", + "1 0.0 0 0.0 0.0 \n", + "2 0.0 0 0.0 0.0 \n", + "3 0.0 0 0.0 0.0 \n", + "4 0.0 0 0.0 0.0 \n", "\n", " ape_grp_fe5fb8 ape_gi_856320 ape_grp_94baec ape_gi_058815 \\\n", - "0 0.0 0.0 0.0 0.0 \n", - "1 0.0 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 0.0 \n", - "4 0.0 0.0 0.0 0.0 \n", + "0 0.0 0 0.0 0 \n", + "1 0.0 0 0.0 0 \n", + "2 0.0 0 0.0 0 \n", + "3 0.0 0 0.0 0 \n", + "4 0.0 0 0.0 0 \n", "\n", " ape_grp_e91421 ape_lh_f852af ape_lh_947b15 ape_32c74c sumins_gi_42e115 \\\n", - "0 0.0 0.0 0.0 0.0 0.0 \n", - "1 0.0 0.0 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 0.0 0.0 \n", - "4 0.0 0.0 0.0 0.0 0.0 \n", + "0 0.0 0.0 0.0 0 0 \n", + "1 0.0 0.0 0.0 0 0 \n", + "2 0.0 0.0 0.0 0 0 \n", + "3 0.0 0.0 0.0 0 0 \n", + "4 0.0 0.0 0.0 0 0 \n", "\n", " sumins_ltc_1280bf sumins_grp_6fc3e6 sumins_grp_de05ae sumins_inv_dcd836 \\\n", - "0 0.0 0.0 0.0 0.0 \n", - "1 0.0 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 0.0 \n", - "4 0.0 0.0 0.0 0.0 \n", + "0 0 0 0 0 \n", + "1 0 0 0 0 \n", + "2 0 0 0 0 \n", + "3 0 0 0 0 \n", + "4 0 0 0 0 \n", "\n", " sumins_grp_945b5a sumins_grp_6a5788 sumins_ltc_43b9d5 sumins_grp_9cdedf \\\n", - "0 0.0 0.0 700.0 0.0 \n", - "1 0.0 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 0.0 \n", - "4 0.0 0.0 0.0 0.0 \n", + "0 0 0 700 0 \n", + "1 0 0 0 0 \n", + "2 0 0 0 0 \n", + "3 0 0 0 0 \n", + "4 0 0 0 0 \n", "\n", " sumins_lh_d0adeb sumins_grp_1581d7 sumins_grp_22decf sumins_lh_507c37 \\\n", - "0 0.0 0.0 0.0 0.0 \n", - "1 0.0 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 0.0 \n", - "4 0.0 0.0 0.0 400000.0 \n", + "0 0 0 0 0 \n", + "1 0 0 0 0 \n", + "2 0 0 0 0 \n", + "3 0 0 0 0 \n", + "4 0 0 0 400000 \n", "\n", " sumins_inv_e9f316 sumins_gi_a10d1b sumins_gi_29d435 sumins_grp_caa6ff \\\n", - "0 0.0 0.0 0.0 0.0 \n", - "1 0.0 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 0.0 \n", - "4 0.0 0.0 0.0 0.0 \n", + "0 0.0 0 0 0 \n", + "1 0.0 0 0 0 \n", + "2 0.0 0 0 0 \n", + "3 0.0 0 0 0 \n", + "4 0.0 0 0 0 \n", "\n", " sumins_grp_fd3bfb sumins_lh_e22a6a sumins_grp_70e1dd sumins_grp_e04c3a \\\n", - "0 0.0 0.0 0.0 0.0 \n", - "1 0.0 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 0.0 \n", - "4 0.0 0.0 0.0 0.0 \n", + "0 0 0 0.0 0 \n", + "1 0 0 0.0 0 \n", + "2 0 0 0.0 0 \n", + "3 0 0 0.0 0 \n", + "4 0 0 0.0 0 \n", "\n", " sumins_grp_fe5fb8 sumins_gi_856320 sumins_grp_94baec sumins_gi_058815 \\\n", - "0 0.0 0.0 0.0 0.0 \n", - "1 0.0 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 0.0 \n", - "4 0.0 0.0 0.0 0.0 \n", + "0 0 0 0 0 \n", + "1 0 0 0 0 \n", + "2 0 0 0 0 \n", + "3 0 0 0 0 \n", + "4 0 0 0 0 \n", "\n", " sumins_grp_e91421 sumins_lh_f852af sumins_lh_947b15 sumins_32c74c \\\n", - "0 0.0 0.0 0.0 0.0 \n", - "1 0.0 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 0.0 \n", - "4 0.0 0.0 0.0 0.0 \n", + "0 0 0 0 0 \n", + "1 0 0 0 0 \n", + "2 0 0 0 0 \n", + "3 0 0 0 0 \n", + "4 0 0 0 0 \n", "\n", " prempaid_gi_42e115 prempaid_ltc_1280bf prempaid_grp_6fc3e6 \\\n", - "0 0.0 0.0 0.0 \n", - "1 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 \n", - "4 0.0 0.0 0.0 \n", + "0 0 0 0.0 \n", + "1 0 0 0.0 \n", + "2 0 0 0.0 \n", + "3 0 0 0.0 \n", + "4 0 0 0.0 \n", "\n", " prempaid_grp_de05ae prempaid_inv_dcd836 prempaid_grp_945b5a \\\n", - "0 0.0 0.0 0.0 \n", - "1 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 \n", - "4 0.0 0.0 0.0 \n", + "0 0.0 0 0.0 \n", + "1 0.0 0 0.0 \n", + "2 0.0 0 0.0 \n", + "3 0.0 0 0.0 \n", + "4 0.0 0 0.0 \n", "\n", " prempaid_grp_6a5788 prempaid_ltc_43b9d5 prempaid_grp_9cdedf \\\n", - "0 0.0 29203.0 0.0 \n", - "1 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 \n", - "4 0.0 0.0 0.0 \n", + "0 0.0 29203 0.0 \n", + "1 0.0 0 0.0 \n", + "2 0.0 0 0.0 \n", + "3 0.0 0 0.0 \n", + "4 0.0 0 0.0 \n", "\n", " prempaid_lh_d0adeb prempaid_grp_1581d7 prempaid_grp_22decf \\\n", - "0 0.0 0.0 0.0 \n", - "1 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 \n", - "4 0.0 0.0 0.0 \n", + "0 0 0.0 0.0 \n", + "1 0 0.0 0.0 \n", + "2 0 0.0 0.0 \n", + "3 0 0.0 0.0 \n", + "4 0 0.0 0.0 \n", "\n", " prempaid_lh_507c37 prempaid_lh_839f8a prempaid_inv_e9f316 \\\n", - "0 0.0 0.0 0.0 \n", - "1 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 \n", - "4 18444.0 0.0 0.0 \n", + "0 0.0 0 0.0 \n", + "1 0.0 0 0.0 \n", + "2 0.0 0 0.0 \n", + "3 0.0 0 0.0 \n", + "4 18444.0 0 0.0 \n", "\n", " prempaid_gi_a10d1b prempaid_gi_29d435 prempaid_grp_caa6ff \\\n", - "0 0.0 0.0 0.0 \n", - "1 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 \n", - "4 0.0 0.0 0.0 \n", + "0 0 0 0.0 \n", + "1 0 0 0.0 \n", + "2 0 0 0.0 \n", + "3 0 0 0.0 \n", + "4 0 0 0.0 \n", "\n", " prempaid_grp_fd3bfb prempaid_lh_e22a6a prempaid_grp_70e1dd \\\n", - "0 0.0 16854.0 0.0 \n", - "1 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 \n", - "4 0.0 0.0 0.0 \n", + "0 0.0 16854 0.0 \n", + "1 0.0 0 0.0 \n", + "2 0.0 0 0.0 \n", + "3 0.0 0 0.0 \n", + "4 0.0 0 0.0 \n", "\n", " prempaid_grp_e04c3a prempaid_grp_fe5fb8 prempaid_gi_856320 \\\n", - "0 0.0 0.0 0.0 \n", - "1 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 \n", - "4 0.0 0.0 0.0 \n", + "0 0.0 0.0 0 \n", + "1 0.0 0.0 0 \n", + "2 0.0 0.0 0 \n", + "3 0.0 0.0 0 \n", + "4 0.0 0.0 0 \n", "\n", " prempaid_grp_94baec prempaid_gi_058815 prempaid_grp_e91421 \\\n", - "0 0.0 0.0 0.0 \n", - "1 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 \n", - "4 0.0 0.0 0.0 \n", + "0 0.0 0 0.0 \n", + "1 0.0 0 0.0 \n", + "2 0.0 0 0.0 \n", + "3 0.0 0 0.0 \n", + "4 0.0 0 0.0 \n", "\n", " prempaid_lh_f852af prempaid_lh_947b15 prempaid_32c74c ape_839f8a \\\n", - "0 0.0 0.0 0.0 0.0 \n", - "1 0.0 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 0.0 \n", - "4 0.0 0.0 0.0 0.0 \n", + "0 0.0 0.0 0 0.0 \n", + "1 0.0 0.0 0 0.0 \n", + "2 0.0 0.0 0 0.0 \n", + "3 0.0 0.0 0 0.0 \n", + "4 0.0 0.0 0 0.0 \n", "\n", " ape_e22a6a ape_d0adeb ape_c4bda5 ape_ltc ape_507c37 ape_gi \\\n", - "0 318.0 0.0 0.0 551.0 0.0 0.0 \n", - "1 0.0 0.0 0.0 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 0.0 0.0 0.0 \n", - "4 0.0 0.0 0.0 0.0 348.0 0.0 \n", + "0 318.0 0 0.0 551.0 0.0 0 \n", + "1 0.0 0 0.0 0.0 0.0 0 \n", + "2 0.0 0 0.0 0.0 0.0 0 \n", + "3 0.0 0 0.0 0.0 0.0 0 \n", + "4 0.0 0 0.0 0.0 348.0 0 \n", "\n", " f_hold_839f8a f_hold_e22a6a f_hold_d0adeb f_hold_c4bda5 f_hold_ltc \\\n", "0 0 1 0 0 1 \n", @@ -13388,32 +13440,32 @@ "4 0 0 0 0 0 \n", "\n", " f_hold_507c37 f_hold_gi sumins_839f8a sumins_e22a6a sumins_d0adeb \\\n", - "0 0 0 0.0 0.0 0.0 \n", - "1 0 0 0.0 0.0 0.0 \n", - "2 0 0 0.0 0.0 0.0 \n", - "3 0 0 0.0 0.0 0.0 \n", - "4 1 0 0.0 0.0 0.0 \n", + "0 0 0 0 0 0 \n", + "1 0 0 0 0 0 \n", + "2 0 0 0 0 0 \n", + "3 0 0 0 0 0 \n", + "4 1 0 0 0 0 \n", "\n", " sumins_c4bda5 sumins_ltc sumins_507c37 sumins_gi prempaid_839f8a \\\n", - "0 0.0 700.0 0.0 0.0 0.0 \n", - "1 0.0 0.0 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 0.0 0.0 \n", - "4 0.0 0.0 400000.0 0.0 0.0 \n", + "0 0.0 700 0.0 0 0.0 \n", + "1 0.0 0 0.0 0 0.0 \n", + "2 0.0 0 0.0 0 0.0 \n", + "3 0.0 0 0.0 0 0.0 \n", + "4 0.0 0 400000.0 0 0.0 \n", "\n", " prempaid_e22a6a prempaid_d0adeb prempaid_c4bda5 prempaid_ltc \\\n", - "0 16854.0 0.0 0.0 29203.0 \n", - "1 0.0 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 0.0 \n", - "4 0.0 0.0 0.0 0.0 \n", + "0 16854.0 0 0.0 29203.0 \n", + "1 0.0 0 0.0 0.0 \n", + "2 0.0 0 0.0 0.0 \n", + "3 0.0 0 0.0 0.0 \n", + "4 0.0 0 0.0 0.0 \n", "\n", " prempaid_507c37 prempaid_gi f_elx f_mindef_mha f_retail \\\n", - "0 0.0 0.0 0 0 1 \n", - "1 0.0 0.0 0 0 1 \n", - "2 0.0 0.0 0 0 1 \n", - "3 0.0 0.0 0 0 1 \n", - "4 18444.0 0.0 0 0 1 \n", + "0 0.0 0 0 0 1 \n", + "1 0.0 0 0 0 1 \n", + "2 0.0 0 0 0 1 \n", + "3 0.0 0 0 0 1 \n", + "4 18444.0 0 0 0 1 \n", "\n", " clmcon_visit_days recency_clmcon recency_clmcon_regis \\\n", "0 0.0 0.0 0.0 \n", @@ -13465,21 +13517,38 @@ "4 0 3.0 2 \n", "\n", " avg_months_last_bought avg_months_since_lapse \n", - "0 8749.5625 9999.00 \n", - "1 9382.8125 9601.16 \n", - "2 9999.0000 0.00 \n", - "3 9999.0000 0.00 \n", - "4 9377.9375 0.00 " + "0 8484.454545 9999.00 \n", + "1 9099.848485 9601.16 \n", + "2 9697.424242 0.00 \n", + "3 9696.666667 0.00 \n", + "4 9095.636364 0.00 " ] }, - "execution_count": 11, + "execution_count": 43, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# drop columns\n", - "columns_to_drop = ['giclaim_cnt_success', 'recency_giclaim_success', 'giclaim_cnt_unsuccess', 'recency_giclaim_unsuccess', 'flg_gi_claim_29d435_ever', 'flg_gi_claim_058815_ever', 'flg_gi_claim_42e115_ever', 'flg_gi_claim_856320_ever', 'flg_affconnect_show_interest_ever', 'flg_affconnect_ready_to_buy_ever', 'flg_affconnect_lapse_ever', 'affcon_visit_days', 'n_months_since_visit_affcon', 'hlthclaim_amt', 'recency_hlthclaim']\n", + "columns_to_drop = [\n", + " 'giclaim_cnt_success',\n", + " 'recency_giclaim_success', \n", + " 'giclaim_cnt_unsuccess', \n", + " 'recency_giclaim_unsuccess', \n", + " 'flg_gi_claim_29d435_ever', \n", + " 'flg_gi_claim_058815_ever', \n", + " 'flg_gi_claim_42e115_ever', \n", + " 'flg_gi_claim_856320_ever', \n", + " 'flg_affconnect_show_interest_ever', \n", + " 'flg_affconnect_ready_to_buy_ever', \n", + " 'flg_affconnect_lapse_ever', \n", + " 'affcon_visit_days', \n", + " 'n_months_since_visit_affcon', \n", + " 'hlthclaim_amt', \n", + " 'recency_hlthclaim'\n", + "]\n", + "\n", "df.drop(columns=columns_to_drop, inplace=True)\n", "\n", "# Replace blanks with 0 if other columns also indicate they have not visited\n", @@ -13505,7 +13574,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 44, "metadata": {}, "outputs": [ { @@ -13513,7 +13582,7 @@ "output_type": "stream", "text": [ "New Number of Cols: 61 \n", - "New Number of Rows: 13182\n" + "New Number of Rows: 13174\n" ] }, { @@ -13659,7 +13728,7 @@ " 0\n", " 0.0\n", " 4\n", - " 8749.5625\n", + " 8484.454545\n", " 9999.00\n", " 1738.0\n", " 1400.0\n", @@ -13723,7 +13792,7 @@ " 0\n", " 0.0\n", " 2\n", - " 9382.8125\n", + " 9099.848485\n", " 9601.16\n", " 0.0\n", " 0.0\n", @@ -13787,7 +13856,7 @@ " 3\n", " 2.0\n", " 0\n", - " 9999.0000\n", + " 9697.424242\n", " 0.00\n", " 0.0\n", " 0.0\n", @@ -13851,7 +13920,7 @@ " 0\n", " 0.0\n", " 0\n", - " 9999.0000\n", + " 9696.666667\n", " 0.00\n", " 0.0\n", " 0.0\n", @@ -13915,7 +13984,7 @@ " 0\n", " 3.0\n", " 2\n", - " 9377.9375\n", + " 9095.636364\n", " 0.00\n", " 696.0\n", " 800000.0\n", @@ -14032,11 +14101,11 @@ "4 0 0 0 \n", "\n", " methods_of_communications total_products_bought avg_months_last_bought \\\n", - "0 0.0 4 8749.5625 \n", - "1 0.0 2 9382.8125 \n", - "2 2.0 0 9999.0000 \n", - "3 0.0 0 9999.0000 \n", - "4 3.0 2 9377.9375 \n", + "0 0.0 4 8484.454545 \n", + "1 0.0 2 9099.848485 \n", + "2 2.0 0 9697.424242 \n", + "3 0.0 0 9696.666667 \n", + "4 3.0 2 9095.636364 \n", "\n", " avg_months_since_lapse total_ape total_sumins total_prempaid \n", "0 9999.00 1738.0 1400.0 92114.0 \n", @@ -14046,7 +14115,7 @@ "4 0.00 696.0 800000.0 36888.0 " ] }, - "execution_count": 12, + "execution_count": 44, "metadata": {}, "output_type": "execute_result" } @@ -14086,7 +14155,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 45, "metadata": {}, "outputs": [ { @@ -14106,7 +14175,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 46, "metadata": {}, "outputs": [ { @@ -14114,66 +14183,66 @@ "output_type": "stream", "text": [ " Feature Importance\n", - "18 hh_size 0.071995\n", - "55 avg_months_last_bought 0.071500\n", - "17 pop_20 0.070841\n", - "48 age 0.062491\n", - "16 hh_20 0.062196\n", - "49 years_since_first_interaction 0.059237\n", - "57 total_ape 0.056191\n", - "59 total_prempaid 0.055170\n", - "58 total_sumins 0.048886\n", - "56 avg_months_since_lapse 0.040557\n", - "54 total_products_bought 0.034472\n", - "23 tot_inforce_pols 0.032119\n", - "20 annual_income_est 0.027797\n", - "19 hh_size_est 0.026678\n", - "53 methods_of_communications 0.023229\n", - "46 giclaim_amt 0.014293\n", - "10 is_consent_to_email 0.013119\n", - "51 cltsex_encoded 0.012816\n", - "52 race_desc_encoded 0.012247\n", - "14 is_class_1_2 0.011304\n", - "15 f_ever_declined_la 0.009976\n", - "45 recency_hlthclaim_14cb37 0.009949\n", - "21 flg_latest_being_lapse 0.009914\n", - "24 tot_cancel_pols 0.009577\n", - "47 recency_giclaim 0.009381\n", - "6 flg_gi_claim 0.008931\n", - "29 f_hold_ltc 0.008782\n", - "11 is_consent_to_sms 0.008101\n", - "30 f_hold_507c37 0.007670\n", - "39 recency_hlthclaim_success 0.007652\n", - "25 f_hold_839f8a 0.007497\n", - "38 hlthclaim_cnt_success 0.006893\n", - "0 flg_substandard 0.006390\n", - "26 f_hold_e22a6a 0.006294\n", - "41 recency_hlthclaim_unsuccess 0.006080\n", - "33 f_mindef_mha 0.006005\n", - "32 f_elx 0.005855\n", - "37 recency_clmcon_regis 0.005847\n", - "34 f_retail 0.005656\n", - "40 hlthclaim_cnt_unsuccess 0.005224\n", - "12 is_housewife_retiree 0.005026\n", - "35 clmcon_visit_days 0.004939\n", - "36 recency_clmcon 0.004701\n", - "7 flg_is_proposal 0.003609\n", - "1 flg_is_borderline_standard 0.003472\n", - "44 flg_hlthclaim_14cb37_ever 0.002657\n", - "50 stat_flag_encoded 0.002641\n", - "43 recency_hlthclaim_839f8a 0.002581\n", - "4 flg_has_health_claim 0.002579\n", - "5 flg_has_life_claim 0.001770\n", - "22 flg_latest_being_cancel 0.001627\n", - "13 is_sg_pr 0.001420\n", - "28 f_hold_c4bda5 0.001222\n", - "42 flg_hlthclaim_839f8a_ever 0.001216\n", - "8 flg_with_preauthorisation 0.000690\n", - "9 flg_is_returned_mail 0.000505\n", - "3 flg_is_rental_flat 0.000504\n", - "2 flg_is_revised_term 0.000032\n", - "27 f_hold_d0adeb 0.000000\n", - "31 f_hold_gi 0.000000\n" + "55 avg_months_last_bought 0.080286\n", + "18 hh_size 0.071309\n", + "17 pop_20 0.067006\n", + "48 age 0.063895\n", + "16 hh_20 0.062591\n", + "49 years_since_first_interaction 0.061585\n", + "57 total_ape 0.057104\n", + "59 total_prempaid 0.053992\n", + "58 total_sumins 0.049928\n", + "56 avg_months_since_lapse 0.036529\n", + "23 tot_inforce_pols 0.031307\n", + "54 total_products_bought 0.031129\n", + "20 annual_income_est 0.025972\n", + "19 hh_size_est 0.025822\n", + "53 methods_of_communications 0.022084\n", + "46 giclaim_amt 0.014427\n", + "52 race_desc_encoded 0.014102\n", + "14 is_class_1_2 0.011970\n", + "10 is_consent_to_email 0.011805\n", + "51 cltsex_encoded 0.011664\n", + "21 flg_latest_being_lapse 0.010445\n", + "47 recency_giclaim 0.010415\n", + "15 f_ever_declined_la 0.009609\n", + "39 recency_hlthclaim_success 0.009472\n", + "6 flg_gi_claim 0.009357\n", + "24 tot_cancel_pols 0.008824\n", + "45 recency_hlthclaim_14cb37 0.008670\n", + "11 is_consent_to_sms 0.008279\n", + "29 f_hold_ltc 0.007614\n", + "30 f_hold_507c37 0.007582\n", + "25 f_hold_839f8a 0.007242\n", + "12 is_housewife_retiree 0.006847\n", + "38 hlthclaim_cnt_success 0.006822\n", + "26 f_hold_e22a6a 0.006783\n", + "7 flg_is_proposal 0.006353\n", + "41 recency_hlthclaim_unsuccess 0.005975\n", + "0 flg_substandard 0.005845\n", + "34 f_retail 0.005634\n", + "37 recency_clmcon_regis 0.005587\n", + "33 f_mindef_mha 0.005537\n", + "32 f_elx 0.005406\n", + "35 clmcon_visit_days 0.004649\n", + "1 flg_is_borderline_standard 0.003954\n", + "50 stat_flag_encoded 0.003664\n", + "43 recency_hlthclaim_839f8a 0.003308\n", + "40 hlthclaim_cnt_unsuccess 0.003220\n", + "36 recency_clmcon 0.002869\n", + "44 flg_hlthclaim_14cb37_ever 0.002816\n", + "22 flg_latest_being_cancel 0.002426\n", + "4 flg_has_health_claim 0.001968\n", + "13 is_sg_pr 0.001762\n", + "42 flg_hlthclaim_839f8a_ever 0.001710\n", + "8 flg_with_preauthorisation 0.001100\n", + "5 flg_has_life_claim 0.001010\n", + "3 flg_is_rental_flat 0.000975\n", + "9 flg_is_returned_mail 0.000957\n", + "28 f_hold_c4bda5 0.000796\n", + "2 flg_is_revised_term 0.000012\n", + "31 f_hold_gi 0.000000\n", + "27 f_hold_d0adeb 0.000000\n" ] } ], @@ -14208,7 +14277,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 47, "metadata": {}, "outputs": [ { @@ -14216,71 +14285,71 @@ "output_type": "stream", "text": [ " Feature Importance\n", - "6 flg_gi_claim 0.080328\n", - "34 f_retail 0.049293\n", - "54 total_products_bought 0.046672\n", - "33 f_mindef_mha 0.029536\n", - "12 is_housewife_retiree 0.029422\n", - "56 avg_months_since_lapse 0.025621\n", - "11 is_consent_to_sms 0.024118\n", - "14 is_class_1_2 0.023139\n", - "50 stat_flag_encoded 0.022798\n", - "24 tot_cancel_pols 0.022453\n", - "32 f_elx 0.022141\n", - "15 f_ever_declined_la 0.021973\n", - "51 cltsex_encoded 0.021537\n", - "35 clmcon_visit_days 0.021449\n", - "7 flg_is_proposal 0.020246\n", - "55 avg_months_last_bought 0.019807\n", - "52 race_desc_encoded 0.019703\n", - "23 tot_inforce_pols 0.018292\n", - "49 years_since_first_interaction 0.017929\n", - "46 giclaim_amt 0.017927\n", - "53 methods_of_communications 0.017910\n", - "59 total_prempaid 0.017255\n", - "21 flg_latest_being_lapse 0.016729\n", - "10 is_consent_to_email 0.016560\n", - "37 recency_clmcon_regis 0.016514\n", - "29 f_hold_ltc 0.016210\n", - "39 recency_hlthclaim_success 0.016159\n", - "20 annual_income_est 0.015912\n", - "57 total_ape 0.015845\n", - "22 flg_latest_being_cancel 0.015804\n", - "45 recency_hlthclaim_14cb37 0.015715\n", - "18 hh_size 0.015596\n", - "44 flg_hlthclaim_14cb37_ever 0.015595\n", - "17 pop_20 0.015381\n", - "58 total_sumins 0.015259\n", - "48 age 0.015236\n", - "25 f_hold_839f8a 0.015230\n", - "26 f_hold_e22a6a 0.015146\n", - "16 hh_20 0.015048\n", - "30 f_hold_507c37 0.014996\n", - "47 recency_giclaim 0.014598\n", - "43 recency_hlthclaim_839f8a 0.013499\n", - "38 hlthclaim_cnt_success 0.012934\n", - "0 flg_substandard 0.011113\n", - "36 recency_clmcon 0.010852\n", - "1 flg_is_borderline_standard 0.010210\n", - "3 flg_is_rental_flat 0.009880\n", - "28 f_hold_c4bda5 0.008856\n", - "41 recency_hlthclaim_unsuccess 0.008295\n", - "13 is_sg_pr 0.007796\n", - "40 hlthclaim_cnt_unsuccess 0.007453\n", - "4 flg_has_health_claim 0.006951\n", - "8 flg_with_preauthorisation 0.005081\n", - "19 hh_size_est 0.000000\n", - "31 f_hold_gi 0.000000\n", + "6 flg_gi_claim 0.052723\n", + "54 total_products_bought 0.045372\n", + "34 f_retail 0.043386\n", + "44 flg_hlthclaim_14cb37_ever 0.038044\n", + "12 is_housewife_retiree 0.036429\n", + "33 f_mindef_mha 0.030221\n", + "36 recency_clmcon 0.028146\n", + "50 stat_flag_encoded 0.027481\n", + "22 flg_latest_being_cancel 0.026735\n", + "56 avg_months_since_lapse 0.023651\n", + "14 is_class_1_2 0.022932\n", + "7 flg_is_proposal 0.021310\n", + "10 is_consent_to_email 0.020641\n", + "23 tot_inforce_pols 0.019814\n", + "15 f_ever_declined_la 0.019731\n", + "38 hlthclaim_cnt_success 0.019251\n", + "53 methods_of_communications 0.019132\n", + "55 avg_months_last_bought 0.017731\n", + "0 flg_substandard 0.017620\n", + "11 is_consent_to_sms 0.017614\n", + "29 f_hold_ltc 0.017463\n", + "1 flg_is_borderline_standard 0.017303\n", + "57 total_ape 0.017186\n", + "21 flg_latest_being_lapse 0.016897\n", + "52 race_desc_encoded 0.016880\n", + "20 annual_income_est 0.016586\n", + "25 f_hold_839f8a 0.015985\n", + "43 recency_hlthclaim_839f8a 0.015817\n", + "59 total_prempaid 0.015402\n", + "51 cltsex_encoded 0.015284\n", + "47 recency_giclaim 0.015261\n", + "58 total_sumins 0.015107\n", + "17 pop_20 0.014888\n", + "49 years_since_first_interaction 0.014556\n", + "48 age 0.014502\n", + "26 f_hold_e22a6a 0.014495\n", + "46 giclaim_amt 0.014465\n", + "37 recency_clmcon_regis 0.014458\n", + "24 tot_cancel_pols 0.014231\n", + "16 hh_20 0.014194\n", + "32 f_elx 0.014158\n", + "45 recency_hlthclaim_14cb37 0.013842\n", + "39 recency_hlthclaim_success 0.013817\n", + "18 hh_size 0.013348\n", + "30 f_hold_507c37 0.012998\n", + "40 hlthclaim_cnt_unsuccess 0.011669\n", + "35 clmcon_visit_days 0.010640\n", + "28 f_hold_c4bda5 0.010490\n", + "13 is_sg_pr 0.009811\n", + "4 flg_has_health_claim 0.009410\n", + "41 recency_hlthclaim_unsuccess 0.007717\n", + "3 flg_is_rental_flat 0.005493\n", + "19 hh_size_est 0.005212\n", + "8 flg_with_preauthorisation 0.002470\n", + "27 f_hold_d0adeb 0.000000\n", + "42 flg_hlthclaim_839f8a_ever 0.000000\n", "9 flg_is_returned_mail 0.000000\n", "5 flg_has_life_claim 0.000000\n", - "42 flg_hlthclaim_839f8a_ever 0.000000\n", "2 flg_is_revised_term 0.000000\n", - "27 f_hold_d0adeb 0.000000\n" + "31 f_hold_gi 0.000000\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABdUAAANXCAYAAADTh7aPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzde3zP9f//8dvbzucZY8NsYzPHMSZtGDE551BIMnOWkBxTYZNTSjYVJWWUQ1LJx5lljqU5TIocxkyf9nG2GRm29+8PP++vtw3vOUR1v14ur8tl79fz9Hi+3uuPHnt6vAxGo9GIiIiIiIiIiIiIiIjcVZFHHYCIiIiIiIiIiIiIyN+FkuoiIiIiIiIiIiIiIhZSUl1ERERERERERERExEJKqouIiIiIiIiIiIiIWEhJdRERERERERERERERCympLiIiIiIiIiIiIiJiISXVRUREREREREREREQspKS6iIiIiIiIiIiIiIiFlFQXEREREREREREREbGQkuoiIiIiIiIiIiIiIhZSUl1ERERERAqUkJCAwWAo8Hrttdceyprbtm0jJiaG8+fPP5T578eN57Fjx45HHco9mzFjBgkJCY86DBEREZG/NetHHYCIiIiIiDzexo0bh7+/v9m9qlWrPpS1tm3bRmxsLNHR0bi7uz+UNf7NZsyYQfHixYmOjn7UoYiIiIj8bSmpLiIiIiIid9S8eXNCQ0MfdRj35eLFizg5OT3qMB6ZS5cu4ejo+KjDEBEREflHUPkXERERERG5L6tWraJ+/fo4OTnh4uJCy5Yt+fXXX836/Pzzz0RHR1OuXDns7e3x8vKiR48enDlzxtQnJiaG4cOHA+Dv728qNZOWlkZaWhoGg6HA0iUGg4GYmBizeQwGA/v27eOFF16gaNGi1KtXz9T+xRdfUKtWLRwcHPDw8OD555/n+PHj97T36OhonJ2dSU9Pp1WrVjg7O1O6dGk+/PBDAPbu3UujRo1wcnLC19eXBQsWmI2/UVJm06ZN9O3bl2LFiuHq6kpUVBTnzp3Lt96MGTOoUqUKdnZ2lCpVipdffjlfqZyGDRtStWpVdu7cSUREBI6Ojrz++uv4+fnx66+/snHjRtOzbdiwIQBnz55l2LBhVKtWDWdnZ1xdXWnevDl79uwxmzspKQmDwcDixYuZMGECZcqUwd7ensaNG3P48OF88W7fvp0WLVpQtGhRnJycCA4OJj4+3qzPb7/9xnPPPYeHhwf29vaEhoaybNkysz5Xr14lNjaWwMBA7O3tKVasGPXq1WPdunUWfU8iIiIiD5JOqouIiIiIyB1lZmZy+vRps3vFixcH4PPPP6dbt240bdqUt99+m0uXLjFz5kzq1avH7t278fPzA2DdunUcOXKE7t274+Xlxa+//sqsWbP49ddf+fHHHzEYDLRv356DBw+ycOFCpk2bZlrD09OTU6dOFTruDh06EBgYyMSJEzEajQBMmDCB0aNH07FjR3r16sWpU6d4//33iYiIYPfu3fdUciY3N5fmzZsTERHBlClTmD9/PgMGDMDJyYk33niDLl260L59ez766COioqIICwvLV05nwIABuLu7ExMTw4EDB5g5cybHjh0zJbHh+h8LYmNjiYyM5KWXXjL1S05OZuvWrdjY2JjmO3PmDM2bN+f555/nxRdfpGTJkjRs2JCBAwfi7OzMG2+8AUDJkiUBOHLkCEuXLqVDhw74+/tz4sQJPv74Yxo0aMC+ffsoVaqUWbyTJ0+mSJEiDBs2jMzMTKZMmUKXLl3Yvn27qc+6deto1aoV3t7evPLKK3h5ebF//36WL1/OK6+8AsCvv/5K3bp1KV26NK+99hpOTk4sXryYtm3b8vXXX9OuXTvT3idNmkSvXr144oknyMrKYseOHezatYsmTZoU+jsTERERuS9GERERERGRAsyZM8cIFHgZjUbjhQsXjO7u7sbevXubjfvf//5ndHNzM7t/6dKlfPMvXLjQCBg3bdpkuvfOO+8YAePRo0fN+h49etQIGOfMmZNvHsA4duxY0+exY8caAWPnzp3N+qWlpRmtrKyMEyZMMLu/d+9eo7W1db77t3seycnJpnvdunUzAsaJEyea7p07d87o4OBgNBgMxkWLFpnu//bbb/livTFnrVq1jFeuXDHdnzJlihEwfvfdd0aj0Wg8efKk0dbW1vj0008bc3NzTf0++OADI2D87LPPTPcaNGhgBIwfffRRvj1UqVLF2KBBg3z3L1++bDav0Xj9mdvZ2RnHjRtnurdhwwYjYKxUqZIxJyfHdD8+Pt4IGPfu3Ws0Go3Ga9euGf39/Y2+vr7Gc+fOmc2bl5dn+rlx48bGatWqGS9fvmzWHh4ebgwMDDTdq169urFly5b54hYRERF5FFT+RURERERE7ujDDz9k3bp1ZhdcP4l8/vx5OnfuzOnTp02XlZUVderUYcOGDaY5HBwcTD9fvnyZ06dP8+STTwKwa9euhxJ3v379zD5/88035OXl0bFjR7N4vby8CAwMNIu3sHr16mX62d3dnaCgIJycnOjYsaPpflBQEO7u7hw5ciTf+D59+pidNH/ppZewtrZm5cqVAKxfv54rV64wePBgihT5v/+N6927N66urqxYscJsPjs7O7p3725x/HZ2dqZ5c3NzOXPmDM7OzgQFBRX4/XTv3h1bW1vT5/r16wOY9rZ7926OHj3K4MGD853+v3Hy/uzZs3z//fd07NiRCxcumL6PM2fO0LRpUw4dOsR///tf4Poz/fXXXzl06JDFexIRERF5WFT+RURERERE7uiJJ54o8EWlNxKcjRo1KnCcq6ur6eezZ88SGxvLokWLOHnypFm/zMzMBxjt/7m1xMqhQ4cwGo0EBgYW2P/mpHZh2Nvb4+npaXbPzc2NMmXKmBLIN98vqFb6rTE5Ozvj7e1NWloaAMeOHQOuJ+ZvZmtrS7ly5UztN5QuXdos6X03eXl5xMfHM2PGDI4ePUpubq6prVixYvn6ly1b1uxz0aJFAUx7S01NBaBq1aq3XfPw4cMYjUZGjx7N6NGjC+xz8uRJSpcuzbhx42jTpg0VKlSgatWqNGvWjK5duxIcHGzxHkVEREQeFCXVRURERETknuTl5QHX66p7eXnla7e2/r//3ejYsSPbtm1j+PDh1KhRA2dnZ/Ly8mjWrJlpnju5NTl9w83J31vdfDr+RrwGg4FVq1ZhZWWVr7+zs/Nd4yhIQXPd6b7x/9d3f5hu3fvdTJw4kdGjR9OjRw/eeustPDw8KFKkCIMHDy7w+3kQe7sx77Bhw2jatGmBfQICAgCIiIggNTWV7777jrVr1zJ79mymTZvGRx99ZPavBERERET+Ckqqi4iIiIjIPSlfvjwAJUqUIDIy8rb9zp07R2JiIrGxsYwZM8Z0v6BSHrdLnt84CX3+/Hmz+7ee0L5bvEajEX9/fypUqGDxuL/CoUOHeOqpp0yfs7OzycjIoEWLFgD4+voCcODAAcqVK2fqd+XKFY4ePXrH53+z2z3fJUuW8NRTT/Hpp5+a3T9//rzphbGFceN345dffrltbDf2YWNjY1H8Hh4edO/ene7du5OdnU1ERAQxMTFKqouIiMhfTjXVRURERETknjRt2hRXV1cmTpzI1atX87WfOnUK+L9TzbeeYo6Li8s3xsnJCcifPHd1daV48eJs2rTJ7P6MGTMsjrd9+/ZYWVkRGxubLxaj0ciZM2csnutBmzVrltkznDlzJteuXaN58+YAREZGYmtry/Tp081i//TTT8nMzKRly5YWrePk5JTv2cL17+jWZ/LVV1+ZapoXVs2aNfH39ycuLi7fejfWKVGiBA0bNuTjjz8mIyMj3xw3fn+AfN+Ns7MzAQEB5OTk3FN8IiIiIvdDJ9VFREREROSeuLq6MnPmTLp27UrNmjV5/vnn8fT0JD09nRUrVlC3bl0++OADXF1diYiIYMqUKVy9epXSpUuzdu1ajh49mm/OWrVqAfDGG2/w/PPPY2NjQ+vWrXFycqJXr15MnjyZXr16ERoayqZNmzh48KDF8ZYvX57x48czatQo0tLSaNu2LS4uLhw9epRvv/2WPn36MGzYsAf2fArjypUrNG7cmI4dO3LgwAFmzJhBvXr1eOaZZwDw9PRk1KhRxMbG0qxZM5555hlTv9q1a/Piiy9atE6tWrWYOXMm48ePJyAggBIlStCoUSNatWrFuHHj6N69O+Hh4ezdu5f58+ebnYovjCJFijBz5kxat25NjRo16N69O97e3vz222/8+uuvrFmzBrj+Etx69epRrVo1evfuTbly5Thx4gQ//PADv//+O3v27AGgcuXKNGzYkFq1auHh4cGOHTtYsmQJAwYMuKf4RERERO6HkuoiIiIiInLPXnjhBUqVKsXkyZN55513yMnJoXTp0tSvX5/u3bub+i1YsICBAwfy4YcfYjQaefrpp1m1ahWlSpUym6927dq89dZbfPTRR6xevZq8vDyOHj2Kk5MTY8aM4dSpUyxZsoTFixfTvHlzVq1aRYkSJSyO97XXXqNChQpMmzaN2NhYAHx8fHj66adNCexH4YMPPmD+/PmMGTOGq1ev0rlzZ6ZPn25WriUmJgZPT08++OADXn31VTw8POjTpw8TJ060+CWrY8aM4dixY0yZMoULFy7QoEEDGjVqxOuvv87FixdZsGABX375JTVr1mTFihW89tpr97ynpk2bsmHDBmJjY5k6dSp5eXmUL1+e3r17m/pUrlyZHTt2EBsbS0JCAmfOnKFEiRKEhISYlQoaNGgQy5YtY+3ateTk5ODr68v48eMZPnz4PccnIiIicq8Mxr/iLTkiIiIiIiKST0JCAt27dyc5OZnQ0NBHHY6IiIiIWEA11UVERERERERERERELKSkuoiIiIiIiIiIiIiIhZRUFxERERERERERERGxkGqqi4iIiIiIiIiIiIhYSCfVRUREREREREREREQspKS6iIiIiIiIiIiIiIiFrB91ACLyYOTl5fHHH3/g4uKCwWB41OGIiIiIiIiIiIj8rRiNRi5cuECpUqUoUuT259GVVBf5h/jjjz/w8fF51GGIiIiIiIiIiIj8rR0/fpwyZcrctl1JdZF/CBcXF+D6f/Surq6POBoREREREREREZG/l6ysLHx8fEx5tttRUl3kH+JGyRdXV1cl1UVERERERERERO7R3Uor60WlIiIiIiIiIiIiIiIWUlJdRERERERERERERMRCSqqLiIiIiIiIiIiIiFhISXUREREREREREREREQspqS4iIiIiIiIiIiIiYiEl1UVERERERERERERELKSkuoiIiIiIiIiIiIiIhZRUFxERERERERERERGxkJLqIiIiIiIiIiIiIiIWUlJdRERERERERERERMRCSqqLiIiIiIiIiIiIiFhISXUREREREREREREREQspqS4iIiIiIiIiIiIiYiEl1UVERERERERERERELKSkuoiIiIiIiIiIiIiIhZRUFxERERERERERERGxkJLqIiIiIiIiIiIiIiIWUlJdRERERERERERERMRCSqqLiIiIiIiIiIiIiFhISXUREREREREREREREQspqS4iIiIiIiIiIiIiYiEl1UVERERERERERERELKSkuoiIiIiIiIiIiIiIhZRUFxERERERERERERGxkJLqIiIiIiIiIiIiIiIWUlJdRERERERERERERMRCSqqLiIiIiIiIiIiIiFhISXUREREREREREREREQspqS4iIiIiIiIiIiIiYiEl1UVERERERERERERELKSkuoiIiIiIiIiIiIiIhZRUFxERERERERERERGxkJLqUiCj0UifPn3w8PDAYDCQkpJy274NGzZk8ODB97VeTEwMNWrUuGOf6Oho2rZte89rPIg4LWHJXm6WlpZ212csIiIiIiIiIiIijwcl1aVAq1evJiEhgeXLl5ORkUHVqlUfdUgPnNFoZMyYMXh7e+Pg4EBkZCSHDh161GGJiIiIiIiIiIjIY0xJdSlQamoq3t7ehIeH4+XlhbW19aMO6YGbMmUK06dP56OPPmL79u04OTnRtGlTLl++/KhDExERERERERERkceUkuqST3R0NAMHDiQ9PR2DwYCfn99dx+Tl5TFixAg8PDzw8vIiJibGrD09PZ02bdrg7OyMq6srHTt25MSJE7edLzc3lyFDhuDu7k6xYsUYMWIERqPR4j1cvHiRqKgonJ2d8fb2ZurUqWbtRqORuLg43nzzTdq0aUNwcDDz5s3jjz/+YOnSpaZ+I0eOpEKFCjg6OlKuXDlGjx7N1atXzeaaPHkyJUuWxMXFhZ49exaYlJ89ezaVKlXC3t6eihUrMmPGjHx9fvvtN8LDw7G3t6dq1aps3LjxjnvMyckhKyvL7BIREREREREREZGHS0l1ySc+Pp5x48ZRpkwZMjIySE5OvuuYuXPn4uTkxPbt25kyZQrjxo1j3bp1wPWEe5s2bTh79iwbN25k3bp1HDlyhE6dOt12vqlTp5KQkMBnn33Gli1bOHv2LN9++63Fexg+fDgbN27ku+++Y+3atSQlJbFr1y5T+9GjR/nf//5HZGSk6Z6bmxt16tThhx9+MN1zcXEhISGBffv2ER8fzyeffMK0adNM7YsXLyYmJoaJEyeyY8cOvL298yXM58+fz5gxY5gwYQL79+9n4sSJjB49mrlz5+aLeejQoezevZuwsDBat27NmTNnbrvHSZMm4ebmZrp8fHwsfj4iIiIiIiIiIiJybwzGwhz/lX+NuLg44uLiSEtLu2vfhg0bkpuby+bNm033nnjiCRo1asTkyZNZt24dzZs35+jRo6bE7759+6hSpQo//fQTtWvXJiYmhqVLl5pe1lmqVCleffVVhg8fDsC1a9fw9/enVq1aZifJC5KdnU2xYsX44osv6NChAwBnz56lTJky9OnTh7i4OLZt20bdunX5448/8Pb2No3t2LEjBoOBL7/8ssC53333XRYtWsSOHTsACA8PJyQkhA8//NDU58knn+Ty5cumvQQEBPDWW2/RuXNnU5/x48ezcuVKtm3bRlpaGv7+/kyePJmRI0ea7XfgwIGMGDGiwFhycnLIyckxfc7KysLHx4fMzExcXV3v+IxERERERERERETEXFZWFm5ubnfNr/3zCmXLIxEcHGz22dvbm5MnTwKwf/9+fHx8zE5SV65cGXd3d/bv30/t2rXNxmZmZpKRkUGdOnVM96ytrQkNDbWoBExqaipXrlwxG+/h4UFQUFCh9/Xll18yffp0UlNTyc7O5tq1a2b/Qe3fv59+/fqZjQkLC2PDhg3A9TI0qamp9OzZk969e5v6XLt2DTc3t3zjbrix3/379982Njs7O+zs7Aq9JxEREREREREREbl3SqrLA2FjY2P22WAwkJeX94iiuTsvLy8ATpw4YXZS/cSJE9SoUQOAH374gS5duhAbG0vTpk1xc3Nj0aJF+eqz30l2djYAn3zyiVmSH8DKyuo+dyEiIiIiIiIiIiJ/NdVUl4euUqVKHD9+nOPHj5vu7du3j/Pnz1O5cuV8/d3c3PD29mb79u2me9euXWPnzp0WrVe+fHlsbGzMxp87d46DBw+aPvv7++Pl5UViYqLpXlZWFtu3bzedGN+2bRu+vr688cYbhIaGEhgYyLFjx/Lt7eZ1AH788UfTzyVLlqRUqVIcOXKEgIAAs8vf3/+2427st1KlShbtWURERERERERERP4aOqkuD11kZCTVqlWjS5cuxMXFce3aNfr370+DBg0IDQ0tcMwrr7zC5MmTCQwMpGLFirz33nucP3/eovWcnZ3p2bMnw4cPp1ixYpQoUYI33niDIkX+729IBoOBwYMHM378eAIDA/H392f06NGUKlWKtm3bAhAYGEh6ejqLFi2idu3arFixIt/LUl955RWio6MJDQ2lbt26zJ8/n19//ZVy5cqZ+sTGxjJo0CDc3Nxo1qwZOTk57Nixg3PnzjFkyBBTvw8//JDAwEAqVarEtGnTOHfuHD169LDwKYuIiIiIiIiIiMhfQUl1eegMBgPfffcdAwcOJCIigiJFitCsWTPef//9244ZOnQoGRkZdOvWjSJFitCjRw/atWtHZmamRWu+8847ZGdn07p1a1xcXBg6dGi+sSNGjODixYv06dOH8+fPU69ePVavXo29vT0AzzzzDK+++ioDBgwgJyeHli1bMnr0aGJiYkxzdOrUidTUVEaMGMHly5d59tlneemll1izZo2pT69evXB0dOSdd95h+PDhODk5Ua1aNQYPHmwWz+TJk5k8eTIpKSkEBASwbNkyihcvbtF+RURERERERERE5K9hMFry5kf5yxmNRvr27cuSJUs4d+4cbm5uREdHExcX90DmNxgMfPvtt6ZT2Y+bhg0bUqNGjQe231slJSXx1FNPce7cOdzd3R/KGn81S99OLCIiIiIiIiIiIvlZml/TSfXH1OrVq0lISCApKYly5crx3HPPPdD5MzIyKFq06AOd80H65ptv8r389FFJSEhg8ODBFpefERERERERERERkX8uJdUfU6mpqXh7exMeHg6AtfWD/aq8vLws6peenl7gy0Rv2LdvH2XLljV9vnr16gNJhnt4eDywmB4Xubm5GAwGs9ruIiIiIiIiIiIi8vei7N5jKDo6moEDB5Keno7BYMDPzy9fn4yMDFq2bImDgwP+/v4sWLAAPz8/i8ulGAwGli5dCsCVK1cYMGAA3t7e2Nvb4+vry6RJkwAoVaoUKSkpt718fX2ZOXMmzzzzDE5OTkyYMAGA7777jpo1a2Jvb0+5cuWIjY3l2rVrALzwwgt06tTJLJ6rV69SvHhx5s2bB1wv/3JzzfEZM2YQGBiIvb09oaGh1KtXzxTDrl276NevH+7u7ly9epVWrVqxZMkSs/lXrlxJhQoVcHBw4KmnniItLc2i55SUlET37t3JzMzEYDBgMBhMNdVzcnIYNmwYpUuXxsnJiTp16pCUlGQam5CQgLu7O8uWLaNy5crY2dmRnp6On58f48ePJyoqCmdnZ3x9fVm2bBmnTp2iTZs2ODs7ExwczI4dOyyKUURERERERERERP46Oqn+GIqPj6d8+fLMmjWL5ORkrKys6NChg1mfqKgoTp8+TVJSEjY2NgwZMoSTJ0/e03rTp09n2bJlLF68mLJly3L8+HGOHz8OXD8hHxAQcMfxMTExTJ48mbi4OKytrdm8eTNRUVFMnz6d+vXrk5qaSp8+fQAYO3YsXbp0oUOHDmRnZ+Ps7AzAmjVruHTpEu3atcs3/44dOxg0aBCff/454eHhnD17ls2bN5vimjBhAitWrODTTz8lMDCQTZs28eKLL+Lp6UmDBg04fvw47du35+WXX6ZPnz7s2LGDoUOHWvRswsPDiYuLY8yYMRw4cADAFPOAAQPYt28fixYtolSpUnz77bc0a9aMvXv3EhgYCMClS5d4++23mT17NsWKFaNEiRIATJs2jYkTJzJ69GimTZtG165dCQ8Pp0ePHrzzzjuMHDmSqKgofv31VwwGQ4Gx5eTkkJOTY/qclZVl0Z5ERERERERERETk3imp/hhyc3PDxcUFKyurAsu0/Pbbb6xfv57k5GRCQ0MBmD17timRW1jp6ekEBgZSr149DAYDvr6+hRr/wgsv0L17d9PnHj168Nprr9GtWzcAypUrx1tvvcWIESMYO3YsTZs2xcnJiW+//ZauXbsCsGDBAp555hlcXFwKjM/JyYlWrVrh4uKCr68vISEhwPXE8sSJE1m/fj1hYWGm9bZs2cLHH39MgwYNmDlzJuXLl2fq1KkABAUFsXfvXt5+++277s3W1hY3NzcMBoPZd5Gens6cOXNIT0+nVKlSAAwbNozVq1czZ84cJk6cCFw/gT9jxgyqV69uNm+LFi3o27cvAGPGjGHmzJnUrl3b9MeTkSNHEhYWxokTJ25bqmfSpEnExsbedQ8iIiIiIiIiIiLy4Cip/jd04MABrK2tqVmzpuleQEDAPb94NDo6miZNmhAUFESzZs1o1aoVTz/9tMXjbyT2b9izZw9bt241lYKB6/XEL1++zKVLl3B0dKRjx47Mnz+frl27cvHiRb777jsWLVpU4PxNmjTB19eXcuXK0axZM5o1a0a7du1wdHTk8OHDXLp0iSZNmpiNuXLliinxvn//furUqWPWfiMBf6/27t1Lbm4uFSpUMLufk5NDsWLFTJ9tbW0JDg7ON/7meyVLlgSgWrVq+e6dPHnytkn1UaNGMWTIENPnrKwsfHx87mE3IiIiIiIiIiIiYikl1YWaNWty9OhRVq1axfr16+nYsSORkZH56pLfjpOTk9nn7OxsYmNjad++fb6+9vb2AHTp0oUGDRpw8uRJ1q1bh4ODA82aNStwfhcXF3bt2kVSUhJr165lzJgxxMTEkJycTHZ2NgArVqygdOnSZuPs7Owsiv9eZGdnY2Vlxc6dO7GysjJru1EeBsDBwaHA8i03v8z1RntB9/Ly8m4bg52d3UPdo4iIiIiIiIiIiOSnpPrfUFBQENeuXWP37t3UqlULgMOHD3Pu3Ll7ntPV1ZVOnTrRqVMnnnvuOZo1a8bZs2fx8PAo9Fw1a9bkwIEDd6zFHh4ejo+PD19++SWrVq2iQ4cOZknlW1lbWxMZGUlkZCRjx47F3d2d77//niZNmpheANqgQYMCx1aqVIlly5aZ3fvxxx8t3o+trS25ublm90JCQsjNzeXkyZPUr1/f4rlERERERERERETk701J9b+hihUrEhkZSZ8+fZg5cyY2NjYMHTr0tqei7+a9997D29ubkJAQihQpwldffYWXlxfu7u73FN+YMWNo1aoVZcuW5bnnnqNIkSLs2bOHX375hfHjx5v6vfDCC3z00UccPHiQDRs23Ha+5cuXc+TIESIiIihatCgrV64kLy+PoKAgXFxcGDZsGK+++ip5eXnUq1ePzMxMtm7diqurK926daNfv35MnTqV4cOH06tXL3bu3ElCQoLF+/Hz8yM7O5vExESqV6+Oo6MjFSpUoEuXLkRFRTF16lRCQkI4deoUiYmJBAcH07Jly3t6diIiIiIiIiIiIvJ4K/KoA5B7M2/ePEqWLElERATt2rWjd+/euLi4mMqrFIaLiwtTpkwhNDSU2rVrk5aWxsqVKylS5N5+PZo2bcry5ctZu3YttWvX5sknn2TatGn5XoDapUsX9u3bR+nSpalbt+5t53N3d+ebb76hUaNGVKpUiY8++oiFCxdSpUoVAN566y1Gjx7NpEmTqFSpEs2aNWPFihX4+/sDULZsWb7++muWLl1K9erV+eijj0wvErVEeHg4/fr1o1OnTnh6ejJlyhQA5syZQ1RUFEOHDiUoKIi2bduSnJxM2bJlC/vIRERERERERERE5G/CYDQajY86CLl/v//+Oz4+Pqxfv57GjRs/6nDkEcjKysLNzY3MzExcXV0fdTgiIiIiIiIiIiJ/K5bm1/5xJ9WNRiN9+vTBw8MDg8GAu7s7gwcPfmDzGwwGli5detv2pKQkDAYD58+fv+M8fn5+xMXF3XMc3bp1w9/fn6NHj7Jt2zaef/55/Pz8iIiIuO2Yu8X+d/Lbb7/x5JNPYm9vT40aNR51OCIiIiIiIiIiIvIv8Y9Lqq9evZqEhASWL19ORkYGVatWfaTxJCQk3HNt8jvJzc3lf//7H1WqVKFdu3Z4enqSlJSEjY0N8+fPx9nZOd/l6OjI66+/bvEat5vH2dnZVHrlVnFxcQQFBeHg4ICPjw+vvvoqly9fNrXPnDmT4OBgXF1dcXV1JSwsjFWrVpnNkZqaatqTq6srHTt25MSJE2Z9xo4di5OTEwcOHCAxMRGAgwcP0qZNG4oXL46rqyv16tW7Y632G5o3b37bfRamTIyIiIiIiIiIiIj88/3jXlSampqKt7c34eHhAFhb/+O2CEBAQABBQUGkpKTka3vmmWeoU6dOgeNsbGwsXqOw8yxYsIDXXnuNzz77jPDwcA4ePEh0dDQGg4H33nsPgDJlyjB58mQCAwMxGo3MnTuXNm3asHv3bqpUqcLFixd5+umnqV69Ot9//z0Ao0ePpnXr1vz444+mOu+pqam0bNnSrE57q1atCAwM5Pvvv8fBwYG4uDhatWpFamoqXl5et93n7Nmz+fPPPwts8/DwsOxhPSS5ubkYDIZ7rm8vIiIiIiIiIiIiD9Y/KlMXHR3NwIEDSU9Px2Aw4Ofnl69PRkYGLVu2xMHBAX9/fxYsWFDoUiynT5+mXbt2ODo6EhgYyLJlywrsl5SURPfu3cnMzMRgMGAwGIiJiTG1X7p0iR49euDi4kLZsmWZNWuW2fjff/+dzp074+HhgZOTE6GhoWzfvr3AtZKTk2nSpAnFixenTJky9OzZk6ysLAICAkxXYGAgu3fvBiAtLQ2DwcDixYupX78+Dg4O1K5dm4MHD5KcnExoaCje3t4MHDgQNzc3s3kCAgLyvXQUYNu2bdStW5cXXngBPz8/nn76aTp37sxPP/1k6tO6dWtatGhBYGAgFSpUYMKECTg7O/Pjjz8CsHXrVtLS0khISKBatWpUq1aNuXPnsmPHDlOS3WAwsHPnTsaNG2d6pqdPn+bQoUO89tprBAcHExgYyOTJk7l06RK//PILcD1B3bNnT/z9/XFwcCAoKIj4+HhKly6db383rluT6rNnz6ZSpUrY29tTsWJFZsyYYWoLDw9n5MiRZv1PnTqFjY0NmzZtAiAnJ4dhw4ZRunRpnJycqFOnDklJSab+N/5lw7Jly6hcuTJ2dnakp6cX+J2LiIiIiIiIiIjIX+8flVSPj49n3LhxlClThoyMDJKTk/P1iYqK4o8//iApKYmvv/6aWbNmcfLkyUKtExsbS8eOHfn5559p0aIFXbp04ezZs/n6hYeHExcXh6urKxkZGWRkZDBs2DBT+9SpUwkNDWX37t3079+fl156iQMHDgCQnZ1NgwYN+O9//8uyZcvYs2cPI0aMIC8vr8CYLly4QLdu3diyZQs//vgjgYGBtGjRggsXLtxxL2PHjuXNN99k165dWFtb88ILLzBixAji4+PZvHkzhw8fZsyYMRY9l/DwcHbu3GlKoh85coSVK1fSokWLAvvn5uayaNEiLl68SFhYGHA96WwwGLCzszP1s7e3p0iRImzZsgW4/oeRKlWqMHToUNMzLVasGEFBQcybN4+LFy9y7do1Pv74Y0qUKEGtWrUAyMvLo0yZMnz11Vfs27ePMWPG8Prrr7N48WKL9jd//nzGjBnDhAkT2L9/PxMnTmT06NHMnTsXgC5durBo0SJufvfvl19+SalSpahfvz4AAwYM4IcffmDRokX8/PPPdOjQgWbNmnHo0CHTmEuXLvH2228ze/Zsfv31V0qUKFFgPDk5OWRlZZldIiIiIiIiIiIi8pAZ/2GmTZtm9PX1NX1u0KCB8ZVXXjEajUbj/v37jYAxOTnZ1H7o0CEjYJw2bZpF8wPGN9980/Q5OzvbCBhXrVplNBqNxg0bNhgB47lz54xGo9E4Z84co5ubW755fH19jS+++KLpc15enrFEiRLGmTNnGo1Go/Hjjz82uri4GM+cOVNgHGPHjjVWr179tnHm5uYaXVxcjP/5z3/MYv/222+NRqPRePToUSNgnD17tql94cKFRsCYmJhoujdp0iRjUFDQbde5VXx8vNHGxsZobW1tBIz9+vXL1+fnn382Ojk5Ga2srIxubm7GFStWmNpOnjxpdHV1Nb7yyivGixcvGrOzs40DBgwwAsY+ffqY+lWvXt04duxYs3mPHz9urFWrltFgMBitrKyM3t7exl27dt0x3pdfftn47LPPWrS38uXLGxcsWGB276233jKGhYWZYre2tjZu2rTJ1B4WFmYcOXKk0Wg0Go8dO2a0srIy/ve//zWbo3HjxsZRo0YZjcbrvy+AMSUl5a7xjB071gjkuzIzMy3aj4iIiIiIiIiIiPyfzMxMi/Jr/6iT6ndz4MABrK2tqVmzpuleQEAARYsWLdQ8wcHBpp+dnJxwdXUt9Gn3W+cxGAx4eXmZ5klJSSEkJMTimt4nTpygd+/eBAYG4ubmhqurK9nZ2XctHXJzDCVLlgSgWrVqZvcs3VtSUhITJ05kxowZ7Nq1i2+++YYVK1bw1ltvmfW7UQt++/btvPTSS3Tr1o19+/YB4OnpyVdffcV//vMfnJ2dcXNz4/z589SsWfOOdcWNRiMvv/wyJUqUYPPmzfz000+0bduW1q1bk5GRYer34YcfUqtWLTw9PXF2dmbWrFkWlVe5ePEiqamp9OzZ0+xFpuPHjyc1NdUU+9NPP838+fMBOHr0KD/88ANdunQBYO/eveTm5lKhQgWzOTZu3GiaA8DW1tbse7mdUaNGkZmZabqOHz9+1zEiIiIiIiIiIiJyf/6Zb/F8yG59SafBYLhtWZZ7ncfBwaFQc3Xr1o0zZ84QHx+Pr68vdnZ2hIWFceXKFYtjMBgMBd6zdG+jR4+ma9eu9OrVC7ienL948SJ9+vThjTfeMCXFbW1tCQgIAKBWrVokJycTHx/Pxx9/DMDTTz9Namoqp0+fxtraGnd3d7y8vChXrtxt1/7+++9Zvnw5586dw9XVFYAZM2awbt065s6dy2uvvcaiRYsYNmwYU6dOJSwsDBcXF955553b1qm/WXZ2NgCffPJJvpe3WllZmX7u0qULgwYN4v3332fBggWmuvA35rCysmLnzp1mYwCcnZ1NPzs4OJi+izuxs7MzK5MjIiIiIiIiIiIiD9+/KqkeFBTEtWvX2L17t6nO9uHDhzl37txDW9PW1pbc3NxCjwsODmb27NmcPXvWotPqW7duZcaMGab65cePH+f06dOFXvd+XLp0Kd9p8hvJY+NNdcZvlZeXR05OTr77xYsXB64nzE+ePMkzzzxzx7WBfOsXKVLE9EeBrVu3Eh4eTv/+/U3tN58Qv5OSJUtSqlQpjhw5Yjp5XpA2bdrQp08fVq9ezYIFC4iKijK1hYSEkJuby8mTJ0011kVEREREREREROTv5V+VVK9YsSKRkZH06dOHmTNnYmNjw9ChQy0+GXwv/Pz8yM7OJjExkerVq+Po6Iijo+Ndx3Xu3JmJEyfStm1bJk2ahLe3N7t376ZUqVKml3reLDAwkM8//5zQ0FCysrIYPnx4oU+736/WrVvz3nvvERISQp06dTh8+DCjR4+mdevWpuT6qFGjaN68OWXLluXChQssWLCApKQk1qxZY5pnzpw5VKpUCU9PT3744QdeeeUVXn31VYKCgm67dlhYGEWLFqVbt26MGTMGBwcHPvnkE44ePUrLli2B689o3rx5rFmzBn9/fz7//HOSk5Px9/e3aH+xsbEMGjQINzc3mjVrRk5ODjt27ODcuXMMGTIEuF4OqG3btowePZr9+/fTuXNn0/gKFSrQpUsXoqKimDp1KiEhIZw6dYrExESCg4NNcYqIiIiIiIiIiMjj619VUx1g3rx5lCxZkoiICNq1a0fv3r1xcXHB3t7+oawXHh5Ov3796NSpE56enkyZMsWicba2tqxdu5YSJUrQokULqlWrxuTJk/OVDbnh008/5dy5c9SsWZOuXbsyaNAgSpQo8SC3cldvvvkmQ4cO5c0336Ry5cr07NmTpk2bmsq6AJw8eZKoqCiCgoJo3LgxycnJrFmzhiZNmpj6HDhwgLZt21KpUiXGjRvHG2+8wbvvvnvHtYsXL87q1avJzs6mUaNGhIaGsmXLFr777juqV68OQN++fWnfvj2dOnWiTp06nDlzxuzU+t306tWL2bNnM2fOHKpVq0aDBg1ISEjIl5Tv0qULe/bsoX79+pQtW9asbc6cOURFRTF06FCCgoJo27YtycnJ+fqJiIiIiIiIiIjI48lgvFNdjn+B33//HR8fH9avX0/jxo0fdTgi9ywrKws3NzcyMzNNdeVFRERERERERETEMpbm1/51J9W///57li1bxtGjR9m2bRvPP/88fn5+REREPOrQ7pnRaKRPnz54eHhgMBhwd3dn8ODBD2x+g8HA0qVLH9h8hRETE0ONGjVMn6Ojo2nbtq3p8617T0lJeajx3Lr+3aSlpf0lcYmIiIiIiIiIiMhf419VUx3g6tWrvP766xw5cgQXFxfCw8OZP38+NjY2zJ8/n759+xY4ztfXl19//fUvjtYyq1evJiEhgaSkJMqVK8dzzz33UNZxdna+bduqVav+kpdvxsfHm7309Na933i56b14GPvz8fEhIyPjvuISERERERERERGRx8e/LqnetGlTmjZtWmDbM888Q506dQpss7GxeZhh3ZfU1FS8vb0JDw8HwNr64XytdzptXbp06Yey5q3c3NzMPt+69/vxMPZnZWWFl5fXPUYkIiIiIiIiIiIij5t/XfmXO3FxcSEgIKDAy9fX91GHV6Do6GgGDhxIeno6BoMBPz+/fH0yMjJo2bIlDg4O+Pv7s2DBAvz8/IiLi7N4ndOnTzN8+HCCg4Np3rw5+/btMz0bf39/BgwYgL+/Pw4ODgQFBREfH282PikpiSeeeAInJyfc3d2pW7cux44du6f93ii/cru95+XlMWnSJFM81atXZ8mSJXed+8Z+cnJyGDx4MDVr1iQkJITu3bvzxx9/FDhm9erV1KtXD3d3d4oVK0arVq1ITU01td9a/iUpKQmDwcCaNWsICQnBwcGBRo0acfLkSVatWkWlSpVwdXXlhRde4NKlS4V+PiIiIiIiIiIiIvJw/etOqv/TxMfHU758eWbNmkVycjJWVlZ06NDBrE9UVBSnT58mKSkJGxsbhgwZwsmTJwu1TmxsLFOmTOGdd97h/fffp0uXLhw7dgwPDw/y8vIoU6YMX331FcWKFWPbtm306dMHb29vOnbsyLVr12jbti29e/dm4cKFXLlyhZ9++gmDwfDA9w4wadIkvvjiCz766CMCAwPZtGkTL774Ip6enjRo0OCOc/73v/8lIiKChg0b8v333+Pq6srWrVu5du1agf0vXrzIkCFDCA4OJjs7mzFjxtCuXTtSUlIoUuT2f7OKiYnhgw8+wNHRkY4dO9KxY0fs7OxYsGAB2dnZtGvXjvfff5+RI0fedo6cnBxycnJMn7Oysu64NxEREREREREREbl/Sqr/zbm5ueHi4nLbMiO//fYb69evJzk5mdDQUABmz55NYGBgodaJjo6mc+fOAEycOJHp06fz008/0axZM2xsbIiNjTX19ff354cffmDx4sV07NiRrKwsMjMzadWqFeXLlwegUqVK97plk4L2npOTw8SJE1m/fj1hYWEAlCtXji1btvDxxx/fNan+4Ycf4ubmxqJFi0wlfypUqHDb/s8++6zZ588++wxPT0/27dtH1apVbztu/Pjx1K1bF4CePXsyatQoUlNTKVeuHADPPfccGzZsuGNSfdKkSWbPXURERERERERERB4+lX/5hztw4ADW1tbUrFnTdC8gIICiRYsWap7g4GDTz05OTri6upqddv/www+pVasWnp6eODs7M2vWLNLT0wHw8PAgOjqapk2b0rp1a+Lj48nIyLjPnRXs8OHDXLp0iSZNmuDs7Gy65s2bZ1aW5XZSUlKoX7++xTX0Dx06ROfOnSlXrhyurq6mEjQ39n47Nz/PkiVL4ujoaEqo37h3t39NMGrUKDIzM03X8ePHLYpZRERERERERERE7p1OqotFbk0yGwwG8vLyAFi0aBHDhg1j6tSphIWF4eLiwjvvvMP27dtN/efMmcOgQYNYvXo1X375JW+++Sbr1q3jySeffKBxZmdnA7BixYp8Lxe1s7O763gHB4dCrde6dWt8fX355JNPKFWqFHl5eVStWpUrV67ccdzNz9NgMNzx+d6OnZ2dRXsSERERERERERGRB0dJ9X+4oKAgrl27xu7du6lVqxZw/TT3uXPnHtgaW7duJTw8nP79+5vuFXQqPCQkhJCQEEaNGkVYWBgLFix44En1ypUrY2dnR3p6+l1LvRQkODiYuXPncvXq1bueVj9z5gwHDhzgk08+oX79+gBs2bLlnuIWERERERERERGRvweVf/mHq1ixIpGRkfTp04effvqJ3bt306dPHxwcHO77RaE3BAYGsmPHDtasWcPBgwcZPXo0ycnJpvajR48yatQofvjhB44dO8batWs5dOjQA6mrfisXFxeGDRvGq6++yty5c0lNTWXXrl28//77zJ07967jBwwYQFZWFs8//zw7duzg0KFDfP755xw4cCBf36JFi1KsWDFmzZrF4cOH+f777xkyZMgD35OIiIiIiIiIiIg8PpRU/xeYN28eJUuWJCIignbt2tG7d29cXFywt7d/IPP37duX9u3b06lTJ+rUqcOZM2fMTq07Ojry22+/8eyzz1KhQgX69OnDyy+/TN++fR/I+rd66623GD16NJMmTaJSpUo0a9aMFStW4O/vf9exxYoV4/vvvyc7O5sGDRpQq1YtPvnkkwJPrRcpUoRFixaxc+dOqlatyquvvso777zzMLYkIiIiIiIiIiIijwmD0Wg0Puog/s2MRiN9+/ZlyZIlnDt3Djc3N6Kjo4mLi3sg8xsMBr799lvatm1ruvf777/j4+PD+vXrady48QNZ5++uoOf0KGNIS0vD39+f3bt3U6NGDYvGZ2Vl4ebmRmZmJq6urg83WBERERERERERkX8YS/NrOqn+iK1evZqEhASWL19ORkYGVatWfaDzZ2RkYG9vz7Jlyzh69Cjbtm3j+eefx8/Pj4iIiAe6VkEMBgNLly596Ov8E2RkZNC8efNHHYaIiIiIiIiIiIjcgZLqj1hqaire3t6Eh4fj5eWFtfWDfXesl5cXBoOB119/nSpVqtCuXTs8PT1JSkrCxsaG+fPn4+zsXOBVpUqV28579erVBxJflSpVbrv+/PnzTf2uXLnyQNbr169fgWsBzJw584Gsca+8vLyws7N7pDGIiIiIiIiIiIjInSmp/ghFR0czcOBA0tPTMRgM+Pn55euTkZFBy5YtcXBwwN/fnwULFuDn52dxeRiDwcCff/7JL7/8wvnz5+nQoQM//vgjQUFB+Pr6cujQIVJSUgq8Vq5caTbPzJkzeeaZZ3BycmLChAkAfPfdd9SsWRN7e3vKlStHbGws165dAzDtp127dmb7i46ONpVZWblyJSkpKTz33HNUqVLFtHaVKlXYuHEjgwcPpnjx4jRt2pSkpCQMBgOJiYmEhobi6OhIeHh4vpeI3immcePGsXTpUipVqsTVq1fx8vLigw8+AKBz5853fZ5paWkYDAYWL15M/fr1cXBwoHbt2hw8eJDk5GRCQ0NxdnamefPmnDp1yjQuOTmZJk2aULx4cdzc3GjQoAG7du3K913pVL+IiIiIiIiIiMjj7cEei5ZCiY+Pp3z58syaNYvk5GSsrKzo0KGDWZ+oqChOnz5tOlk+ZMgQTp48eU/rTZ8+nWXLlrF48WLKli3L8ePHOX78OAEBARaNj4mJYfLkycTFxWFtbc3mzZuJiopi+vTp1K9fn9TUVPr06QPA2LFjSU5OpkSJEsyZM4dmzZphZWWVb05fX18A3N3dcXBwMMXi4ODAwoULeemll9i6dStw/Q8MAG+88QZTp07F09OTfv360aNHD1Ofu8VUvHhxXn31VUqWLMlPP/1EZmYmgwcPNsVgqbFjxxIXF0fZsmXp0aMHL7zwAi4uLsTHx+Po6EjHjh0ZM2aM6fT7hQsX6NatG++//z5Go5GpU6fSokULDh06hIuLi8Xr3iwnJ4ecnBzT56ysrHuaR0RERERERERERCynpPoj5ObmhouLC1ZWVnh5eeVr/+2331i/fr3pBDTA7NmzCQwMvKf10tPTCQwMpF69ehgMBlNC21IvvPAC3bt3N33u0aMHr732Gt26dQOgXLlyvPXWW4wYMYKxY8fi6ekJXE9WF7S/uwkMDGTKlCmmzzeS6hMmTKBBgwYAvPbaa7Rs2ZLLly9jb29PbGzsHWNav349v/32G2vWrKFUqVIATJw4sdC1zIcNG0bTpk0BeOWVV+jcuTOJiYnUrVsXgJ49e5KQkGDq36hRI7Pxs2bNwt3dnY0bN9KqVatCrX3DpEmTiI2NvaexIiIiIiIiIiIicm9U/uUxduDAAaytralZs6bpXkBAAEWLFr2n+aKjo0lJSSEoKIhBgwaxdu3aQo2/kdi/Yc+ePYwbN86sNnnv3r3JyMjg0qVL9xTjzWrVqlXg/eDgYNPP3t7eAKbT+3eLaf/+/fj4+JgS6gBhYWGFju3mGEqWLAlAtWrVzO7d/C8KTpw4Qe/evQkMDMTNzQ1XV1eys7NJT08v9No3jBo1iszMTNN1/Pjxe55LRERERERERERELKOT6v8iNWvW5OjRo6xatYr169fTsWNHIiMjWbJkiUXjnZyczD5nZ2cTGxtL+/bt8/W1t7e/7TxFihTBaDSa3Svoxae3rneDjY2N6WeDwQBAXl7efcVUWAXFcOu9GzEBdOvWjTNnzhAfH4+vry92dnaEhYXd1wtY7ezs9GJTERERERERERGRv5iS6o+xoKAgrl27xu7du02ntg8fPsy5c+fueU5XV1c6depEp06deO6552jWrBlnz57Fw8Oj0HPVrFmTAwcO3LEmu42NDbm5uWb3PD09+eWXX8zupaSkmCWl79XdYqpUqRLHjx8nIyPDdMr9xx9/vO9172br1q3MmDGDFi1aAHD8+HFOnz790NcVERERERERERGRB0tJ9cdYxYoViYyMpE+fPsycORMbGxuGDh2Kg4OD6XR0Ybz33nt4e3sTEhJCkSJF+Oqrr/Dy8irUCzpvNmbMGFq1akXZsmV57rnnKFKkCHv27OGXX35h/PjxAPj5+ZlqjdvZ2VG0aFEaNWrEO++8w7x58wgLC+OLL77gl19+ISQk5J7iKExMkZGRVKhQgW7duvHOO++QlZXFG2+8cd/r3k1gYCCff/45oaGhZGVlMXz4cBwcHB76uiIiIiIiIiIiIvJgqab6Y27evHmULFmSiIgI2rVrR+/evXFxcbmnUiYuLi5MmTKF0NBQateuTVpaGitXrqRIkXv7NWjatCnLly9n7dq11K5dmyeffJJp06aZvQB16tSprFu3Dh8fH1PSvGnTpowePZoRI0ZQu3ZtLly4QFRU1D3FUNiYihQpwrfffsuff/7JE088Qa9evZgwYcIDWftOPv30U86dO0fNmjXp2rUrgwYNokSJEg99XREREREREREREXmwDMZbi1vLY+3333/Hx8eH9evX07hx40cdjjxGsrKycHNzIzMzE1dX10cdjoiIiIiIiIiIyN+Kpfk1nVR/zH3//fcsW7aMo0ePsm3bNp5//nn8/PyIiIh41KE9UkajkT59+uDh4YHBYCAlJeW2fRs2bMjgwYPva72YmBhq1Khxxz7R0dG0bdv2vta5mZ+fH3FxcQ9sPhEREREREREREbl/qqn+mLt69Sqvv/46R44cwcXFhfDwcObPn4+NjQ3z58+nb9++BY7z9fXl119/tWiNBzXPX2n16tUkJCSQlJREuXLlKF68+AOZd+LEiUycODHf/StXrtxTyZ37kZycjJOT01+6poiIiIiIiIiIiNyZkuqPuaZNm9K0adMC25555hnq1KlTYJuNjY3Fazyoef5KqampeHt7Ex4e/kDn7devHx07dsx3f/r06SQmJj7Qte7G09PzL11PRERERERERERE7k7lX/7GXFxcCAgIKPC6+WWhf9U8f5Xo6GgGDhxIeno6BoMBPz+/u47Jy8tjxIgReHh44OXlRUxMjFl7eno6bdq0oWzZstSsWZPXX3/d7Ll4eHiY/YEhNzeXIUOG4O7uTrFixRgxYgSFeT3BhQsX6NKlC05OTnh7ezNt2rR8ZWpU/kVEREREREREROTxo6S6/O3Ex8czbtw4ypQpQ0ZGBsnJyXcdM3fuXJycnNi+fTtTpkxh3LhxrFu3DriecG/Tpg1nz55l48aNrFu3jiNHjtCpU6fbzjd16lQSEhL47LPP2LJlC2fPnuXbb7+1eA9Dhgxh69atLFu2jHXr1rF582Z27dpl8XiAnJwcsrKyzC4RERERERERERF5uFT+Rf523NzccHFxwcrKCi8vL4vGBAcHM3bsWAACAwP54IMPSExMpEmTJiQmJrJ3716OHj2Kj48PAPPmzaNKlSokJydTu3btfPPFxcUxatQo2rdvD8BHH33EmjVrLIrlwoULzJ07lwULFtC4cWMA5syZQ6lSpSwaf8OkSZOIjY0t1BgRERERERERERG5PzqpLv8KwcHBZp+9vb05efIkAPv378fHx8eUUAeoXLky7u7u7N+/P99cmZmZZGRkmNWht7a2JjQ01KJYjhw5wtWrV3niiSdM99zc3AgKCirUnkaNGkVmZqbpOn78eKHGi4iIiIiIiIiISOHppLr8K9z6wlWDwUBeXt4jiubBsLOzw87O7lGHISIiIiIiIiIi8q+ik+ryr1epUiWOHz9udtJ73759nD9/nsqVK+fr7+bmhre3N9u3bzfdu3btGjt37rRovXLlymFjY2NWCz4zM5ODBw/exy5ERERERERERETkr6CT6vKvFxkZSbVq1ejSpQtxcXFcu3aN/v3706BBg9uWdHnllVeYPHkygYGBVKxYkffee4/z589btJ6LiwvdunVj+PDheHh4UKJECcaOHUuRIkUwGAwPcGciIiIiIiIiIiLyoOmkuvzrGQwGvvvuO4oWLUpERASRkZGUK1eOL7/88rZjhg4dSteuXenWrRthYWG4uLjQrl07i9d87733CAsLo1WrVkRGRlK3bl0qVaqEvb39g9iSiIiIiIiIiIiIPCQGo9FofNRBiPzbXbx4kdKlSzN16lR69ux5T3NkZWXh5uZGZmYmrq6uDzhCERERERERERGRfzZL82s6qS5/qYYNGzJ48ODbthsMBpYuXfrA101LS8NgMJCSkvLA574Xu3fvZuHChaSmprJr1y66dOkCQJs2bR5xZCIiIiIiIiIiInInqqkuf2vp6ekFvkz0hn379lG2bFl8fHzIyMigePHij0VMAO+++y4HDhzA1taWWrVqsXnzZooXL07Dhg2pUaMGcXFxDz1WERERERERERERKRwl1eVvrVSpUnc8fV6qVCkArKys8PLyemxiKlu2LDt37vxL4hEREREREREREZEHR+Vf5C+Xl5fHiBEj8PDwwMvLi5iYGLP206dP065dOxwdHQkMDGTZsmW3ncva2pqAgAACAgIoVqwYY8eOJSwsjGrVqtG8eXM+//xzIH/5l+joaAwGQ74rKSkJgJycHIYNG0bp0qVxcnKiTp06pra7sba25n//+x/du3enWrVqPPXUU0yfPh1vb28CAgKwtrZmxowZBAYGYm9vT8mSJXnuuedMcW3cuJH4+HhTTGlpaYV5vCIiIiIiIiIiIvIQKakuf7m5c+fi5OTE9u3bmTJlCuPGjWPdunWm9tjYWDp27MjPP/9MixYt6NKlC2fPnr3rvKNHj2bfvn2sWrWK/fv3M3PmzNuWe4mPjycjI8N0vfLKK5QoUYKKFSsCMGDAAH744QcWLVrEzz//TIcOHWjWrBmHDh26axypqak0a9aMZ599lp9//pkvv/ySLVu2MGDAAAB27NjBoEGDGDduHAcOHGD16tVERESY4goLC6N3796m2Hx8fApcJycnh6ysLLNLREREREREREREHi6D0Wg0Puog5N+jYcOG5ObmsnnzZtO9J554gkaNGjF58mQMBgNvvvkmb731FgAXL17E2dmZVatW0axZszvO/cwzz1C8eHE+++yzfG1paWn4+/uze/duatSoYdb2zTff0KVLF9avX0/dunVJT0+nXLlypKenm8rHAERGRvLEE08wceLEO8bRq1cvrKys+Pjjj033tmzZQoMGDbh48SIrV66ke/fu/P7777i4uBT4jCypqR4TE0NsbGy++3d7O7GIiIiIiIiIiIjkl5WVhZub213za6qpLn+54OBgs8/e3t6cPHmywHYnJydcXV3N2m/npZde4tlnn2XXrl08/fTTtG3blvDw8DuO2b17N127duWDDz6gbt26AOzdu5fc3FwqVKhg1jcnJ4dixYrdNY49e/bw888/M3/+fNM9o9FIXl4eR48epUmTJvj6+lKuXDmaNWtGs2bNTOVuCmPUqFEMGTLE9DkrK+u2p9pFRERERERERETkwVBSXf5yNjY2Zp8NBgN5eXkWt99O8+bNOXbsGCtXrmTdunU0btyYl19+mXfffbfA/v/73/945pln6NWrFz179jTdz87OxsrKip07d2JlZWU2xtnZ+a5xZGdn07dvXwYNGpSvrWzZstja2rJr1y6SkpJYu3YtY8aMISYmhuTkZNzd3e86/w12dnbY2dlZ3F9ERERERERERETun5Lq8o/i6elJt27d6NatG/Xr12f48OEFJtUvX75MmzZtqFixIu+9955ZW0hICLm5uZw8eZL69esXOoaaNWuyb98+AgICbtvH2tqayMhIIiMjGTt2LO7u7nz//fe0b98eW1tbcnNzC72uiIiIiIiIiIiIPHxKqss/xpgxY6hVqxZVqlQhJyeH5cuXU6lSpQL79u3bl+PHj5OYmMipU6dM9z08PKhQoQJdunQhKiqKqVOnEhISwqlTp0hMTCQ4OJiWLVveMY6RI0fy5JNPMmDAAHr16oWTkxP79u1j3bp1fPDBByxfvpwjR44QERFB0aJFWblyJXl5eQQFBQHg5+fH9u3bSUtLw9nZGQ8PD4oU0TuFRUREREREREREHgfK1Mk/hq2tLaNGjSI4OJiIiAisrKxYtGhRgX03btxIRkYGlStXxtvb23Rt27YNgDlz5hAVFcXQoUMJCgqibdu2JCcnU7Zs2bvGERwczMaNGzl48CD169cnJCSEMWPGmF566u7uzjfffEOjRo2oVKkSH330EQsXLqRKlSoADBs2DCsrKypXroynpyfp6ekP6AmJiIiIiIiIiIjI/TIYjUbjow5CRO6fpW8nFhERERERERERkfwsza/9q8q/GI1G+vbty5IlSzh37hxubm5ER0cTFxf3l8cSHR3N+fPnWbp06W37JCUl8dRTT3Hu3LlCvcDy765hw4bUqFHjoXwvD3PuGyz5bh+mqmPXUMTO8ZGs/XeRNvnOJXxERERERERERERu51+VVF+9ejUJCQkkJSVRrlw5nnvuuUcWS3x8PDf/I4G/Itn7uCnsHw369evHF198UWDbiy++yEcffXTXOb755htsbGwKG6qZ5s2bs3nzZoxGI5cuXcLBwcFU8/z111/P992KiIiIiIiIiIjIP8e/KqmempqKt7c34eHhAFhbP7rtu7m5PbK17+TKlSvY2to+6jAKNG7cOIYNG1Zg293KndzYl4eHx33HMXv2bP78809+//13nnrqKRYtWkTlypWB6y86fVy/WxEREREREREREbl//5oXlUZHRzNw4EDS09MxGAz4+fnl65ORkUHLli1xcHDA39+fBQsW4OfnZ9Hp8WHDhtGqVSvT57i4OAwGA6tXrzbdCwgIYPbs2aZ42rZta/p548aNxMfHYzAYMBgMpKWlmcbt3LmT0NBQHB0dCQ8P58CBAxbtOSYmhho1avDxxx/j4+ODo6MjHTt2JDMz0+y5tG3blgkTJlCqVCmCgoIAOH78OB07dsTd3R0PDw/atGljFlNycjJNmjShePHiuLm50aBBA3bt2mVqT0tLw2AwkJKSYrp3/vx5DAYDSUlJpKWl8dRTTwFQtGhRDAYD0dHRpr55eXmMGDECDw8PvLy8iImJoUSJEgQEBBAQEICtrS1Dhw6lRo0a1KxZkwEDBnDixIl8e589ezb+/v7Y29sD1/9FwODBg039ZsyYQWBgIPb29pQsWdLsXy+sXr2aevXq4e7uTrFixWjVqhWpqamULl2agIAAU/xt2rQhMDCQXr164eHhYfbdAuTk5DBo0CBKlCiBvb099erVIzk52dSelJSEwWAgMTGxUN9zTk4OWVlZZpeIiIiIiIiIiIg8XP+apHp8fDzjxo2jTJkyZGRkmCU1b4iKiuKPP/4gKSmJr7/+mlmzZnHy5EmL5m/QoAFbtmwhNzcXgI0bN1K8eHGSkpIA+O9//0tqaioNGzYsMLawsDB69+5NRkYGGRkZ+Pj4mNrfeOMNpk6dyo4dO7C2tqZHjx4W7/vw4cMsXryY//znP6xevZrdu3fTv39/sz6JiYkcOHCAdevWsXz5cq5evUrTpk1xcXFh8+bNbN26FWdnZ5o1a8aVK1cAuHDhAt26dWPLli38+OOPBAYG0qJFCy5cuGBRXD4+Pnz99dcAHDhwgIyMDOLj403tc+fOxcnJie3btzNlyhTGjRvHunXrgOsJ9zZt2nD27Fk2btzIunXrOHLkCJ06dcq396+//ppvvvnGLLl/w44dOxg0aBDjxo3jwIEDrF69moiICFP7xYsXGTJkCDt27CAxMZEiRYrQrl078vLyAPjpp58AWL9+PRkZGXzzzTcF7nXEiBF8/fXXzJ07l127dhEQEEDTpk05e/asWb/Cfs+TJk3Czc3NdN38OyMiIiIiIiIiIiIPx7+m/IubmxsuLi5YWVnh5eWVr/23335j/fr1JCcnExoaClwv8xEYGGjR/PXr1+fChQvs3r2bWrVqsWnTJoYPH256WWVSUpLphHNBsdna2uLo6FhgbBMmTKBBgwYAvPbaa7Rs2ZLLly+bTl/fyeXLl5k3bx6lS5cG4P3336dly5ZMnTrVtJaTkxOzZ882lX354osvyMvLY/bs2RgMBgDmzJmDu7s7SUlJPP300zRq1MhsnVmzZuHu7s7GjRvNTuzfjpWVlakUS4kSJfLVVA8ODmbs2LEABAYG8sEHH5CYmEiTJk1ITExk7969HD161JRInjdvHlWqVCE5OZnatWsD10u+zJs3D09PzwJjSE9Px8nJiVatWuHi4oKvry8hISGm9meffdas/2effYanpyf79u2jatWqpnmLFStW4PcG1xPzM2fOJCEhgebNmwPwySefsG7dOj799FOGDx9u6lvY73nUqFEMGTLE9DkrK0uJdRERERERERERkYfsX3NS/W4OHDiAtbU1NWvWNN0LCAigaNGiFo13d3enevXqJCUlsXfvXmxtbenTpw+7d+8mOzubjRs3mhKmhRUcHGz62dvbG8DiE/Rly5Y1JdQBwsLCyMvLMystUq1aNbM66nv27OHw4cO4uLjg7OyMs7MzHh4eXL58mdTUVABOnDhB7969CQwMxM3NDVdXV7Kzs0lPT7+nPd7q5j3D9X3f2PP+/fvx8fExSyBXrlwZd3d39u/fb7rn6+t724Q6QJMmTfD19aVcuXJ07dqV+fPnc+nSJVP7oUOH6Ny5M+XKlcPV1dVUMqgwe0xNTeXq1avUrVvXdM/GxoYnnnjCLNZb92zJ92xnZ4erq6vZJSIiIiIiIiIiIg/Xv+ak+l+hYcOGJCUlYWdnR4MGDfDw8KBSpUps2bKFjRs3MnTo0Hua18bGxvTzjZPjN0qQPAhOTk5mn7Ozs6lVqxbz58/P1/dGkrpbt26cOXOG+Ph4fH19sbOzIywszFQepkiR63+vMRqNprFXr161OKab9wzX913YPd+6r1u5uLiwa9cukpKSWLt2LWPGjCEmJobk5GTc3d1p3bo1vr6+fPLJJ5QqVYq8vDyqVq1q2uOD9rC/ZxEREREREREREbl/Oqn+/wUFBXHt2jV2795tunf48GHOnTtn8Rw36qonJiaaaqc3bNiQhQsXcvDgwQLrqd9ga2trqsf+IKWnp/PHH3+YPv/4448UKVLE9ELSgtSsWZNDhw6ZvRj0xuXm5gbA1q1bGTRoEC1atKBKlSrY2dlx+vRp0xw3ku8ZGRmme7fWNb9xOr6w+65UqRLHjx/n+PHjpnv79u3j/PnzVK5cuVBzWVtbExkZyZQpU/j5559JS0vj+++/58yZMxw4cIA333yTxo0bU6lSpXy/C5bEX758eWxtbdm6davp3tWrV0lOTi50rCIiIiIiIiIiIvLo6aT6/1exYkUiIyPp06cPM2fOxMbGhqFDh+Lg4GA6NXw3ERERXLhwgeXLlzN58mTgelL9ueeew9vbmwoVKtx2rJ+fH9u3byctLc1UbuVBsLe3p1u3brz77rtkZWUxaNAgOnbseNsa4ABdunThnXfeoU2bNqaXux47doxvvvmGESNGUKZMGQIDA/n8888JDQ0lKyuL4cOH4+DgYJrDwcGBJ598ksmTJ+Pv78/Jkyd58803zdbx9fXFYDCwfPlyWrRogYODA87OznfdU2RkJNWqVaNLly7ExcVx7do1+vfvT4MGDUz18C2xfPlyjhw5QkREBEWLFmXlypXk5eURFBRE0aJFKVasGLNmzcLb25v09HRee+01s/ElSpTAwcGB1atXU6ZMGezt7U1/dLjBycmJl156ieHDh+Ph4UHZsmWZMmUKly5domfPnhbHWhi/xDZVKRgREREREREREZGHRCfVbzJv3jxKlixJREQE7dq1o3fv3ri4uFj0QlCAokWLUq1aNTw9PalYsSJwPdGel5d313rqw4YNw8rKisqVK+Pp6fnAapMHBATQvn17WrRowdNPP01wcDAzZsy44xhHR0c2bdpE2bJlad++PZUqVaJnz55cvnzZlKz99NNPOXfuHDVr1qRr164MGjSIEiVKmM3z2Wefce3aNWrVqsXgwYMZP368WXvp0qWJjY3ltddeo2TJkgwYMMCiPRkMBr777juKFi1KREQEkZGRlCtXji+//LIQT+Z6HfxvvvmGRo0aUalSJT766CMWLlxIlSpVKFKkCIsWLWLnzp1UrVqVV199lXfeecdsvLW1NdOnT+fjjz+mVKlStGnTpsB1Jk+ezLPPPkvXrl2pWbMmhw8fZs2aNRbX6xcREREREREREZHHh8F4c9FrMfP777/j4+PD+vXrady48X3PZzQa6du3L0uWLOHcuXO4ubkRHR1NXFzc/QfL9WTzt99+S9u2bQGIiYlh6dKl+cquPAx/1VrR0dGcP3+epUuX3rZPUlISTz31FOfOncPd3f2Bx+Dn58fgwYMZPHiwRf0TEhIYPHgw58+ff+Cx3CwrKws3Nzd8Bi+miJ3jQ11LCidtcstHHYKIiIiIiIiIiNzFjfxaZmbmHStB6KT6Tb7//nuWLVvG0aNH2bZtG88//zx+fn5EREQ8kPlXr15NQkICy5cvJyMjg6pVqz6Qef/NGjZsaHFy+1Hp1KkTBw8efNRhiIiIiIiIiIiIyAOgpPpNrl69yuuvv06VKlVo164dnp6eJCUlYWNjw/z583F2di7wqlKlikXzp6am4u3tTXh4OF5eXlhb319J+ypVqpjFAdC5c2ecnZ2ZP3/+fc0tD46Dg0O+0jgiIiIiIiIiIiLy96Sk+k2aNm3KL7/8wqVLlzhx4gTffvstvr6+ADzzzDOkpKQUeK1cufKuc0dHRzNw4EDS09MxGAz4+fnl65ORkUHLli1xcHDA39+fBQsW4Ofnd9vyMCtXrjSLA2D06NGEhYXRq1cv5s+fz7hx40z9c3Nz6dmzJ/7+/jg4OBAUFER8fLzZnElJSTzxxBM4OTnh7u5O3bp1OXbsmGUPEPj888/x8/PDzc2N559/ngsXLpja8vLymDRpkmn96tWrs2TJkkLFd7Po6Gg2btxIfHw8BoMBg8FAWlqaqX3nzp2Ehobi6OhIeHg4Bw4csHgf//nPf6hduzb29vYUL16cdu3a3bbve++9R7Vq1XBycsLHx4f+/fuTnZ1tak9ISDArQxMTE0ONGjX47LPPKFu2LM7OzvTv35/c3FymTJmCl5cXJUqUYMKECRbHKyIiIiIiIiIiIn+N+zsq/S/i4uKCi4vLPY+Pj4+nfPnyzJo1i+TkZKysrOjQoYNZn6ioKE6fPm06HT9kyBBOnjx52zlvJPxvNnPmTKZMmcLMmTN5//336dKlC8eOHcPDw4O8vDzKlCnDV199RbFixdi2bRt9+vTB29ubjh07cu3aNdq2bUvv3r1ZuHAhV65c4aeffsJgMFi0x9TUVJYuXcry5cs5d+4cHTt2ZPLkyabk8KRJk/jiiy/46KOPCAwMZNOmTbz44ot4enrSoEGDu8ZX0DM9ePAgVatWNf3xwNPT05RYf+ONN5g6dSqenp7069ePHj16sHXr1rvuY8WKFbRr14433niDefPmceXKlTv+4aRIkSJMnz4df39/jhw5Qv/+/RkxYsQdXwibmprKqlWrWL16NampqTz33HMcOXKEChUqsHHjRrZt20aPHj2IjIykTp06Bc6Rk5NDTk6O6XNWVtZd9yYiIiIiIiIiIiL3R0n1v4ibmxsuLi5YWVnh5eWVr/23335j/fr1JCcnExoaCsDs2bMJDAws1DrR0dF07twZgIkTJzJ9+nR++uknmjVrho2NDbGxsaa+/v7+/PDDDyxevJiOHTuSlZVFZmYmrVq1onz58gBUqlTJ4rXz8vJISEgw/fGha9euJCYmMmHCBHJycpg4cSLr168nLCwMgHLlyrFlyxY+/vhjGjRocNf4buXm5oatrS2Ojo4FPtMJEybQoEEDAF577TVatmzJ5cuXsbe3v+M+JkyYwPPPP28WS/Xq1W/b/+aa7n5+fowfP55+/frdMamel5fHZ599houLC5UrV+app57iwIEDrFy5kiJFihAUFMTbb7/Nhg0bbptUnzRpklmMIiIiIiIiIiIi8vApqf6YOHDgANbW1tSsWdN0LyAggKJFixZqnuDgYNPPTk5OuLq6mp12//DDD/nss89IT0/nzz//5MqVK9SoUQMADw8PoqOjadq0KU2aNCEyMpKOHTvi7e1t0dp+fn5mp/m9vb1Nax8+fJhLly7RpEkTszFXrlwhJCTEovgK6+ZncWMPJ0+epGzZsnccl5KSQu/evS1eZ/369UyaNInffvuNrKwsrl27xuXLl7l06RKOjo4Fjrn1WZUsWRIrKyuKFClidu9O/1Jh1KhRDBkyxPQ5KysLHx8fi+MWERERERERERGRwlNN9X8YGxsbs88Gg4G8vDwAFi1axLBhw+jZsydr164lJSWF7t27c+XKFVP/OXPm8MMPPxAeHs6XX35JhQoV+PHHH+977Rs1xlesWGFWB37fvn2muuqWxHevz+JGCZsb8dyJg4ODxWukpaXRqlUrgoOD+frrr9m5cycffvghwB3jLuhZ3en5FcTOzg5XV1ezS0RERERERERERB4unVR/TAQFBXHt2jV2795NrVq1gOunu8+dO/fA1ti6dSvh4eH079/fdC81NTVfv5CQEEJCQhg1ahRhYWEsWLCAJ5988r7Wrly5MnZ2dqSnp5tKstxrfDeztbUlNzf3vmK7VXBwMImJiXTv3v2ufXfu3EleXh5Tp041nTJfvHjxA41HREREREREREREHh9Kqj8mKlasSGRkJH369GHmzJnY2NgwdOhQHBwcLH5R6N0EBgYyb9481qxZg7+/P59//jnJycn4+/sDcPToUWbNmsUzzzxDqVKlOHDgAIcOHSIqKuq+13ZxcWHYsGG8+uqr5OXlUa9ePTIzM9m6dSuurq5069btrvEVxM/Pj+3bt5OWloazszMeHh73HevYsWNp3Lgx5cuX5/nnn+fatWusXLmSkSNH5usbEBDA1atXef/992ndujVbt27lo48+uu8YRERERERERERE5PGkpPpjZN68efTs2ZOIiAi8vLyYNGkSv/76611frGmpvn37snv3bjp16oTBYKBz587079+fVatWAeDo6Mhvv/3G3LlzOXPmDN7e3rz88sv07dv3gaz/1ltv4enpyaRJkzhy5Aju7u7UrFmT119/3aL4CjJs2DC6detG5cqV+fPPPzl69Oh9x9mwYUO++uor3nrrLSZPnoyrqysREREF9q1evTrvvfceb7/9NqNGjSIiIoJJkyY9kD9E3KtfYpuqFIyIiIiIiIiIiMhDYjAajcZHHYQU7Pfff8fHx4f169fTuHHjRx2OPOaysrJwc3MjMzNTSXUREREREREREZFCsjS/9q8/qd6wYUNq1KhBXFxcge0Gg4Fvv/2Wtm3b3naO6Ohozp8/z9KlS+8phqSkJJ566im+++47AKpVq0ZGRgYjRozAz8+vwFPSd4tb/r2qjl1DETvHRx2GWChtcstHHYKIiIiIiIiIiBRCkUcdwN9JWloaBoOBlJSUhzL/1atXef3116lSpQrt2rXD09OTpKQkbGxsmD9/Ps7OzqZrx44dzJ49G2dnZ6pUqfJQ4rlZlSpVzNa/+Zo/f36BYwwGwz3/oeFhupe9iIiIiIiIiIiIiIBOqj9WGjduzLPPPltg2zPPPEOdOnUKbLOxsXmYYQGwcuVKrl69WmBbyZIlH/r6D9I/aS8iIiIiIiIiIiLy19JJdSAvL48RI0bg4eGBl5cXMTExBfbz9/cHICQkBIPBQMOGDc3a3333Xby9vSlWrBgvv/yyWeI2JyeHkSNH4uPjg52dHQEBAXz66acFrnPmzBk6d+5M6dKlcXR0pFq1aixfvpyAgADT1atXLz744AMCAgLw9fXFz8+P8ePHExUVhbOzM76+vixbtoxTp07Rpk0bnJ2dCQ4OZseOHRY/l61bt9KwYUMcHR2pUaMGL7/8MsWKFTOtP336dGbNmoWvr2++5+bn5wdAu3btMBgMps93Eh0dna/MzuDBg82ec8OGDRk0aNBtvy+j0UhMTAxly5bFzs6OUqVKMWjQIFO7wWBg9+7dZs8yNDSULVu2EBAQgIuLC7///judO3fGw8MDJycnQkND2b59u2mO//znP9SuXRt7e3uKFy9Ou3btTG05OTkMGzaM0qVL4+TkRJ06dUhKSjK1Hzt2jNatW1O0aFGcnJyoUqUKK1euBODcuXN06dIFT09PHBwcCAwMZM6cOXd9biIiIiIiIiIiIvLXUVIdmDt3Lk5OTmzfvp0pU6Ywbtw41q1bl6/fTz/9BMD69evJyMjgm2++MbVt2LCB1NRUNmzYwNy5c0lISCAhIcHUHhUVxcKFC5k+fTr79+/n448/xtnZucB4Ll++TK1atVixYgW//PILffr0oWvXrqb1b2fatGnUrVuX3bt307JlS7p27UpUVBQvvvgiu3btonz58kRFRWHJu2lTUlJo3LgxlStX5ocffmDLli20bt2a3Nxci55bcnIyAHPmzCEjI8P0+UG407pff/0106ZN4+OPP+bQoUMsXbqUatWqWTx3dnY2DRo04L///S/Lli1jz549jBgxgry8PABWrFhBu3btaNGiBbt37yYxMZEnnnjCNH7AgAH88MMPLFq0iJ9//pkOHTrQrFkzDh06BMDLL79MTk4OmzZtYu/evbz99tum34PRo0ezb98+Vq1axf79+5k5cybFixe/baw5OTlkZWWZXSIiIiIiIiIiIvJwqfwLEBwczNixYwEIDAzkgw8+IDExkSZNmpj18/T0BKBYsWJ4eXmZtRUtWpQPPvgAKysrKlasSMuWLUlMTKR3794cPHiQxYsXs27dOiIjIwEoV67cbeMpXbo0w4YNM30eOHAga9asYfHixWYJ3Fu1aNGCvn37AjBmzBhmzpxJ7dq16dChAwAjR44kLCyMEydO5Iv/VlOmTCE0NJQZM2aY7t1au/1Oz+3Gs3J3d7/rWoV1p3XT09Px8vIiMjISGxsbypYte8dndqsFCxZw6tQpkpOT8fDwACAgIMDUPmHCBJ5//nliY2NN96pXrw5Aeno6c+bMIT09nVKlSgEwbNgwVq9ezZw5c5g4cSLp6ek8++yzpkT/zb8H6enphISEEBoaCnDX0/2TJk0yi0NEREREREREREQePp1U53qS9mbe3t6cPHmyUHNUqVIFKyurAudISUnBysqKBg0aWDRXbm4ub731FtWqVcPDwwNnZ2fWrFlDenq6xfu4URv85lPaN+5ZsrcbJ9UtXQ/u7bndizut26FDB/7880/KlStH7969+fbbb7l27ZrFc6ekpBASEmJKqBfUfrvnsnfvXnJzc6lQoYLZy083btxIamoqAIMGDWL8+PHUrVuXsWPH8vPPP5vGv/TSSyxatIgaNWowYsQItm3bdsdYR40aRWZmpuk6fvy4xfsUERERERERERGRe6OkOvlf9GkwGEzlPh7EHA4ODoWa65133iE+Pp6RI0eyYcMGUlJSaNq0KVeuXLE4BoPBcNt7luzNkpgfxHO7WZEiRfKVpinohaJ3WtfHx4cDBw4wY8YMHBwc6N+/PxEREaZ5DAbDHde4277v1J6dnY2VlRU7d+4kJSXFdO3fv5/4+HgAevXqxZEjR+jatSt79+4lNDSU999/H4DmzZtz7NgxXn31Vf744w8aN25s9i8WbmVnZ4erq6vZJSIiIiIiIiIiIg+XkuqFYGtrC2BWV9wS1apVIy8vj40bN1rUf+vWrbRp04YXX3yR6tWrU65cOQ4ePFjoeO9HcHAwiYmJ9zWHjY1NoZ6Vp6cnGRkZZvdSUlIKva6DgwOtW7dm+vTpJCUl8cMPP7B3794C1zh06BCXLl0yfQ4ODiYlJYWzZ88WOPednktISAi5ubmcPHnS7EWoAQEBZiVwfHx86NevH9988w1Dhw7lk08+MXsG3bp144svviAuLo5Zs2YVev8iIiIiIiIiIiLy8KimeiGUKFECBwcHVq9eTZkyZbC3t8fNze2u4/z8/OjWrRs9evRg+vTpVK9enWPHjnHy5Ek6duyYr39gYCBLlixh27ZtFC1alPfee48TJ05QuXLlh7GtAo0aNYpq1arRv39/+vXrh62tLRs2bKBDhw53fHnmzfz8/EhMTKRu3brY2dlRtGjRO/Zv1KgR77zzDvPmzSMsLIwvvviCX375hZCQEIvjTkhIIDc3lzp16uDo6MgXX3yBg4MDvr6+pjU++OADwsLCyM3NZeTIkWYn3zt37szEiRNp27YtkyZNwtvbm927d1OqVCnCwsIYO3YsjRs3pnz58jz//PNcu3aNlStXMnLkSCpUqECXLl2Iiopi6tSphISEcOrUKRITEwkODqZly5YMHjyY5s2bU6FCBc6dO8eGDRuoVKkScL0Ofq1atahSpQo5OTksX77c1FYYv8Q21al1ERERERERERGRh0Qn1QvB2tqa6dOn8/HHH1OqVCnatGlj8diZM2fy3HPP0b9/fypWrEjv3r25ePFigX3ffPNNatasSdOmTWnYsCFeXl60bdv2Ae3CMhUqVGDt2rXs2bOHJ554grCwML777jusrS3/O8zUqVNZt24dPj4+FiXGmzZtyujRoxkxYgS1a9fmwoULREVFFSpud3d3PvnkE+rWrUtwcDDr16/nP//5D8WKFTPF5OPjQ/369XnhhRcYNmwYjo6OpvG2trasXbuWEiVK0KJFC6pVq8bkyZNN9fIbNmzIV199xbJly6hRowaNGjXip59+Mo2fM2cOUVFRDB06lKCgINq2bUtycjJly5YFrv8rh5dffplKlSrRrFkzKlSoYHoZrK2tLaNGjSI4OJiIiAisrKxYtGhRofYvIiIiIiIiIiIiD5fBeGuBaRH5W8rKysLNzY3MzEydVBcRERERERERESkkS/NrKv8i/ygNGzakRo0axMXFPepQHpmqY9dQxM7x7h3lsZU2ueWjDkFERERERERERG5D5V/+pZo3b46zs3OB18SJEx/KmlWqVLntmvPnz38ga3zzzTe89dZbD2QuERERERERERERkVvppPq/1OzZs/nzzz8LbPPw8Hgoa65cuZKrV68W2FayZMkHssbDiv1RunLlCra2to86DBEREREREREREUFJ9X+t0qVL/+Vr+vr6PvQ1bi7/MmPGDKZNm8bx48dxc3Ojfv36LFmy5K5zLFmyhNjYWA4fPoyjoyMhISF89913ODk5ce3aNYYMGcK8efOwsrKiV69e/O9//yMzM5OlS5daFF/VqlUB+Pzzz7GxseGll15i3LhxGAwGAPz8/OjZsyeHDh1i6dKltG/fnoSEhHxz5eTkkJOTY/qclZVl2UMSERERERERERGRe6byL/KPtGPHDgYNGsS4ceM4cOAAq1evJiIi4q7jMjIy6Ny5Mz169GD//v0kJSXRvn17brzP9+2332b+/PnMmTOHrVu3kpWVZVEy/WZz587F2tqan376ifj4eN577z1mz55t1ufdd9+levXq7N69m9GjRxc4z6RJk3BzczNdPj4+hYpDRERERERERERECs9gvJEtFPkHuHFSPSIigu7du/P777/j4uJi8fhdu3ZRq1Yt0tLSCjxZ7+XlxbBhwxg2bBgAubm5lCtXjpCQEItPqp88eZJff/3VdDL9tddeY9myZezbtw+4flI9JCSEb7/99o5zFXRS3cfHB5/Bi/Wi0r85vahUREREREREROSvl5WVhZubG5mZmbi6ut62n06qyz9SkyZN8PX1pVy5cnTt2pX58+dz6dKlu46rXr06jRs3plq1anTo0IFPPvmEc+fOAZCZmcmJEyd44oknTP2trKyoVatWoWJ78sknTQl1gLCwMA4dOkRubq7pXmho6F3nsbOzw9XV1ewSERERERERERGRh0tJdflHcnFxYdeuXSxcuBBvb2/GjBlD9erVOX/+/B3HWVlZsW7dOlatWkXlypV5//33CQoK4ujRo39N4P+fk5PTX7qeiIiIiIiIiIiIWEZJdfnHsra2JjIykilTpvDzzz+TlpbG999/f9dxBoOBunXrEhsby+7du7G1teXbb7/Fzc2NkiVLkpycbOqbm5vLrl27ChXX9u3bzT7/+OOPBAYGYmVlVah5RERERERERERE5K9n/agDEHkYli9fzpEjR4iIiKBo0aKsXLmSvLw8goKC7jhu+/btJCYm8vTTT1OiRAm2b9/OqVOnqFSpEgADBw5k0qRJBAQEULFiRd5//33OnTtnVs7lbtLT0xkyZAh9+/Zl165dvP/++0ydOvW+9nuzX2KbqhSMiIiIiIiIiIjIQ6Kkuvwjubu788033xATE8Ply5cJDAxk4cKFVKlS5Y7jXF1d2bRpE3FxcWRlZeHr68vUqVNp3rw5ACNHjuR///sfUVFRWFlZ0adPH5o2bVqoU+ZRUVH8+eefPPHEE1hZWfHKK6/Qp0+f+9qviIiIiIiIiIiI/DUMRqPR+KiD+DcxGAx8++23tG3btsD2pKQknnrqKc6dO4e7u/tt5/Hz82Pw4MEMHjz4nuKIiYlh6dKlpKSkWDzmbrH/G+Xl5VGpUiU6duzIW2+9ddf+DRs2pEaNGsTFxT3wWG68ndhn8GKK2Dk+8Pnl8ZE2ueWjDkFERERERERE5B/nRn4tMzPzjpUgVFP9MZeQkHDH5PpfKSMjw3Ri+9/q2LFjfPLJJxw8eJC9e/fy0ksvcfToUV544YVHHZqIiIiIiIiIiIj8BR6r8i9XrlzB1tb2UYcht+Hl5fWoQ7hv6enpVK5c+bbt+/bto2zZsrdtL1KkCAkJCQwbNgyj0UjVqlVZv349lSpVsmhuERERERERERER+Xt7pCfVGzZsyIABAxg8eDDFixenadOm/PLLLzRv3hxnZ2dKlixJ165dOX36tGlMXl4eU6ZMISAgADs7O8qWLcuECRNM7cePH6djx464u7vj4eFBmzZtSEtLM7VHR0fTtm1b3n33Xby9vSlWrBgvv/wyV69eNfXJyclh5MiR+Pj4YGdnR0BAAJ9++ilGo5GAgADeffdds32kpKRgMBg4fPiwRfs+ffo07dq1w9HRkcDAQJYtW1Zgv6SkJLp3705mZiYGgwGDwUBMTIyp/dKlS/To0QMXFxfKli3LrFmzzMb//vvvdO7cGQ8PD5ycnAgNDWX79u0FrpWcnEyTJk0oXrw4bm5uNGjQgF27dpn1MRgMLF26FIC0tDQMBgOLFy+mfv36ODg4ULt2bQ4ePEhycjKhoaE4OzvTvHlzTp06ZdFzadiwYb5yNm3btiU6Otr02c/Pj4kTJ95231euXGHAgAF4e3tjb2+Pr68vkyZNMsXs6+vLggULSElJISUlhU2bNnHx4kU+/vhjUlJSKFWqFL/++iutWrXC1dUVFxcX6tevT2pqKgA+Pj707NmTMmXKkJOTw9GjR1m8eDEApUqVYtOmTbRo0cL0x6GqVauycOFC09zx8fHs2bMHFxcXXF1dqVWrFjt27ACun4Jv3bo1RYsWxcnJiSpVqrBy5UqLnp2IiIiIiIiIiIj8NR55+Ze5c+dia2vL1q1bmTx5Mo0aNSIkJIQdO3awevVqTpw4QceOHU39R40axeTJkxk9ejT79u1jwYIFlCxZEoCrV6/StGlTXFxc2Lx5M1u3bsXZ2ZlmzZpx5coV0xwbNmwgNTWVDRs2MHfuXBISEkhISDC1R0VFsXDhQqZPn87+/fv5+OOPcXZ2xmAw0KNHD+bMmWO2hzlz5hAREUFAQIBFe46NjaVjx478/PPPtGjRgi5dunD27Nl8/cLDw4mLi8PV1ZWMjAwyMjIYNmyYqX3q1KmEhoaye/du+vfvz0svvcSBAwcAyM7OpkGDBvz3v/9l2bJl7NmzhxEjRpCXl1dgTBcuXKBbt25s2bKFH3/8kcDAQFq0aMGFCxfuuJexY8fy5ptvsmvXLqytrXnhhRcYMWIE8fHxbN68mcOHDzNmzBiLnoul7rTv6dOns2zZMhYvXsyBAweYP38+fn5+ZuPLli1LQEAAAQEBlCtXDoDSpUsTEBDAiRMniIiIwM7Oju+//56dO3fSo0cPrl27BsDMmTN5+eWX6dOnD3v37mXZsmWm793a2pqRI0dy+fJl1q5dy+7du6lXrx7du3fHw8MDa2trunTpQpkyZUhOTmbnzp289tpr2NjYAPDyyy+Tk5PDpk2b2Lt3L2+//TbOzs63fQ45OTlkZWWZXSIiIiIiIiIiIvJwPfLyL4GBgUyZMgWA8ePHExISwsSJE03tn332GT4+Phw8eBBvb2/i4+P54IMP6NatGwDly5enXr16AHz55Zfk5eUxe/ZsDAYDcD3h7e7uTlJSEk8//TQARYsW5YMPPsDKyoqKFSvSsmVLEhMT6d27NwcPHmTx4sWsW7eOyMhIAFPiFa6fdB8zZgw//fQTTzzxBFevXmXBggX5Tq/fSXR0NJ07dwZg4sSJTJ8+nZ9++olmzZqZ9bO1tcXNzQ2DwVBg6ZUWLVrQv39/AEaOHMm0adPYsGEDQUFBLFiwgFOnTpGcnIyHhwfAHZP+jRo1Mvs8a9Ys3N3d2bhxI61atbrtuGHDhtG0aVMAXnnlFTp37kxiYiJ169YFoGfPnmZ/sHgQ7rTv9PR0AgMDqVevHgaDAV9f30LN/eGHH+Lm5saiRYtMye4KFSqY2sePH8/QoUN55ZVXTPdq164NwJYtW/jpp584efIkdnZ2ALz77rssXbqUJUuW0KdPH9LT0xk+fDgVK1YErv/+35Cens6zzz5LtWrVAPPfu4JMmjSJ2NjYQu1PRERERERERERE7s8jP6leq1Yt08979uxhw4YNODs7m64bycfU1FT2799PTk4OjRs3LnCuPXv2cPjwYVxcXEzjPTw8uHz5sql8B0CVKlWwsrIyffb29ubkyZPA9VIuVlZWNGjQoMA1SpUqRcuWLfnss88A+M9//kNOTg4dOnSweM/BwcGmn52cnHB1dTWtXxg3z3Mj8X7zPkJCQkwJ9bs5ceIEvXv3JjAwEDc3N1xdXcnOziY9Pd3iGG78i4EbSeEb9+5lb5aueeu+o6OjSUlJISgoiEGDBrF27dpCzZ2SkkL9+vVNCfWbnTx5kj/++OOOv3/Z2dkUK1bM7Hf46NGjpt+/IUOG0KtXLyIjI5k8ebLZ7+WgQYMYP348devWZezYsfz88893jHXUqFFkZmaaruPHjxdqryIiIiIiIiIiIlJ4j/ykupOTk+nn7OxsWrduzdtvv52vn7e3N0eOHLnjXNnZ2dSqVYv58+fna/P09DT9fGvC1GAwmMqiODg43DXmXr160bVrV6ZNm8acOXPo1KkTjo6Odx1nyfqFcb/7uFm3bt04c+YM8fHx+Pr6YmdnR1hYmFnZnLvFcONfB9x6z9K9FSlSBKPRaHbv5lr3Ba156xo1a9bk6NGjrFq1ivXr19OxY0ciIyNZsmQJRYpc/xvSzWvcOv+dntvdnml2djbe3t4kJSXla3N3dwcgJiaGF154gRUrVrBq1SrGjh3LokWLaNeuHb169aJp06asWLGCtWvXMmnSJKZOncrAgQMLXM/Ozs50Il5ERERERERERET+Go/8pPrNatasya+//oqfn5+p5vWNy8nJicDAQBwcHEhMTLzt+EOHDlGiRIl8493c3CyKoVq1auTl5bFx48bb9mnRogVOTk7MnDmT1atX06NHj3varyVsbW3Jzc0t9Ljg4GBSUlIKrNVekK1btzJo0CBatGhBlSpVsLOzM3tB7F/B09OTjIwM0+fc3Fx++eWXQs/j6upKp06d+OSTT/jyyy/5+uuvOXv2rOkPKzevkZKSYjY2ODiYzZs3F5jMd3Fxwc/P746/f//73/+wtrbO9/tXvHhxU78KFSrw6quvsnbtWtq3b29Wo9/Hx4d+/frxzTffMHToUD755JNC719EREREREREREQenscqqf7yyy9z9uxZOnfuTHJyMqmpqaxZs4bu3buTm5uLvb09I0eOZMSIEcybN4/U1FR+/PFHPv30UwC6dOlC8eLFadOmDZs3b+bo0aMkJSUxaNAgfv/9d4ti8PPzo1u3bvTo0YOlS5ea5li8eLGpj5WVFdHR0YwaNYrAwEDCwsIeyvO4EU92djaJiYmcPn2aS5cuWTSuc+fOeHl50bZtW7Zu3cqRI0f4+uuv+eGHHwrsHxgYyOeff87+/fvZvn07Xbp0KfRp9/vVqFEjVqxYwYoVK/jtt9946aWXOH/+fKHmeO+991i4cCG//fYbBw8e5KuvvsLLywt3d3ccHBx48sknmTx5Mvv372fjxo28+eabZuMHDBhAVlYWzz//PDt27ODQoUN8/vnnphehxsTEMHXqVKZPn86hQ4fYtWsX77//PgCRkZGEhYXRtm1b1q5dS1paGtu2beONN95gx44d/PnnnwwYMICkpCSOHTvG1q1bSU5OplKlSgAMHjyYNWvWcPToUXbt2sWGDRtMbSIiIiIiIiIiIvJ4eOTlX25WqlQptm7dysiRI3n66afJycnB19eXZs2amUp3jB49Gmtra8aMGcMff/yBt7c3/fr1A8DR0ZFNmzYxcuRI2rdvz4ULFyhdujSNGzfG1dXV4jhmzpzJ66+/Tv/+/Tlz5gxly5bl9ddfN+vTs2dPJk6cSPfu3R/cAyhAeHg4/fr1o1OnTpw5c4axY8cSExNz13G2trasXbuWoUOH0qJFC65du0blypX58MMPC+z/6aef0qdPH2rWrImPjw8TJ05k2LBhD3g3d9ajRw/27NlDVFQU1tbWvPrqqzz11FOFmsPFxYUpU6Zw6NAhrKysqF27NitXrjT9/nz22Wf07NmTWrVqERQUxJQpU0wvsAUoVqwY33//PcOHD6dBgwZYWVlRo0YN04tXu3XrxuXLl5k2bRrDhg2jePHiPPfcc8D1MjQrV67kjTfeoHv37pw6dQovLy8iIiIoWbIkVlZWnDlzhqioKE6cOEHx4sVp37696WWjubm5vPzyy/z++++4urrSrFkzpk2bVujn+Ets00L9vouIiIiIiIiIiIjlDMZbi1iLRTZv3kzjxo05fvy46QWdIo9SVlYWbm5uZGZmKqkuIiIiIiIiIiJSSJbm1x6rk+p/Bzk5OZw6dYqYmBg6dOjwj06oG41G+vbty5IlSzh37hy7d++mRo0aBfZt2LAhNWrUIC4u7p7Xi4mJYenSpfnqnN8sOjqa8+fPs3Tp0ntex1IJCQkMHjy40CVoLNnHw1R17BqK2Fn+4lz550mb3PJRhyAiIiIiIiIi8o/1WNVU/ztYuHAhvr6+nD9/nilTppi1zZ8/H2dn5wKvKlWqPKKI793q1atJSEhg+fLlZGRkULVq1fua73bPxtnZmc2bNz+gqAsvJyeHGjVqYDAYHlkivGHDhhgMBrPrRlkjEREREREREREReXzopHohRUdHEx0dXWDbM888Q506dQpss7GxeYhRPRypqal4e3sTHh7+QOa7U8K6dOnSJCYmPpB1CmvEiBGUKlWKPXv2PJL1b+jduzfjxo0zfXZ01GlzERERERERERGRx41Oqj9ALi4uBAQEFHj5+vo+6vAKJTo6moEDB5Keno7BYMDPz++uY/Ly8hgxYgQeHh54eXnle6Gqra0tQ/8fe/ce33P9/3/89t7GzgfmsGE22gyzOZNDyGmOOYVGbM5yKKSxctiUw4ewSSnCyCkRFUXMIeY0h4nMZFmjlvM2I2OH3x8u3r/ebdjk0Df36+Xyulz2ej1Pj+dL/fPYc4/Xm29SrVo1atSowdtvv218Z9bW1rnmy8rKYtSoUTg5OeHs7ExwcDAF+QRAdnY206dPx9PTE0tLS8qWLcvkyZNN+nz33Xd8//33vP/++/ecZ/369Xh5eWFlZYW/vz9nz541aZ82bRolS5bE3t6efv36cfPmTZP2mJgYWrRoQbFixXB0dKRx48YcPnw41zo2Nja4uLgYL9VFFxERERERERER+fdRUl3yFBERwaRJkyhTpgzJycnExMQ8cMySJUuwtbVl//79TJ8+nUmTJrFlyxbgToK7Q4cOXLlyhZ07d7JlyxZ++eUXunfvfs/5Zs6cSWRkJIsWLWL37t1cuXKFdevW5XsPISEhTJs2jfHjx3PixAlWrFhhUgP//PnzDBgwgM8+++yep8Jv3LjB5MmTWbp0KdHR0aSkpPDKK68Y21evXk1oaChTpkzh4MGDuLq68tFHH5nMce3aNQIDA9m9ezf79u3Dy8uLNm3acO3aNZN+y5cvp1ixYlSpUoWQkBBu3Lhx3/1lZGSQlpZmcomIiIiIiIiIiMjjpfIvkidHR0fs7e0xNzfHxcUlX2P8/PyYOHEiAF5eXsydO5eoqChatGhBVFQUx44d48yZM7i5uQGwdOlSfHx8iImJoXbt2rnmCw8PJyQkhM6dOwPw8ccfs3nz5nzFcu3aNSIiIpg7dy6BgYEAPPfcczRs2BC48xHWoKAgBg8eTK1atUhMTMxzntu3bzN37lxjWZ8lS5ZQqVIlDhw4QJ06dQgPD6dfv37069cPgPfee4+tW7eanFZv2rSpyZzz58/HycmJnTt30q5dOwB69OiBu7s7pUqV4scff2TMmDHEx8fz5Zdf3nOPU6dOJSwsLF/vQ0RERERERERERB4NnVSXR8bPz8/k3tXVlQsXLgAQFxeHm5ubMaEOULlyZZycnIiLi8s1V2pqKsnJySY16i0sLKhVq1a+YomLiyMjI4NmzZrl2f7BBx9w7do1QkJC7juPhYWFScK/YsWKJjHHxcXlqqNfr149k/u7J+K9vLxwdHTEwcGB9PR0kpKSjH0GDhyIv78/vr6+9OzZk6VLl7Ju3ToSEhLuGVtISAipqanG6+9laUREREREREREROTR00l1eWT+/jFWg8FAdnb2U4klrxrtf7Vt2zb27t2LpaWlyfNatWrRs2dPlixZ8shiCQwM5PLly0RERODu7o6lpSX16tXj1q1b9xxzN1F/+vRpnnvuuTz7WFpa5opfREREREREREREHi+dVJcnolKlSpw9e9bkNPWJEydISUmhcuXKufo7Ojri6urK/v37jc8yMzM5dOhQvtbz8vLC2tqaqKioPNvnzJnD0aNHiY2NJTY2lm+//RaAzz//3ORjppmZmRw8eNB4Hx8fT0pKCpUqVTLu668xAuzbt8/kPjo6mtdff502bdrg4+ODpaUlly5dum/8sbGxwJ3T/iIiIiIiIiIiIvLvoZPq8kQ0b97cWNokPDyczMxMhgwZQuPGje9Z0uWNN95g2rRpeHl5UbFiRWbNmkVKSkq+1rOysmLMmDEEBwdTuHBhGjRowMWLF/npp5/o168fZcuWNelvZ2cH3Km7XqZMGePzQoUKMXz4cObMmYOFhQXDhg3j+eefp06dOsYYg4KCqFWrFg0aNGD58uX89NNPlC9f3jiHl5cXn332GbVq1SItLY233nrL5CR9QkICK1asoE2bNjg7O/Pjjz8ycuRIGjVqlKukjoiIiIiIiIiIiDxdSqrLE2EwGPjqq68YPnw4jRo1wszMjFatWvHBBx/cc8ybb75JcnIygYGBmJmZ0bdvXzp16kRqamq+1hw/fjwWFhZMmDCB33//HVdXVwYPHlyguG1sbBgzZgw9evTgt99+44UXXmDhwoXG9u7du5OQkEBwcDA3b96kS5cuvPbaayYfVF24cCEDBw6kRo0auLm5MWXKFEaPHm1sL1y4MFu3biU8PJzr16/j5uZGly5dGDduXIFivet4mD8ODg4PNVZERERERERERETuz5CTk5PztIMQkX8uLS0NR0dHUlNTlVQXEREREREREREpoPzm13RS/RmRk5PDoEGDWLNmDVevXsXR0ZGgoCDCw8MfyfwGg4F169bRsWPHRzLfv0ViYiLlypXjyJEjVKtW7YH9o6OjGTx4MCdPnqRt27aMGDGCF198katXr+Lk5PTY4wWoMnEzZpY2T2Qt+e9JnNb2aYcgIiIiIiIiIvKvpg+VPiM2bdpEZGQkGzZsIDk5mSpVquR7bFJSEnZ2dve8kpKSSE5OpnXr1o9xBwWP6a927NiBwWDId032hzVq1CiqVavGmTNniIyMfKg5mjRpwogRIx5pXCIiIiIiIiIiIvJo6KT6MyIhIQFXV1fq168PgIVF/v/pS5UqRWxs7H3bCzJfQdy+fZtChQo9VExPQ0JCAoMHDzb52KmIiIiIiIiIiIj8d+ik+jMgKCiI4cOHk5SUhMFgwMPDI1ef5ORk2rZti7W1NeXKlWPFihV4eHgQHh6OhYUFnp6e97wsLCwwGAysX78egFu3bjFs2DBcXV2xsrLC3d2dqVOn5itWg8HAvHnzeOmll7C1tWXy5MkAfPXVV9SoUQMrKyvKly/P5MmT8fDwMMbg5eXFjh07eOutt/Dz86NSpUp8/fXXwJ0SLi+++CIARYoUwWAwEBQUBNw5wd+wYUOcnJxwdnamXbt2JCQkFPgdJyYmYjAYuHz5Mn379sVgMOR5Uv3y5csEBARQunRpbGxs8PX1ZeXKlcb2oKAgdu7cSUREBAaDAYPBQGJiYoHjERERERERERERkcdDSfVnQEREBJMmTaJMmTIkJycTExOTq0/v3r35/fff2bFjB2vXrmX+/PlcuHDhodabM2cOX3/9NatXryY+Pp7ly5fnmci/l9DQUDp16sSxY8fo27cvu3btonfv3rzxxhucOHGCTz75hMjISGPC/a6wsDC6devGjz/+SJs2bejZsydXrlzBzc2NtWvXAhAfH09ycjIREREAXL9+nVGjRnHw4EGioqIwMzOjU6dOZGdnF2jPbm5uJCcn4+DgQHh4OMnJyXTv3j1Xv5s3b1KzZk02btzI8ePHGThwIL169eLAgQPAnX+revXqMWDAAJKTk0lOTsbNzS3PNTMyMkhLSzO5RERERERERERE5PFS+ZdngKOjI/b29pibm+Pi4pKr/eTJk2zdupWYmBhq1aoFwKeffoqXl9dDrZeUlISXlxcNGzbEYDDg7u5eoPE9evSgT58+xvu+ffsyduxYAgMDAShfvjzvvvsuwcHBTJw40dgvKCiIgIAAAKZMmcKcOXM4cOAArVq1omjRogCUKFHC5IOhXbp0MVl70aJFFC9enBMnThSo7vzdd2swGHB0dMzzPQOULl2a0aNHG++HDx/O5s2bWb16NXXq1MHR0ZHChQtjY2Nzzznumjp1KmFhYfmOUURERERERERERP45nVQX4uPjsbCwoEaNGsZnnp6eFClS5KHmCwoKIjY2Fm9vb15//XW+//77Ao2/m9i/6+jRo0yaNMnkQ6R3T3LfuHHD2M/Pz8/4s62tLQ4ODg88bf/zzz8TEBBA+fLlcXBwMJ6o//uHTh+VrKws3n33XXx9fSlatCh2dnZs3rz5odYLCQkhNTXVeJ09e/YxRCwiIiIiIiIiIiJ/pZPq8sjVqFGDM2fO8N1337F161a6detG8+bNWbNmTb7G29ramtynp6cTFhZG586dc/W1srIy/vz3D5oaDIYHlnFp37497u7uLFiwgFKlSpGdnU2VKlW4detWvmItqBkzZhAREUF4eDi+vr7Y2toyYsSIh1rP0tISS0vLxxCliIiIiIiIiIiI3IuS6oK3tzeZmZkcOXKEmjVrAnD69GmuXr360HM6ODjQvXt3unfvzssvv0yrVq24cuWKsQxLQdSoUYP4+Hg8PT0fOp7ChQsDd06K33X58mXi4+NZsGABL7zwAgC7d+9+6DXyIzo6mg4dOvDqq68CkJ2dzalTp6hcubJJrH+NU0RERERERERERP49lFQXKlasSPPmzRk4cCDz5s2jUKFCvPnmm1hbW2MwGAo836xZs3B1daV69eqYmZnxxRdf4OLiYlLLvCAmTJhAu3btKFu2LC+//DJmZmYcPXqU48eP89577+VrDnd3dwwGAxs2bKBNmzZYW1tTpEgRnJ2dmT9/Pq6uriQlJTF27NiHijG/vLy8WLNmDXv27KFIkSLMmjWL8+fPmyTVPTw82L9/P4mJidjZ2VG0aFHMzPJfqel4mD8ODg6PI3wREREREREREZFnnmqqCwBLly6lZMmSNGrUiE6dOjFgwADs7e1Nyqvkl729PdOnT6dWrVrUrl2bxMREvv322wIlhv/K39+fDRs28P3331O7dm2ef/55Zs+eXaAPoJYuXZqwsDDGjh1LyZIlGTZsGGZmZqxatYpDhw5RpUoVRo4cyYwZMx4qxvwaN24cNWrUwN/fnyZNmuDi4kLHjh1N+owePRpzc3MqV65M8eLFH1t9dxERERERERERESk4Q05OTs7TDkL+fc6dO4ebmxtbt26lWbNmTzscyYe0tDQcHR1JTU3VSXUREREREREREZECym9+7T9Z/iUnJ4dBgwaxZs0arl69iqOjI0FBQYSHhz+S+Q0GA+vWrct1wvhpzZMfiYmJlCtXjiNHjlCtWrVc7du2bSM9PR1fX1+Sk5MJDg7Gw8ODRo0a3TfuB837X/c4/w0fdu4qEzdjZmnzyOORZ1fitLZPOwQRERERERERkX+N/2T5l02bNhEZGcmGDRtITk6mSpUqj3T+5ORkWrdu/UjnfNpu377N22+/jY+PD506daJ48eLs2LGDQoUKsXz5cuzs7IwXQEBAAHZ2drRt2zbf7/jv8/z18vHxeST78PDweGS/PPm7wYMH54ob7ryLwYMHP5Y1RURERERERERE5N/lP3lSPSEhAVdXV+rXrw+AhcWj3aaLi8sjne9RunXrFoULFy7wOH9/f/z9/fNse+mll6hbt65xbi8vL2bNmkWLFi0oVKhQvt/H3XnyUqhQoQLH/KRNmjSJ0aNHmzy7+y66dOnyUHM+7L+XiIiIiIiIiIiIPB3/uZPqQUFBDB8+nKSkJAwGAx4eHrn6JCcn07ZtW6ytrSlXrhwrVqwo0Alng8HA+vXrgTtJ0WHDhuHq6oqVlRXu7u5MnTo13/HePfVubW1N+fLlWbNmjUn7sWPHaNq0KdbW1jg7OzNw4EDS09NN9tuxY0cmT55MqVKl8Pb2BuDAgQNUr14dKysratWqxZEjR3Ktffz4cVq3bo2dnR0lS5akV69eXLp0ydjepEkThg0bxvjx43n++ecZOnQonp6eALi6uuLp6UlOTg4Gg4HY2FgAduzYgcFgICoqilq1amFjY0P9+vWJj4/H3t4eT09PPD09+emnn+jWrRtVqlShZcuWREZGkpmZ+cD3lZOTQ2hoKGXLlsXS0pJSpUrx+uuvG+P99ddfGTlyJAaDAYPBAMDly5cJCAigdOnS2NjY4Ovry8qVK03mbdKkCa+//jrBwcEULVoUFxcXQkNDTfqkpqbSt29fqlSpwksvvcSZM2eM76JEiRIAjBkzhgoVKmBjY0P58uUZP348t2/fNs4RGhpKtWrV+PTTTylXrpzxQ7A///wzjRo1wsrKisqVK7Nly5YHvouMjAzS0tJMLhEREREREREREXm8/nNJ9YiICCZNmkSZMmVITk4mJiYmV5/evXvz+++/s2PHDtauXcv8+fO5cOHCQ603Z84cvv76a1avXk18fDzLly/PM5F/L+PHj6dLly4cPXqUnj178sorrxAXFwfA9evX8ff3p0iRIsTExPDFF1+wdetWhg0bZjJHVFQU8fHxbNmyhQ0bNpCenk67du2oXLkyhw4dIjQ0NNcJ65SUFJo2bUr16tU5ePAgmzZt4vz583Tr1s2k35IlSyhcuDDR0dF8/PHH+d7XO++8w8yZMzl48CAWFhb07dvX2LZr1y569+7NG2+8wYkTJ/jkk0+IjIxk8uTJD5x37dq1zJ49m08++YSff/6Z9evX4+vrC8CXX35JmTJlmDRpEsnJySQnJwNw8+ZNatasycaNGzl+/DgDBw6kV69eHDhwINdebW1t2b9/P9OnT2fSpEnG5HZ2djadO3emcOHC7N+/n48//pgxY8bkis/e3p7IyEhOnDhBREQECxYsYPbs2SZ9Tp8+zdq1a/nyyy+JjY3N99x/N3XqVBwdHY2Xm5vbA8eIiIiIiIiIiIjIP/OfK//i6OiIvb095ubmeZYlOXnyJFu3biUmJoZatWoB8Omnn+Ll5fVQ6yUlJeHl5UXDhg0xGAy4u7sXaHzXrl3p378/AO+++y5btmzhgw8+4KOPPmLFihXcvHmTpUuXYmtrC8DcuXNp3749//vf/yhZsiQAtra2fPrpp8YyIvPnzyc7O5uFCxdiZWWFj48P586d47XXXjOuO3fuXKpXr86UKVOMzxYtWoSbmxunTp2iQoUKwJ3yJtOnTy/we5k8eTKNGzcGYOzYsbRt25abN29iZWVFWFgYY8eOJTAwEIDy5cvz7rvvEhwczMSJE+87b1JSEi4uLjRv3pxChQpRtmxZ6tSpA0DRokUxNzfH3t7e5N++dOnSJr9UGD58OJs3b2b16tXGsQB+fn7G9b28vJg7dy5RUVG0aNGCrVu3cvLkSTZv3kypUqUAmDJlSq7a+uPGjTP+7OHhwejRo1m1ahXBwcHG57du3WLp0qUUL14cgO+//z5fc/9dSEgIo0aNMt6npaUpsS4iIiIiIiIiIvKY/eeS6g8SHx+PhYUFNWrUMD7z9PSkSJEiDzVfUFAQLVq0wNvbm1atWtGuXTtatmyZ7/H16tXLdX+3lEpcXBxVq1Y1JtQBGjRoQHZ2NvHx8cakuq+vr0ld7ri4OPz8/IylRfJa5+jRo2zfvt34sc2/SkhIMCbVa9asme+9/JWfn5/xZ1dXVwAuXLhA2bJlOXr0KNHR0SYn07Oysrh58yY3btzAxsbmnvN27dqV8PBwypcvT6tWrWjTpg3t27e/b938rKwspkyZwurVq/ntt9+4desWGRkZudb5a8x34777FwxxcXG4ubkZk96Q+50CfP7558yZM4eEhATS09PJzMzEwcHBpI+7u7sxoV6Quf/O0tISS0vLB/YTERERERERERGRR+eZS6o/ajVq1ODMmTN89913bN26lW7dutG8efNctdEfp78m3fMrPT3deOL97+4mwR92bjD98Ojd2ubZ2dnGtcPCwujcuXOucX/9RUBe3NzciI+PZ+vWrWzZsoUhQ4YwY8YMdu7cec+Pnc6YMYOIiAjCw8Px9fXF1taWESNGcOvWrXvGfDfuuzHnx969e+nZsydhYWH4+/vj6OjIqlWrmDlzpkm/h32nIiIiIiIiIiIi8vQ9c0l1b29vMjMzOXLkiPEU9unTp7l69epDz+ng4ED37t3p3r07L7/8Mq1ateLKlSsULVr0gWP37dtH7969Te6rV68OQKVKlYiMjOT69evGRGx0dDRmZmbGD5LmpVKlSnz22WfGcit35/2rGjVqsHbtWjw8PO57yvtxqFGjBvHx8caPnhaUtbU17du3p3379gwdOpSKFSty7NgxatSoQeHChcnKyjLpHx0dTYcOHXj11VeBO8n9U6dOUbly5XyvWalSJc6ePUtycrLxlw5/f6d79uzB3d2dd955x/js119/fSRzi4iIiIiIiIiIyL/DM5dUr1ixIs2bN2fgwIHMmzePQoUK8eabb2JtbW08UV0Qs2bNwtXVlerVq2NmZsYXX3yBi4sLTk5O+Rr/xRdfUKtWLRo2bMjy5cs5cOAACxcuBKBnz55MnDiRwMBAQkNDuXjxIsOHD6dXr17G0i956dGjB++88w4DBgwgJCSExMRE3n//fZM+Q4cOZcGCBQQEBBAcHEzRokU5ffo0q1at4tNPP8Xc3LzA7yK/JkyYQLt27Shbtiwvv/wyZmZmHD16lOPHj/Pee+/dd2xkZCRZWVnUrVsXGxsbli1bhrW1tbGWvYeHBz/88AOvvPIKlpaWFCtWDC8vL9asWcOePXsoUqQIs2bN4vz58wVKqjdv3pwKFSoQGBjIjBkzSEtLM0mew5067ElJSaxatYratWuzceNG1q1b90jmLojjYf65Ss6IiIiIiIiIiIjIo2H2tAN4GpYuXUrJkiVp1KgRnTp1YsCAAdjb2z+w9Ehe7O3tmT59OrVq1aJ27dokJiby7bffYmaWv1cbFhbGqlWr8PPzY+nSpaxcudKY7LWxsWHz5s1cuXKF2rVr8/LLL9OsWTPmzp173znt7Oz45ptvOHbsGNWrV+edd97JVealVKlSREdHk5WVRcuWLfH19WXEiBE4OTnlO/aH5e/vz4YNG/j++++pXbs2zz//PLNnz87XR16dnJxYsGABDRo0wM/Pj61bt/LNN9/g7OwMwKRJk0hMTOS5554z1i0fN24cNWrUwN/fnyZNmuDi4kLHjh0LFLOZmRnr1q3jzz//pE6dOvTv39+kJjzASy+9xMiRIxk2bBjVqlVjz549jB8//pHMLSIiIiIiIiIiIv8OhpycnJynHcTTdu7cOdzc3Ni6dSvNmjV72uHIExQZGcmIESNISUl52qH8Y2lpaTg6OuI2YjVmlvf+2KvI45A4re3TDkFERERERERE5B+5m19LTU29byWIZ678C8C2bdtIT0/H19eX5ORkgoOD8fDwoFGjRk87NBERERERERERERH5F3smy7/cvn2bt99+Gx8fHzp16kTx4sXZsWMHhQoVYvny5djZ2eV5+fj45HuNRzXP43br1q2nHYKJ/yvvTURERERERERERJ5Nz2RS3d/fn+PHj3Pjxg3Onz/PunXrjPW8X3rpJWJjY/O8vv3223yv8ajmedSaNGnCsGHDGDFiBMWKFTO+i9atW2NnZ0fJkiXp1asXly5dMo7Jzs5m+vTpeHp6YmlpSdmyZU1qfp89e5Zu3brh5ORE0aJF6dChA4mJicb2oKAgOnbsyPvvv4+rqyvOzs4MHTqU27dvG/tkZGQwZswYgoODuXXrFs7Ozrz99tscOXIEZ2dnhg0bZvLeYmNjMRgMnD59+oF7TklJYdCgQZQsWRIrKyuqVKnChg0b8uwbGhpKtWrVWLRoEWXLlsXOzo4hQ4aQlZXF9OnTcXFxoUSJErlqnj9ojbVr1+Lj44OlpSUeHh7MnDnTZLyHhwdTpkyhb9++2NvbU7ZsWebPn//AvYmIiIiIiIiIiMiT9UyWf7kfe3t77O3t/zXzPA5LlizhtddeIzo6mpSUFJo2bUr//v2ZPXs2f/75J2PGjKFbt25s27YNgJCQEBYsWMDs2bNp2LAhycnJnDx5Erhz6t/f35969eqxa9cuLCwseO+992jVqhU//vgjhQsXBmD79u24urqyfft2Tp8+Tffu3alWrRoDBgwAoHfv3uzdu5e5c+dStWpVzpw5w6VLl/Dy8mLQoEEsX76cadOmGfewePFiGjVqhKen5333mp2dTevWrbl27RrLli3jueee48SJE5ibm99zTEJCAt999x2bNm0iISGBl19+mV9++YUKFSqwc+dO9uzZQ9++fWnevDl169Z94BqHDh2iW7duhIaG0r17d/bs2cOQIUNwdnYmKCjIuO7MmTN59913efvtt1mzZg2vvfYajRs3xtvbO884MzIyyMjIMN6npaXd912IiIiIiIiIiIjIP6cPlT5jmjRpQlpaGocPHwbgvffeY9euXWzevNnY5+6HW+Pj43F1daV48eLMnTuX/v3755pv2bJlvPfee8TFxWEwGIA7JWWcnJxYv349LVu2JCgoiB07dpCQkGBMNHfr1g0zMzNWrVrFqVOn8Pb2ZsuWLTRv3jzXGr///jtly5Zlz5491KlTh9u3b1OqVCnef/99AgMD77vf77//ntatWxMXF0eFChVytf/9Q6WhoaHMmDGDP/74w/hLkVatWhEfH09CQgJmZnf+uKNixYoEBQUxduzYB67Rs2dPLl68yPfff298FhwczMaNG/npp5+AOyfVX3jhBT777DMAcnJycHFxISwsjMGDB+e5t9DQUMLCwnI914dK5WnQh0pFRERERERE5P+6/H6o9Jks//Ksq1mzpvHno0ePsn37dpPa5RUrVgTunNiOi4sjIyODZs2a5TnX0aNHOX36NPb29sbxRYsW5ebNmyQkJBj7+fj4mJwOd3V15cKFC8CdUi7m5uY0btw4zzVKlSpF27ZtWbRoEQDffPMNGRkZdO3a9YF7jY2NpUyZMnkmu+/Fw8PD5K8MSpYsSeXKlY0J9bvP/hr//daIi4ujQYMGJs8aNGjAzz//TFZWlvGZn5+f8WeDwYCLi4txjbyEhISQmppqvM6ePZvvPYqIiIiIiIiIiMjDUfmXZ5Ctra3x5/T0dNq3b8///ve/XP1cXV355Zdf7jtXeno6NWvWZPny5bnaihcvbvy5UKFCJm0Gg4Hs7GwArK2tHxhz//796dWrF7Nnz2bx4sV0794dG5sHn8bOz9x/l1es/zT+h1337hp5sbS0xNLS8pGsLSIiIiIiIiIiIvmjk+rPuBo1avDTTz/h4eGBp6enyWVra4uXlxfW1tZERUXdc/zPP/9MiRIlco13dHTMVwy+vr5kZ2ezc+fOe/Zp06YNtra2zJs3j02bNtG3b998ze3n58e5c+c4depUvvo/jAetUalSJaKjo02eRUdHU6FChfvWdhcREREREREREZF/HyXVn3FDhw7lypUrBAQEEBMTQ0JCAps3b6ZPnz5kZWVhZWXFmDFjCA4OZunSpSQkJLBv3z4WLlwI3KkXXqxYMTp06MCuXbs4c+YMO3bs4PXXX+fcuXP5isHDw4PAwED69u3L+vXrjXOsXr3a2Mfc3JygoCBCQkLw8vKiXr16+Zq7cePGNGrUiC5durBlyxbOnDlj/Ajpo/KgNd58802ioqJ49913OXXqFEuWLGHu3LmMHj36kcUgIiIiIiIiIiIiT4bKvzzjSpUqRXR0NGPGjKFly5ZkZGTg7u5Oq1atjDXEx48fj4WFBRMmTOD333/H1dXV+PFMGxsbfvjhB8aMGUPnzp25du0apUuXplmzZvct5v938+bN4+2332bIkCFcvnyZsmXL8vbbb5v06devH1OmTKFPnz4F2uPatWsZPXo0AQEBXL9+HU9PT6ZNm1agOf7JGjVq1GD16tVMmDCBd999F1dXVyZNmkRQUNAjjeGu42H+BXr3IiIiIiIiIiIikn+GnJycnKcdhEh+7Nq1i2bNmnH27FlKliz5tMP518nv14lFREREREREREQkt/zm13RS/RmTk5PDoEGDWLNmDVevXsXR0ZGgoCDCw8OfdmgkJiZSrlw5jhw5QrVq1YzPMzIyuHjxIqGhoXTt2vVfk1DfsWMHL774IlevXsXJyelfM3eViZsxs3zwR1xFHqfEaW2fdggiIiIiIiIiIo+Faqo/YzZt2kRkZCQbNmwgOTmZKlWqPO2QHmjlypW4u7uTkpLC9OnTTdqWL1+OnZ0ddnZ22NraYjAYsLGxwc7ODh8fn6cUsYiIiIiIiIiIiPxX6aT6MyYhIQFXV1fq168PgIXFv/8/gaCgoHvWH3/ppZeoW7cuAOfOnePFF19k1apVVK5cmUKFCj3BKB/OrVu3KFy48NMOQ0RERERERERERPJJJ9WfIUFBQQwfPpykpCQMBgMeHh65+iQnJ9O2bVusra0pV64cK1aswMPDI1/lYXJycggNDaVs2bJYWlpSqlQpXn/9dWO7wWBg/fr1JmOcnJyIjIw0eXby5Enq16+PlZUVVapUYefOnca2q1ev0rNnT4oXL461tTU1atRg165deHp68uKLLwLQoUMHvLy8CAwMBCAmJoYWLVpQrFgxHB0dady4MYcPHzZZ02Aw8Omnn9KpUydsbGzw8vLi66+/Nunz7bffUqFCBaytrXnxxRdJTEw0ab98+TIBAQGULl0aGxsbfH19WblypUmfJk2aMGzYMEaMGEGxYsXw9/fP19wiIiIiIiIiIiLy76Ck+jMkIiKCSZMmUaZMGZKTk4mJicnVp3fv3vz+++/s2LGDtWvXMn/+fC5cuJCv+deuXcvs2bP55JNP+Pnnn1m/fj2+vr4FjvOtt97izTff5MiRI9SrV4/27dtz+fJlAMaPH8+JEyf47rvviIuLY968eRQrVgyAAwcOALB161aSk5P58ssvAbh27RqBgYHs3r2bffv24eXlRZs2bbh27ZrJumFhYXTr1o0ff/yRNm3a0LNnT65cuQLA2bNn6dy5M+3btyc2Npb+/fszduxYk/E3b96kZs2abNy4kePHjzNw4EB69epljOuuJUuWULhwYaKjo/n444/zNXdeMjIySEtLM7lERERERERERETk8fr31/6QR8bR0RF7e3vMzc1xcXHJ1X7y5Em2bt1KTEwMtWrVAuDTTz/Fy8srX/MnJSXh4uJC8+bNKVSoEGXLlqVOnToFjnPYsGF06dIFgHnz5rFp0yYWLlxIcHAwSUlJVK9e3RjfX0/bFy9eHABnZ2eT/TVt2tRk/vnz5+Pk5MTOnTtp166d8XlQUBABAQEATJkyhTlz5nDgwAFatWrFvHnzeO6555g5cyYA3t7eHDt2jP/973/G8aVLl2b06NHG++HDh7N582ZWr15t8h68vLxMasO//fbbD5w7L1OnTiUsLOy+fUREREREREREROTR0kl1MYqPj8fCwoIaNWoYn3l6elKkSJF8je/atSt//vkn5cuXZ8CAAaxbt47MzMwCx1GvXj3jzxYWFtSqVYu4uDgAXnvtNVatWkW1atUIDg5mz549D5zv/PnzDBgwAC8vLxwdHXFwcCA9PZ2kpCSTfn5+fsafbW1tcXBwMJ7Sj4uLM9ZuzytOgKysLN599118fX0pWrQodnZ2bN68Odc6NWvWNLnPz9x5CQkJITU11XidPXv2gWNERERERERERETkn1FSXR4ZNzc34uPj+eijj7C2tmbIkCE0atSI27dvA3fqlufk5JiMuduWX61bt+bXX39l5MiR/P777zRr1szkdHheAgMDiY2NJSIigj179hAbG4uzszO3bt0y6ff3D5saDAays7PzHduMGTOIiIhgzJgxbN++ndjYWPz9/XOtY2trm+8578fS0hIHBweTS0RERERERERERB4vJdXFyNvbm8zMTI4cOWJ8dvr0aa5evZrvOaytrWnfvj1z5sxhx44d7N27l2PHjgF3yrMkJycb+/7888/cuHEj1xz79u0z/pyZmcmhQ4eoVKmS8Vnx4sUJDAxk2bJlhIeHM3/+fAAKFy4M3Dkx/lfR0dG8/vrrtGnTBh8fHywtLbl06VK+9wRQqVKlXLXR/xrn3XU6dOjAq6++StWqVSlfvjynTp16JHOLiIiIiIiIiIjIv4NqqotRxYoVad68OQMHDmTevHkUKlSIN998E2trawwGwwPHR0ZGkpWVRd26dbGxsWHZsmVYW1vj7u4O3KltPnfuXOrVq0dWVhZjxozJdToc4MMPP8TLy4tKlSoxe/Zsrl69St++fQGYMGECNWvWxMfHh4yMDDZs2GBMuJcoUQJra2s2bdpEmTJlsLKywtHRES8vLz777DNq1apFWloab731FtbW1gV6N4MHD2bmzJm89dZb9O/fn0OHDhEZGWnSx8vLizVr1rBnzx6KFCnCrFmzOH/+PJUrV/7HcxfE8TB/nVoXERERERERERF5THRSXUwsXbqUkiVL0qhRIzp16sSAAQOwt7fHysrqgWOdnJxYsGABDRo0wM/Pj61bt/LNN9/g7OwMwMyZM3Fzc+OFF16gR48ejB49Ghsbm1zzTJs2jWnTplG1alV2797N119/TbFixYA7p9FDQkLw8/OjUaNGmJubs2rVKuBO/fU5c+bwySefUKpUKTp06ADAwoULuXr1KjVq1KBXr168/vrrlChRokDvpWzZsqxdu5b169dTtWpVPv74Y6ZMmWLSZ9y4cdSoUQN/f3+aNGmCi4sLHTt2fCRzi4iIiIiIiIiIyL+DIefvRa5F/uLcuXO4ubmxdetWmjVr9rTDkftIS0vD0dGR1NRUnVQXEREREREREREpoPzm11T+5RFo0qQJ1apVIzw8PM92g8HAunXr7ntqOSgoiJSUFNavX/9QMezYsYMXX3yRq1ev4uTklK8xecW9bds20tPT8fX1JTk5meDgYDw8PGjUqNFDxSVPXpWJmzGzzP0XACL/VYnT2j7tEERERERERETkGaLyL09YYmIiBoOB2NjYpx0KX375Je+++67Js9u3b/P222/j4+NDp06dKF68ODt27KBQoUIsX74cOzu7PC8fH5/HEqPBYHjoXzSIiIiIiIiIiIiIPGo6qf4MK1q0aK5n/v7++Pv759n/pZdeom7dunm25fXBUREREREREREREZH/Gp1Uf0Sys7MJDg6maNGiuLi4EBoamme/cuXKAVC9enUMBgNNmjQxaX///fdxdXXF2dmZoUOHcvv2bWNbRkYGY8aMwc3NDUtLSzw9PVm4cGGe61y+fJmAgABKly6NjY0Nvr6+rFy50qRPkyZNGDFihPHew8OD9957j969e2NnZ4e7uztff/01Fy9epEOHDri6utK5c2dSUlLw9PQ0udzd3fOMIzo6miZNmmBjY0ORIkXw9/fn6tWrxvVff/31e743Dw8PADp16oTBYDDe38/Ro0d58cUXsbe3x8HBgZo1a3Lw4EEAQkNDqVatmkn/8PDwXPMuWrQIHx8fLC0tcXV1ZdiwYca2lJQUBg0aRMmSJbGysqJKlSps2LDB2L57925eeOEFrK2tcXNz4/XXX+f69evG9o8++ggvLy+srKwoWbIkL7/8srFtzZo1+Pr6Ym1tjbOzM82bNzcZ+3cZGRmkpaWZXCIiIiIiIiIiIvJ4Kan+iCxZsgRbW1v279/P9OnTmTRpElu2bMnV78CBAwBs3bqV5ORkvvzyS2Pb9u3bSUhIYPv27SxZsoTIyEgiIyON7b1792blypXMmTOHuLg4PvnkE+zs7PKM5+bNm9SsWZONGzdy/PhxBg4cSK9evYzr38vs2bNp0KABR44coW3btvTq1YvevXvz6quvcvjwYZ577jl69+5Nfr5vGxsbS7NmzahcuTJ79+5l9+7dtG/fnqysrHy9t5iYGAAWL15McnKy8f5+evbsSZkyZYiJieHQoUOMHTu2QKfo582bx9ChQxk4cCDHjh3j66+/xtPTE7jzi5PWrVsTHR3NsmXLOHHiBNOmTcPc3ByAhIQEWrVqRZcuXfjxxx/5/PPP2b17tzEpf/DgQV5//XUmTZpEfHw8mzZtMtaqT05OJiAggL59+xIXF8eOHTvo3Lnzfd/z1KlTcXR0NF5ubm753qeIiIiIiIiIiIg8HENOfrKjcl9NmjQhKyuLXbt2GZ/VqVOHpk2bMm3aNJMPlSYmJlKuXDmOHDlicmo6KCiIHTt2kJCQYEzSduvWDTMzM1atWsWpU6fw9vZmy5YtNG/ePFcM+flQabt27ahYsSLvv/++Me6/fqjUw8ODF154gc8++wyAP/74A1dXV8aPH8+kSZMA2LdvH/Xq1SM5ORkXF5f7vpcePXqQlJTE7t27H+q9Qf4+8vpXDg4OfPDBBwQGBuZqCw0NZf369Sb17MPDwwkPDycxMRGA0qVL06dPH957771c47///ntat25NXFwcFSpUyNXev39/zM3N+eSTT4zPdu/eTePGjbl+/Trffvstffr04dy5c9jb25uMPXz4MDVr1iQxMfGep/7/LiMjg4yMDON9Wloabm5uuI1YrQ+VyjNFHyoVERERERERkUchLS0NR0dHUlNTcXBwuGc/nVR/RPz8/EzuXV1duXDhQoHm8PHxMSbU/z5HbGws5ubmNG7cOF9zZWVl8e677+Lr60vRokWxs7Nj8+bNJCUl5XsfJUuWBMDX1zfXs/zs7e5J9fyuBw/33v5q1KhR9O/fn+bNmzNt2jQSEhLyPfbChQv8/vvv94w5NjaWMmXK5JlQhzulZyIjI00+4Orv7092djZnzpyhRYsWuLu7U758eXr16sXy5cu5ceMGAFWrVqVZs2b4+vrStWtXFixYYCyTcy+WlpY4ODiYXCIiIiIiIiIiIvJ4Kan+iPy9xIjBYCA7O/uRzWFtbV2guWbMmEFERARjxoxh+/btxMbG4u/vz61bt/Idg8FguOez/OwtPzE/ivf2V6Ghofz000+0bduWbdu2UblyZdatWweAmZlZrnIqf61Z/6B4H9Senp7OoEGDiI2NNV5Hjx7l559/5rnnnsPe3p7Dhw+zcuVKXF1dmTBhAlWrViUlJQVzc3O2bNnCd999R+XKlfnggw/w9vbmzJkzD/kmRERERERERERE5HFQUv0JK1y4MIBJXfH88PX1JTs7m507d+arf3R0NB06dODVV1+latWqlC9fnlOnThU43n/Cz8+PqKiofzRHoUKFCvyuKlSowMiRI/n+++/p3LkzixcvBqB48eL88ccfJon1v5aCsbe3x8PD454x+/n5ce7cuXu+xxo1anDixIlcH3H19PQ0/rtbWFjQvHlzpk+fzo8//khiYiLbtm0D7vxCoUGDBoSFhXHkyBEKFy5s/IWAiIiIiIiIiIiI/DtYPO0AnjUlSpTA2tqaTZs2UaZMGaysrHB0dHzgOA8PDwIDA+nbty9z5syhatWq/Prrr1y4cIFu3brl6u/l5cWaNWvYs2cPRYoUYdasWZw/f57KlSs/jm3lKSQkBF9fX4YMGcLgwYMpXLgw27dvp2vXrhQrVixfc9xNcjdo0ABLS0uKFClyz75//vknb731Fi+//DLlypXj3LlzxMTE0KVLF+BODfeLFy8yffp0Xn75ZTZt2sR3331nUjYlNDSUwYMHU6JECVq3bs21a9eIjo5m+PDhNG7cmEaNGtGlSxdmzZqFp6cnJ0+exGAw0KpVK8aMGcPzzz/PsGHD6N+/P7a2tpw4cYItW7Ywd+5cNmzYwC+//EKjRo0oUqQI3377LdnZ2Xh7e7N//36ioqJo2bIlJUqUYP/+/Vy8eJFKlSoV+L0fD/NXKRgREREREREREZHHRCfVnzALCwvmzJnDJ598QqlSpejQoUO+x86bN4+XX36ZIUOGULFiRQYMGMD169fz7Dtu3Dhq1KiBv78/TZo0wcXFJd8f+3xUKlSowPfff8/Ro0epU6cO9erV46uvvsLCIv+/y5k5cyZbtmzBzc2N6tWr37evubk5ly9fpnfv3lSoUIFu3brRunVrwsLCAKhUqRIfffQRH374IVWrVuXAgQOMHj3aZI7AwEDCw8P56KOP8PHxoV27dvz888/G9rVr11K7dm0CAgKoXLkywcHBxpP0fn5+7Ny5k1OnTvHCCy9QvXp1JkyYQKlSpQBwcnLiyy+/pGnTplSqVImPP/6YlStX4uPjg4ODAz/88ANt2rShQoUKjBs3jpkzZ9K6det8vysRERERERERERF5/Aw5fy8yLf8nGQwG1q1bd8/E+Y4dO3jxxRe5evUqTk5O95zHw8ODESNGMGLEiIeKIzQ0lPXr15uUVXmQB8X+f8nJkycJCgoiNjaWihUrFug9/FN3v07sNmI1ZpY2T2xdkX+7xGltn3YIIiIiIiIiIvJ/wN38Wmpq6n0rQeik+jMqMjLyvsn1Jyk5Ofmxn8gODw/H29sba2tr3NzcGDlyJDdv3jS2z5s3Dz8/PxwcHHBwcKBevXp89913JnMkJCTQqVMnihcvjoODA926deP8+fMmfSZOnIitrS3x8fHG2uynTp2iQ4cOFCtWDAcHBxo2bMj27dsf635FRERERERERETk8Xgmkuq3bt162iH8J7Vu3Ro7OzuTa8qUKRw7dowpU6bkex4XFxcsLS3z1dfHxyfXmnev5cuX5zlmxYoVjB07lokTJxIXF8fChQv5/PPPefvtt419ypQpw7Rp0zh06BAHDx6kadOmdOjQgZ9++gmA69ev07JlSwwGA9u2bSM6Oppbt27Rvn17srOzjfMkJCTQsGFD3N3dcXZ2BqBdu3ZkZmaybds2Dh06RNWqVWnXrh1//PFHvt+RiIiIiIiIiIiI/Dv8J5PqTZo0YdiwYYwYMYJixYrh7+/P8ePHjUngkiVL0qtXLy5dumQck52dzfTp0/H09MTS0pKyZcsyefJkY/vZs2fp1q0bTk5OFC1alA4dOpCYmGhsDwoKomPHjrz//vu4urri7OzM0KFDuX37trFPRkYGY8aMwc3NDUtLSzw9PVm4cCE5OTl4enry/vvvm+wjNjYWg8HA6dOn87XvS5cu0alTJ2xsbPDy8uLrr7/Os9+OHTvo06cPqampGAwGDAYDoaGhxvYbN27Qt29f7O3tKVu2LPPnzzcZf+7cOQICAti7dy9ZWVl4eHgQGRlJbGwsgwcPpkKFCgwePBiAmJgYWrRoQbFixXB0dKRx48YcPnzYZD6DwcD69esBSExMxGAwsHr1al544QWsra2pXbs2p06dIiYmBjMzM7Kzs6lRowZRUVHExsYar5deeinP/e7Zs4cGDRrQo0cPPDw8aNmyJQEBARw4cMDYp3379rRp0wYvLy8qVKjA5MmTsbOzY9++fQBER0eTmJhIZGQkvr6++Pr6smTJEg4ePMi2bduM+zh06BCTJk0yvtNLly7x888/M3bsWPz8/PDy8mLatGncuHGD48ePA5CVlUW/fv0oV64c1tbWeHt7ExERka9/cxEREREREREREXmy/pNJdYAlS5ZQuHBhoqOjmTZtGk2bNqV69eocPHiQTZs2cf78ebp162bsHxISwrRp0xg/fjwnTpxgxYoVlCxZEoDbt2/j7++Pvb09u3btIjo6Gjs7O1q1amVyCn779u0kJCSwfft2lixZQmRkJJGRkcb23r17s3LlSubMmUNcXByffPIJdnZ2GAwG+vbty+LFi032sHjxYho1aoSnp2e+9hwWFka3bt348ccfadOmDT179uTKlSu5+tWvX5/w8HAcHBxITk4mOTnZ5IOdM2fOpFatWhw5coQhQ4bw2muvER8fD0B6ejqNGzfmt99+Y8OGDRw7dowJEyZQunRpPD09KVq0KJaWlhQtWhSAa9euERgYyO7du9m3bx9eXl60adOGa9eu3XcvEydOZNy4cRw+fBgLCwt69OhBcHAwH3/8MdHR0SQnJxMZGYmnp6fxsre3z3Ou+vXrc+jQIWMS/ZdffuHbb7+lTZs2efbPyspi1apVXL9+nXr16gF3fiFiMBhMTtRbWVlhZmbG7t27gTtlbHx8fHjzzTeN79TZ2Rlvb2+WLl3K9evXyczM5JNPPqFEiRLUrFkTuPMLnTJlyvDFF19w4sQJJkyYwNtvv83q1avv+44yMjJIS0szuUREREREREREROTxsnjaATwuXl5eTJ8+HYD33nuP6tWrm5QkWbRoEW5ubpw6dQpXV1ciIiKYO3cugYGBADz33HM0bNgQgM8//5zs7Gw+/fRTDAYDcCfh7eTkxI4dO2jZsiUARYoUYe7cuZibm1OxYkXatm1LVFQUAwYM4NSpU6xevZotW7bQvHlzAMqXL2+MJygoiAkTJnDgwAHq1KnD7du3WbFiRa7T6/cTFBREQEAAAFOmTGHOnDkcOHCAVq1amfQrXLgwjo6OGAwGXFxccs3Tpk0bhgwZAsCYMWOYPXs227dvx9vbmxUrVnDx4kViYmKMifP7Jf2bNm1qcj9//nycnJzYuXMn7dq1u+e40aNH4+/vD8Abb7xBQEAAUVFRNGjQAIB+/fqZ/MLifnr06MGlS5do2LAhOTk5ZGZmMnjwYJPyLwDHjh2jXr163Lx5Ezs7O9atW0flypUBeP7557G1tWXMmDFMmTKFnJwcxo4dS1ZWFsnJycCdMjYWFhbY2dmZvNetW7fSsWNH7O3tMTMzo0SJEmzatIkiRYoAUKhQIcLCwoz9y5Urx969e1m9erXJL37+burUqSbjRERERERERERE5PH7z55Uv3sKGODo0aNs377dpP52xYoVgTs1sOPi4sjIyKBZs2Z5znX06FFOnz6Nvb29cXzRokW5efMmCQkJxn4+Pj6Ym5sb711dXblw4QJwp5SLubk5jRs3znONUqVK0bZtWxYtWgTAN998Q0ZGBl27ds33nv38/Iw/29ra4uDgYFy/IP46z93E+1/3Ub16dWNC/UHOnz/PgAED8PLywtHREQcHB9LT00lKSsp3DHf/YsDX19fkWX73tmPHDqZMmcJHH33E4cOH+fLLL9m4cSPvvvuuST9vb29iY2PZv38/r732GoGBgZw4cQKA4sWL88UXX/DNN99gZ2eHo6MjKSkp1KhRAzOze/9vlJOTw9ChQylRogS7du3iwIEDdOzYkfbt2xuT8QAffvghNWvWpHjx4tjZ2TF//vwHvqOQkBBSU1ON19mzZ/P1PkREREREREREROTh/WdPqtva2hp/Tk9Pp3379vzvf//L1c/V1ZVffvnlvnOlp6dTs2bNPD+EWbx4cePPhQoVMmkzGAzGj1haW1s/MOb+/fvTq1cvZs+ezeLFi+nevTs2NjYPHJef9Qvin+7jrwIDA7l8+TIRERG4u7tjaWlJvXr1Hvjx2L/GcPevA/7+LL97Gz9+PL169aJ///7AneT89evXGThwIO+8844xKV64cGHjqfuaNWsSExNDREQEn3zyCQAtW7YkISGBS5cuYWFhgZOTEy4uLiZ/cfB327ZtY8OGDVy9ehUHBwcAPvroI7Zs2cKSJUsYO3Ysq1atYvTo0cycOZN69ephb2/PjBkz2L9//333ZWlpme8PvIqIiIiIiIiIiMij8Z9Nqv9VjRo1WLt2LR4eHlhY5N6yl5cX1tbWREVFGROvfx//+eefU6JECWNitKB8fX3Jzs5m586dxvIvf9emTRtsbW2ZN28emzZt4ocffniotfKjcOHCZGVlFXicn58fn376KVeuXMnXafXo6Gg++ugjY/3ys2fPmnwg9km4ceNGrtPkd/+iICcn557jsrOzycjIyPW8WLFiwJ2E+YULF+75gdS7awO51r/7wVW4847q169vLLkDmPwFhIiIiIiIiIiIiPx7/GfLv/zV0KFDuXLlCgEBAcTExJCQkMDmzZvp06cPWVlZWFlZMWbMGIKDg1m6dCkJCQns27ePhQsXAtCzZ0+KFStGhw4d2LVrF2fOnGHHjh28/vrrnDt3Ll8xeHh4EBgYSN++fVm/fr1xjr9+jNLc3JygoCBCQkLw8vIyfiTzcfDw8CA9PZ2oqCguXbpkTP4+SEBAAC4uLnTs2JHo6Gh++eUX1q5dy969e/Ps7+XlxWeffUZcXBz79++nZ8+eBT7t/k+1b9+eefPmsWrVKs6cOcOWLVsYP3487du3NybXQ0JC+OGHH0hMTOTYsWOEhISwY8cOevbsaZxn8eLF7Nu3j4SEBJYtW0bXrl0ZOXIk3t7e91y7Xr16FClShMDAQI4ePcqpU6d46623OHPmDG3btgXuvKODBw+yefNmTp06xfjx44mJiXm8L0VEREREREREREQeyjNxUr1UqVJER0czZswYWrZsSUZGBu7u7rRq1cp4gnj8+PFYWFgwYcIEfv/9d1xdXRk8eDAANjY2/PDDD4wZM4bOnTtz7do1SpcuTbNmzQp0cn3evHm8/fbbDBkyhMuXL1O2bNlcH8vs168fU6ZMoU+fPo/uBeShfv36DB48mO7du3P58mUmTpxIaGjoA8cVLlyY77//njfffJM2bdqQmZlJ5cqV+fDDD/Psv3DhQgYOHEiNGjVwc3NjypQpjB49+hHv5v7GjRuHwWBg3Lhx/PbbbxQvXpz27dszefJkY58LFy7Qu3dvkpOTcXR0xM/Pj82bN9OiRQtjn/j4eEJCQrhy5QoeHh688847jBw58r5rFytWjE2bNvHOO+/QtGlTbt++jY+PD1999RVVq1YFYNCgQRw5coTu3btjMBgICAhgyJAhfPfddw+13+Nh/g/9FxUiIiIiIiIiIiJyf4ac+9W/kCdu165dNGvWjLNnzxo/0CmSH2lpaTg6OpKamqqkuoiIiIiIiIiISAHlN7/2TJxU/78gIyODixcvEhoaSteuXZVQf0ISExMpV64cR44coVq1ag/sHxQUREpKCuvXr38s8z8KVSZuxswy/x+4FZH7S5zW9mmHICIiIiIiIiL/Is9ETfX/C1auXIm7uzspKSlMnz7dpG358uXY2dnlefn4+DyliP897vVu7Ozs2LVr133Hurm5kZycTJUqVR5LbI97fhEREREREREREXmydFL9XyIoKIigoKA821566SXq1q2bZ1uhQoUees1bt25RuHDhhx7/bxEbG3vPttKlS993rLm5OS4uLo84oic3v4iIiIiIiIiIiDxZOqn+f4C9vT2enp55Xu7u7vmep0mTJgwbNowRI0ZQrFgx/P39OX78OK1bt8bOzo6SJUvSq1cvLl26ZByTnZ3N9OnT8fT0xNLSkrJly5p84PPs2bN069YNJycnihYtSocOHUhMTDS2BwUF0bFjR95//31cXV1xdnZm6NCh3L5929gnIyODMWPG4ObmhqWlJZ6enixcuJCcnBw8PT15//33TfYRGxuLwWDg9OnTAPd8N56envz66680bNgQKysrKleuzNatWzEYDMbyLYmJiRgMBpPE/E8//US7du1wcHDA3t6eF154gYSEhDzf6aZNm2jYsCFOTk44OzvTrl07k75/n3/Hjh0YDAY2b95M9erVsba2pmnTply4cIHvvvuOSpUq4eDgQI8ePbhx40a+/21FRERERERERETkyVBS/RmzZMkSChcuTHR0NNOmTaNp06ZUr16dgwcPsmnTJs6fP0+3bt2M/UNCQpg2bRrjx4/nxIkTrFixwljv/fbt2/j7+2Nvb8+uXbuIjo7Gzs6OVq1acevWLeMc27dvJyEhge3bt7NkyRIiIyOJjIw0tvfu3ZuVK1cyZ84c4uLi+OSTT7Czs8NgMNC3b18WL15ssofFixfTqFEjPD0977vXrKwsOnbsiI2NDfv372f+/Pm888479x3z22+/0ahRIywtLdm2bRuHDh2ib9++ZGZm5tn/+vXrjBo1ioMHDxIVFYWZmRmdOnUiOzv7vuuEhoYyd+5c9uzZY/zFRHh4OCtWrGDjxo18//33fPDBB/edIyMjg7S0NJNLREREREREREREHi+Vf3nGeHl5GWu2v/fee1SvXp0pU6YY2xctWoSbmxunTp3C1dWViIgI5s6dS2BgIADPPfccDRs2BODzzz8nOzubTz/9FIPBANxJeDs5ObFjxw5atmwJQJEiRZg7dy7m5uZUrFiRtm3bEhUVxYABAzh16hSrV69my5YtNG/eHIDy5csb4wkKCmLChAkcOHCAOnXqcPv2bVasWJHr9HpetmzZQkJCAjt27DCWYJk8eTItWrS455gPP/wQR0dHVq1aZSytU6FChXv279Kli8n9okWLKF68OCdOnLhvHfX33nuPBg0aANCvXz9CQkJISEgw7v3ll19m+/btjBkz5p5zTJ06lbCwsHu2i4iIiIiIiIiIyKOnk+rPmJo1axp/Pnr0KNu3bzf5sGfFihUBSEhIIC4ujoyMDJo1a5bnXEePHuX06dPY29sbxxctWpSbN2+alEDx8fHB3NzceO/q6sqFCxeAO6VczM3Nady4cZ5rlCpVirZt27Jo0SIAvvnmGzIyMujatesD9xofH4+bm5tJTfM6dercd0xsbCwvvPBCvmvV//zzzwQEBFC+fHkcHBzw8PAAICkp6b7j/Pz8jD+XLFkSGxsbk18mlCxZ0viO7iUkJITU1FTjdfbs2XzFLCIiIiIiIiIiIg9PJ9WfMba2tsaf09PTad++Pf/73/9y9XN1deWXX36571zp6enUrFmT5cuX52orXry48ee/J6gNBoOxPIq1tfUDY+7fvz+9evVi9uzZLF68mO7du2NjY/PAcQ8jP/H8Vfv27XF3d2fBggWUKlWK7OxsqlSpYlL+Ji9/fScGg+G+7+heLC0tsbS0LFC8IiIiIiIiIiIi8s8oqf4Mq1GjBmvXrsXDwwMLi9z/KXh5eWFtbU1UVBT9+/fPc/znn39OiRIlcHBweKgYfH19yc7OZufOncbyL3/Xpk0bbG1tmTdvHps2beKHH37I19ze3t6cPXuW8+fPG+vAx8TE3HeMn58fS5Ys4fbt2w88rX758mXi4+NZsGABL7zwAgC7d+/OV2wiIiIiIiIiIiLyf5OS6s+woUOHsmDBAgICAggODqZo0aKcPn2aVatW8emnn2JlZcWYMWMIDg6mcOHCNGjQgIsXL/LTTz/Rr18/evbsyYwZM+jQoQOTJk2iTJky/Prrr3z55ZcEBwdTpkyZB8bg4eFBYGAgffv2Zc6cOVStWpVff/2VCxcuGD+Yam5uTlBQECEhIXh5eVGvXr187a9FixY899xzBAYGMn36dK5du8a4ceMAjDXg/27YsGF88MEHvPLKK4SEhODo6Mi+ffuoU6cO3t7eJn2LFCmCs7Mz8+fPx9XVlaSkJMaOHZuv2B6n42H+D/1LDhEREREREREREbk/1VR/hpUqVYro6GiysrJo2bIlvr6+jBgxAicnJ8zM7vynMX78eN58800mTJhApUqV6N69u7HWt42NDT/88ANly5alc+fOVKpUiX79+nHz5s0CJXXnzZvHyy+/zJAhQ6hYsSIDBgzg+vXrJn369evHrVu36NOnT77nNTc3Z/369aSnp1O7dm369+/PO++8A4CVlVWeY5ydndm2bRvp6ek0btyYmjVrsmDBgjxPrZuZmbFq1SoOHTpElSpVGDlyJDNmzMh3fCIiIiIiIiIiIvJ/jyEnJyfnaQch8iC7du2iWbNmnD171ljK5WFER0fTsGFDTp8+zXPPPfcII3z60tLScHR0JDU1VSfVRURERERERERECii/+TUl1eWecnJyGDRoEGvWrOHq1ascOXKEatWq5dm3SZMmVKtWjfDw8IdeLzQ0lPXr1xMbG2t8lpGRwcWLFwkMDMTFxYVChQqRkpLC+vXr8zXnunXrsLOzw8vLi9OnT/PGG29QpEiR/2Tt87v/07uNWI2Z5eP5kKuI/H+J09o+7RBERERERERE5BHKb1Jd5V/knjZt2kRkZCQbNmwgOTmZKlWqPPEYVq5cibu7OykpKUyfPt2kbfny5djZ2eV5+fj4EBoaSufOnWnZsiXlypWjRYsWnDt3jq+++so4x82bNxk6dCjOzs7Y2dnRpUsXzp8/b2yPjIzEYDDked0tg/MgoaGhVKxYEVtbW4oUKULz5s3Zv3+/sX3Hjh33XONBH1YVERERERERERGRJ0sfKpV7SkhIwNXVlfr16z+1GIKCgggKCsqz7aWXXqJu3bp5thUqVIjFixfj4+PD1q1bjc8tLCxwdnY23o8cOZKNGzfyxRdf4OjoyLBhw+jcuTPR0dEAdO/enVatWuWK6ebNm5QoUSJfe6hQoQJz586lfPny/Pnnn8yePZuWLVty+vRpihcvTv369UlOTjYZM378eKKioqhVq1a+1hAREREREREREZEnQyfVJU9BQUEMHz6cpKQkDAYDHh4eDxyTnZ1NcHAwRYsWxcXFhdDQUJP2pKQkOnTogJ2dHQ4ODnTr1s3kVPjfZWVlMWrUKJycnHB2diY4OJi/Viuyt7fH09Mzz8vd3R24k0R3cXExXsWKFTOOT01NZeHChcyaNYumTZtSs2ZNFi9ezJ49e9i3bx8A1tbWJuPNzc3Ztm0b/fr1M4n1m2++oXbt2lhZWVGsWDE6depkbOvRowfNmzenfPny+Pj4MGvWLNLS0vjxxx8BKFy4sMkazs7OfPXVV/Tp0weDwfDA9y4iIiIiIiIiIiJPjpLqkqeIiAgmTZpEmTJlSE5OzlcZkiVLlmBra8v+/fuZPn06kyZNYsuWLcCdhHuHDh24cuUKO3fuZMuWLfzyyy907979nvPNnDmTyMhIFi1axO7du7ly5Qrr1q0r0D5+/vlnSpUqRfny5enZsydJSUnGtkOHDnH79m2aN29ufFaxYkXKli3L3r1785xv6dKl2NjY8PLLLxufbdy4kU6dOtGmTRuOHDlCVFQUderUyXP8rVu3mD9/Po6OjlStWjXPPl9//TWXL1+mT58+991bRkYGaWlpJpeIiIiIiIiIiIg8Xir/InlydHTE3t4ec3NzXFxc8jXGz8+PiRMnAuDl5cXcuXOJioqiRYsWREVFcezYMc6cOYObmxtwJ0Ht4+NDTEwMtWvXzjVfeHg4ISEhdO7cGYCPP/6YzZs353sPdevWJTIyEm9vb5KTkwkLC+OFF17g+PHj2Nvb88cff1C4cGGcnJxMxpUsWZI//vgjzzkXLlxIjx49sLa2Nj6bPHkyr7zyCmFhYcZnf0+Yb9iwgVdeeYUbN27g6urKli1bTE7N/30Nf39/ypQpc9/9TZ061WRNERERERERERERefx0Ul0eGT8/P5N7V1dX48c84+LicHNzMybUASpXroyTkxNxcXG55kpNTSU5OdmkZrqFhUWBaoy3bt2arl274ufnh7+/P99++y0pKSmsXr26oFsDYO/evcTFxeUq/RIbG0uzZs3uO/bFF18kNjaWPXv20KpVK7p165bnh07PnTvH5s2bc62Rl5CQEFJTU43X2bNnC7YhERERERERERERKTAl1eWRKVSokMm9wWAgOzv7KUWTm5OTExUqVOD06dMAuLi4cOvWLVJSUkz6nT9/Ps/T+Z9++inVqlWjZs2aJs//emr9XmxtbfH09OT5559n4cKFWFhYsHDhwlz9Fi9ejLOzMy+99NID57S0tMTBwcHkEhERERERERERkcdLSXV5IipVqsTZs2dNTlOfOHGClJQUKleunKu/o6Mjrq6u7N+/3/gsMzOTQ4cOPXQM6enpJCQk4OrqCkDNmjUpVKgQUVFRxj7x8fEkJSVRr169XGNXr16d5wlyPz8/kznyIzs7m4yMDJNnOTk5LF68mN69e+f6BYWIiIiIiIiIiIj8O6imujwRzZs3x9fXl549exIeHk5mZiZDhgyhcePG9yzp8sYbbzBt2jS8vLyoWLEis2bNynWq/H5Gjx5N+/btcXd35/fff2fixImYm5sTEBAA3Enc9+vXj1GjRlG0aFEcHBwYPnw49erV4/nnnzeZ6/PPPyczM5NXX3011zoTJ06kWbNmPPfcc7zyyitkZmby7bffMmbMGK5fv87kyZN56aWXcHV15dKlS3z44Yf89ttvdO3a1WSebdu2cebMGfr375/vPebleJi/Tq2LiIiIiIiIiIg8JjqpLk+EwWDgq6++okiRIjRq1IjmzZtTvnx5Pv/883uOefPNN+nVqxeBgYHUq1cPe3t7OnXqlO81z507R0BAAN7e3nTr1g1nZ2f27dtH8eLFjX1mz55Nu3bt6NKlC40aNcLFxYUvv/wy11wLFy6kc+fOuT5qCtCkSRO++OILvv76a6pVq0bTpk05cOAAAObm5pw8eZIuXbpQoUIF2rdvz+XLl9m1axc+Pj651qhfvz4VK1bM9x5FRERERERERETkyTLk5OTkPO0gRJ6mJk2aUK1aNcLDw/NsNxgMrFu3jo4dOz7RuAoqLS0NR0dHUlNTdVJdRERERERERESkgPKbX1P5F5HH6OjRo0ybNo3du3dz6dIlPDw8GDx4MG+88YZJvx07djBq1Ch++ukn3NzcGDduHEFBQQ+1ZpWJmzGztHkE0YvIgyROa/u0QxARERERERGRJ0xJdXmgpKSkPD8meteJEycoW7bsE4zo3xlTXg4dOkSJEiVYtmwZbm5u7Nmzh4EDB2Jubs6wYcMAOHPmDG3btmXw4MEsX76cqKgo+vfvj6urK/7+/k95ByIiIiIiIiIiIvJXKv8iD5SZmUliYuI92z08PLCweLK/n3mUMTVp0gQ/Pz+srKz49NNPKVy4MIMHDyY0NBS4U/5lwYIFbNy4kc2bN1O6dGlmzpzJSy+99FCxDx06lLi4OLZt2wbAmDFj2LhxI8ePHzf2eeWVV0hJSWHTpk35nvfun6e4jVitk+oiT4hOqouIiIiIiIj8d6j8izwyFhYWeHp6Pu0wTDzqmJYsWcKoUaPYv38/e/fuJSgoiAYNGtCiRQsAwsLCmD59OjNmzOCDDz6gZ8+e/PrrrxQtWrTAa6WmppqM27t3L82bNzfp4+/vz4gRI+47T0ZGBhkZGcb7tLS0AsciIiIiIiIiIiIiBWP2tAMQ+Tfw8/Nj4sSJeHl50bt3b2rVqkVUVJSxPSgoiICAADw9PZkyZQrp6ekcOHCgwOvs2bOHzz//nIEDBxqf/fHHH5QsWdKkX8mSJUlLS+PPP/+851xTp07F0dHReLm5uRU4HhERERERERERESkYJdVFuJNU/ytXV1cuXLiQZ7utrS0ODg4m7flx/PhxOnTowMSJE2nZsuU/CxgICQkhNTXVeJ09e/YfzykiIiIiIiIiIiL3p/IvIkChQoVM7g0GA9nZ2fluf5ATJ07QrFkzBg4cyLhx40zaXFxcOH/+vMmz8+fP4+DggLW19T3ntLS0xNLSMt8xiIiIiIiIiIiIyD+nk+oij9lPP/3Eiy++SGBgIJMnT87VXq9ePZNSMwBbtmyhXr16TypEERERERERERERyScl1UUeo+PHj/Piiy/SsmVLRo0axR9//MEff/zBxYsXjX0GDx7ML7/8QnBwMCdPnuSjjz5i9erVjBw58ilGLiIiIiIiIiIiInlR+ReRx2jNmjVcvHiRZcuWsWzZMuNzd3d3EhMTAShXrhwbN25k5MiRREREUKZMGT799FP8/f0fas3jYf44ODg8ivBFRERERERERETkbww5OTk5TzsIEfnn0tLScHR0JDU1VUl1ERERERERERGRAspvfk0n1SVPOTk5DBo0iDVr1nD16lWOHDlCtWrV8uzbpEkTqlWrRnh4+EOvFxoayvr164mNjb1nn6CgIFJSUli/fv1Dr/MsqDJxM2aWNk87DJFnRuK0tk87BBERERERERF5glRTXfK0adMmIiMj2bBhA8nJyVSpUuVph/RIHT16lICAANzc3LC2tqZSpUpERESY9Pnyyy9p0aIFxYsXx8HBgXr16rF582aTPoMHD8bOzi7Pa/DgwcZ+GzdupG7dulhbW1OkSBE6duz4JLYpIiIiIiIiIiIij5hOqkueEhIScHV1pX79+k87lMfi0KFDlChRgmXLluHm5saePXsYOHAg5ubmDBs2DIAffviBFi1aMGXKFJycnFi8eDHt27dn//79VK9eHYBJkyYxevToPNe4+ycia9euZcCAAUyZMoWmTZuSmZnJ8ePHn8xGRURERERERERE5JHSSXXJJSgoiOHDh5OUlITBYMDDw+OBY7KzswkODqZo0aK4uLgQGhpq0p6UlESHDh2ws7PDwcGBbt26cf78+XvOl5WVxahRo3BycsLZ2Zng4GAKUv4/OzubqVOnUq5cOaytralatSpr1qwxtvft25eIiAgaN25M+fLlefXVV+nTpw9ffvmlsU94eDjBwcHUrl0bLy8vpkyZgpeXF998842xz+HDhwkKCqJWrVrUrVuXESNGYDAY8PT0pESJEmRmZvLGG28wY8YMBg8eTIUKFahcuTLdunUz2Wu/fv2MsXp7e+c6NS8iIiIiIiIiIiL/DkqqSy4RERFMmjSJMmXKkJycTExMzAPHLFmyBFtbW/bv38/06dOZNGkSW7ZsAe4kuDt06MCVK1fYuXMnW7Zs4ZdffqF79+73nG/mzJlERkayaNEidu/ezZUrV1i3bl2+9zB16lSWLl3Kxx9/zE8//cTIkSN59dVX2blz5z3HpKamUrRo0Xu2Z2dnc+3aNZM+169fZ9SoURw8eJCoqCjMzMzo1KkT2dnZwJ2k+2+//YaZmRnVq1fH1dWV1q1bm5xUz87OpkyZMnzxxRecOHGCCRMm8Pbbb7N69er77jEjI4O0tDSTS0RERERERERERB4vlX+RXBwdHbG3t8fc3BwXF5d8jfHz82PixIkAeHl5MXfuXKKiomjRogVRUVEcO3aMM2fO4ObmBsDSpUvx8fEhJiaG2rVr55ovPDyckJAQOnfuDMDHH3+cq575vWRkZDBlyhS2bt1KvXr1AChfvjy7d+/mk08+oXHjxrnG7Nmzh88//5yNGzfec97333+f9PR0k1PmXbp0MemzaNEiihcvzokTJ6hSpQq//PILcOdDrLNmzcLDw4OZM2fSpEkTTp06RdGiRSlUqBBhYWHGOcqVK8fevXtZvXq1yVp/N3XqVJNxIiIiIiIiIiIi8vjppLo8En5+fib3rq6uXLhwAYC4uDjc3NyMCXWAypUr4+TkRFxcXK65UlNTSU5Opm7dusZnFhYW1KpVK1+xnD59mhs3btCiRQuTD4cuXbqUhISEXP2PHz9Ohw4dmDhxIi1btsxzzhUrVhAWFsbq1aspUaKE8fnPP/9MQEAA5cuXx8HBwVgqJykpCcB4Yv2dd96hS5cu1KxZk8WLF2MwGPjiiy+M83z44YfUrFmT4sWLY2dnx/z5841z3EtISAipqanG6+zZs/l6PyIiIiIiIiIiIvLwdFJdHolChQqZ3BsMBmNC+UlLT08HYOPGjZQuXdqkzdLS0uT+xIkTNGvWjIEDBzJu3Lg851u1ahX9+/fniy++oHnz5iZt7du3x93dnQULFlCqVCmys7OpUqUKt27dAu78cgHu/BLhrzGUL1/emDRftWoVo0ePZubMmdSrVw97e3tmzJjB/v3777tPS0vLXPsRERERERERERGRx0tJdXnsKlWqxNmzZzl79qzxtPqJEydISUkxSTbf5ejoiKurK/v376dRo0YAZGZmcujQIWrUqPHA9SpXroylpSVJSUl5lnq566effqJp06YEBgYyefLkPPusXLmSvn37smrVKtq2bWvSdvnyZeLj41mwYAEvvPACALt37zbpU7NmTSwtLYmPj6dhw4YA3L59m8TERNzd3QGIjo6mfv36DBkyxDgurxP1IiIiIiIiIiIi8vQpqS6PXfPmzfH19aVnz56Eh4eTmZnJkCFDaNy48T1LurzxxhtMmzYNLy8vKlasyKxZs0hJScnXevb29owePZqRI0eSnZ1Nw4YNSU1NJTo6GgcHBwIDAzl+/DhNmzbF39+fUaNG8ccffwBgbm5O8eLFgTslXwIDA4mIiKBu3brGPtbW1jg6OlKkSBGcnZ2ZP38+rq6uJCUlMXbsWJNYHBwcGDx4MBMnTsTNzQ13d3dmzJgBQNeuXYE7NeiXLl3K5s2bKVeuHJ999hkxMTGUK1euwO9aREREREREREREHi8l1eWxMxgMfPXVVwwfPpxGjRphZmZGq1at+OCDD+455s033yQ5OZnAwEDMzMzo27cvnTp1IjU1NV9rvvvuuxQvXpypU6fyyy+/4OTkRI0aNXj77bcBWLNmDRcvXmTZsmUsW7bMOM7d3Z3ExEQA5s+fT2ZmJkOHDmXo0KHGPoGBgURGRmJmZsaqVat4/fXXqVKlCt7e3syZM4cmTZqYxDJjxgwsLCzo1asXf/75J3Xr1mXbtm0UKVIEgEGDBnHkyBG6d++OwWAgICCAIUOG8N133+Vrr393PMwfBweHhxorIiIiIiIiIiIi92fIycnJedpBiMg/l5aWhqOjI6mpqUqqi4iIiIiIiIiIFFB+82s6qS4PlJOTw6BBg1izZg1Xr17lyJEjVKtWLc++TZo0oVq1aoSHhz/0eqGhoaxfv57Y2Nh79gkKCiIlJYX169c/9DqPQ3R0NIMHD+bkyZO0bdv2qcRXZeJmzCxtnvi6Is+6xGltH9xJRERERERERP7PM3vaAci/W1JSEjY2NixYsICbN29iY2NDw4YNsbOzw87OjqSkpKcS0/Lly9mwYYMxjr9ef48pKyuL8ePHU65cOaytrXnuued49913+esfaYSGhlKxYkVsbW0pUqQIzZs3Z//+/SbzHD58mBYtWuDk5ISzszMDBw4kPT3dpM+oUaOoVq0aZ86cITIyEoCYmBiaNWuGk5MTRYoUwd/fn6NHjz6elyMiIiIiIiIiIiKPlZLqcl+lSpUiODgYV1dXfvzxR44ePUpsbKzxKlWq1FOJqX379jRp0sQklnvF9L///Y958+Yxd+5c4uLi+N///sf06dNNarpXqFCBuXPncuzYMXbv3o2HhwctW7bk4sWLAPz+++80b94cT09P9u/fz6ZNm/jpp58ICgoyWSshIYGmTZtSpkwZnJycSE9Pp1WrVpQtW5b9+/eze/du7O3t8ff35/bt24/9XYmIiIiIiIiIiMijpaS63Ff//v2ZNGkSycnJeHl5GRPLdy8Li9wVhLKzswkODqZo0aK4uLgQGhpq0p6UlESHDh2ws7PDwcGBbt26cf78+XvGkJWVxahRo4wnxN9++23s7e2xs7MzieVeMe3Zs4cOHTrQtm1bPDw8ePnll2nZsiUHDhww9unRowfNmzenfPny+Pj4MGvWLNLS0vjxxx8B2LBhA4UKFeLDDz/E29ub2rVr8/HHH7N27VpOnz5NYmIiBoOBy5cv07dvXwwGA5GRkZw8eZIrV64wadIkvL298fHxYeLEiZw/f55ff/0VgMuXLxMQEEDp0qWxsbHB19eXlStXPuw/mYiIiIiIiIiIiDxGSqrLfUVERDBp0iTKlClDcnIyMTExDxyzZMkSbG1t2b9/P9OnT2fSpEls2bIFuJNw79ChA1euXGHnzp1s2bKFX375he7du99zvpkzZxIZGcmiRYvYvXs3V65cYd26dfneQ/369YmKiuLUqVMAHD16lN27d9O6des8+9+6dYv58+fj6OhI1apVAcjIyKBw4cKYmf3//2Wsra0B2L17N25ubiQnJ+Pg4EB4eDjJycl0794db29vnJ2dWbhwIbdu3eLPP/9k4cKFVKpUCQ8PDwBu3rxJzZo12bhxI8ePH2fgwIH06tXLJOmfl4yMDNLS0kwuERERERERERERebyUVJf7cnR0xN7eHnNzc1xcXChevPgDx/j5+TFx4kS8vLzo3bs3tWrVIioqCoCoqCiOHTvGihUrqFmzJnXr1mXp0qXs3Lnzngn78PBwQkJC6Ny5M5UqVeLjjz/G0dEx33sYO3Ysr7zyChUrVqRQoUJUr16dESNG0LNnT5N+d2u0W1lZMXv2bLZs2UKxYsUAaNq0KX/88QczZszg1q1bXL16lbFjxwKQnJxsfD8GgwFHR0dcXFywtrbG3t6eHTt2sGzZMqytrbGzs2PTpk189913xhP1pUuXZvTo0VSrVo3y5cszfPhwWrVqxerVq++7r6lTp+Lo6Gi83Nzc8v1ORERERERERERE5OEoqS6PnJ+fn8m9q6srFy5cACAuLg43NzeTBHDlypVxcnIiLi4u11ypqakkJydTt25d4zMLCwtq1aqV73hWr17N8uXLWbFiBYcPH2bJkiW8//77LFmyxKTfiy++SGxsLHv27KFVq1Z069bNGLePjw9Llixh5syZ2NjY4OLiQrly5ShZsqTJ6fW/+/PPP+nXrx8NGjRg3759REdHU6VKFdq2bcuff/4J3Clv8+677+Lr60vRokWxs7Nj8+bND/wIbEhICKmpqcbr7Nmz+X4nIiIiIiIiIiIi8nByF8QW+YcKFSpkcm8wGMjOzn5K0cBbb71lPK0O4Ovry6+//srUqVMJDAw09rO1tTXWZX/++efx8vJi4cKFhISEAHfqrvfo0YPz589ja2uLwWBg1qxZlC9f/p5rr1ixgsTERPbu3WtMvq9YsYIiRYrw1Vdf8corrzBjxgwiIiIIDw/H19cXW1tbRowYwa1bt+67L0tLSywtLf/p6xEREREREREREZEC0El1eaIqVarE2bNnTU5VnzhxgpSUFCpXrpyrv6OjI66uruzfv9/4LDMzk0OHDuV7zRs3buQ6TW5ubv7ARH92djYZGRm5npcsWRI7Ozs+//xzrKysaNGixQPXNhgMxmd37++uHx0dTYcOHXj11VepWrUq5cuXN9Z/FxERERERERERkX8XnVSXJ6p58+b4+vrSs2dPwsPDyczMZMiQITRu3PieJV3eeOMNpk2bhpeXFxUrVmTWrFmkpKTke8327dszefJkypYti4+PD0eOHGHWrFn07dsXgOvXrzN58mReeuklXF1duXTpEh9++CG//fYbXbt2Nc4zd+5c6tevj52dHVu2bOGtt95i2rRpODk53XPtFi1a8NZbbzF06FCGDx9OdnY206ZNw8LCghdffBEALy8v1qxZw549eyhSpAizZs3i/Pnzef6SIT+Oh/nj4ODwUGNFRERERERERETk/pRUlyfKYDDw1VdfMXz4cBo1aoSZmRmtWrXigw8+uOeYN998k+TkZAIDAzEzM6Nv37506tSJ1NTUfK35wQcfMH78eIYMGcKFCxcoVaoUgwYNYsKECcCdU+snT55kyZIlXLp0CWdnZ2rXrs2uXbvw8fExznPgwAEmTpxIeno6FStW5JNPPqFXr173XbtixYp88803hIWFUa9ePczMzKhevTqbNm3C1dUVgHHjxvHLL7/g7++PjY0NAwcOpGPHjvnen4iIiIiIiIiIiDw5hpycnJynHYSI/HNpaWk4OjqSmpqqk+oiIiIiIiIiIiIFlN/8mk6qi/zHVJm4GTNLm6cdhsgzJ3Fa26cdgoiIiIiIiIg8AfpQqeRbUlISdnZ297ySkpIUk4iIiIiIiIiIiPynKaku+VaqVCliY2PveZUqVeqZjWnTpk00bNgQJycnnJ2dadeuHQkJCcb2PXv2UK1aNaysrKhVqxbr16/HYDAQGxtr7HP8+HFat26NnZ0dJUuWpFevXly6dOmJxC8iIiIiIiIiIiL5o/Ivkm8WFhZ4eno+7TBM/Ftiun79OqNGjcLPz4/09HQmTJhAp06diI2NJT09nfbt29OmTRtWrFjBr7/+yogRI0zGp6Sk0LRpU/r378/s2bP5888/GTNmDN26dWPbtm15rpmRkUFGRobxPi0t7XFuUURERERERERERFBSXeSR6NKli8n9okWLKF68OCdOnGD37t0YDAYWLFiAlZUVlStX5rfffmPAgAHG/nPnzqV69epMmTLFZA43NzdOnTpFhQoVcq05depUwsLCHt+mREREREREREREJBeVfxF5BH7++WcCAgIoX748Dg4OeHh4AHdqvsfHx+Pn54eVlZWxf506dUzGHz16lO3bt5vUg69YsSKASRmZvwoJCSE1NdV4nT179vFsTkRERERERERERIx0Ul3kEWjfvj3u7u4sWLCAUqVKkZ2dTZUqVbh161a+xt8tEfO///0vV5urq2ueYywtLbG0tPxHcYuIiIiIiIiIiEjBKKku8g9dvnyZ+Ph4FixYwAsvvADA7t27je3e3t4sW7aMjIwMYxI8JibGZI4aNWqwdu1aPDw8sLDQ/5YiIiIiIiIiIiL/Vir/IvIPFSlSBGdnZ+bPn8/p06fZtm0bo0aNMrb36NGD7OxsBg4cSFxcHJs3b+b9998HwGAwADB06FCuXLlCQEAAMTExJCQksHnzZvr06UNWVtZT2ZeIiIiIiIiIiIjkpiOxIv+QmZkZq1at4vXXX6dKlSp4e3szZ84cmjRpAoCDgwPffPMNr732GtWqVcPX15cJEybQo0cPY531UqVKER0dzZgxY2jZsiUZGRm4u7vTqlUrzMwK9ruv42H+ODg4POptioiIiIiIiIiICGDIycnJedpBiDxrli9fTp8+fUhNTcXa2vqRzJmWloajoyOpqalKqouIiIiIiIiIiBRQfvNrOqku/ycFBQWRkpLC+vXrn3YoeYqMjGTEiBGkpKQAsHTpUsqXL0/p0qU5evQoY8aMoVu3bo8sof5XVSZuxszS5pHPKyL3lzit7dMOQURERERERESeANVUl0emSZMmjBgx4rGP+b+ge/funDp1ynj/xx9/8Oqrr1KpUiVGjhxJ165dmT9//lOMUERERERERERERB6GTqqLPAbW1tYmp9CDg4MJDg5+ihGJiIiIiIiIiIjIo6CT6vJIBAUFsXPnTiIiIjAYDBgMBhITE9m5cyd16tTB0tISV1dXxo4dS2Zm5n3HZGVl0a9fP8qVK4e1tTXe3t5EREQ8dGxr1qzB19cXa2trnJ2dad68OdevXwfyPinfsWNHgoKCjPceHh6899579O7dGzs7O9zd3fn666+5ePEiHTp0wM7ODj8/Pw4ePGgcExkZiZOTk/E+NDSUatWq8dlnn+Hh4YGjoyOvvPIK165dy1ecIiIiIiIiIiIi8u+gpLo8EhEREdSrV48BAwaQnJxMcnIyhQoVok2bNtSuXZujR48yb948Fi5cyHvvvXfPMW5ubmRnZ1OmTBm++OILTpw4wYQJE3j77bdZvXp1geNKTk4mICCAvn37EhcXx44dO+jcuTMF/T7v7NmzadCgAUeOHKFt27b06tWL3r178+qrr3L48GGee+45evfufd95ExISWL9+PRs2bGDDhg3s3LmTadOmPXScGRkZpKWlmVwiIiIiIiIiIiLyeKn8izwSjo6OFC5cGBsbG1xcXAB45513cHNzY+7cuRgMBipWrMjvv//OmDFjmDBhQp5jAMzNzQkLCzPelytXjr1797J69Wq6detWoLiSk5PJzMykc+fOuLu7A+Dr61vg/bVp04ZBgwYBMGHCBObNm0ft2rXp2rUrAGPGjKFevXqcP3/eZC9/lZ2dTWRkJPb29gD06tWLqKgoJk+e/FBxTp061eQ9iYiIiIiIiIiIyOOnk+ry2MTFxVGvXj0MBoPxWYMGDUhPT+fcuXP3Hfvhhx9Ss2ZNihcvjp2dHfPnzycpKanAMVStWpVmzZrh6+tL165dWbBgAVevXi3wPH5+fsafS5YsCZgmve8+u3Dhwj3n8PDwMCbUAVxdXY39HybOkJAQUlNTjdfZs2cLvC8REREREREREREpGCXV5V9n1apVjB49mn79+vH9998TGxtLnz59uHXrVoHnMjc3Z8uWLXz33XdUrlyZDz74AG9vb86cOQOAmZlZrhIrt2/fzjVPoUKFjD/f/SVBXs+ys7PvGctf+98dc7f/g+LMi6WlJQ4ODiaXiIiIiIiIiIiIPF5KqssjU7hwYbKysoz3lSpVYu/evSZJ6+joaOzt7SlTpkyeY+72qV+/PkOGDKF69ep4enqSkJDw0HEZDAYaNGhAWFgYR44coXDhwqxbtw6A4sWLk5ycbOyblZXF8ePHH3qtf+J+cYqIiIiIiIiIiMi/g5Lq8sh4eHiwf/9+EhMTuXTpEkOGDOHs2bMMHz6ckydP8tVXXzFx4kRGjRqFmZlZnmOys7Px8vLi4MGDbN68mVOnTjF+/HhiYmIeKqb9+/czZcoUDh48SFJSEl9++SUXL16kUqVKADRt2pSNGzeyceNGTp48yWuvvUZKSsqjeiWPLE4RERERERERERH5d9CHSuWRGT16NIGBgVSuXJk///yTM2fO8O233/LWW29RtWpVihYtSr9+/Rg3btx9xwwaNIgjR47QvXt3DAYDAQEBDBkyhO+++67AMTk4OPDDDz8QHh5OWloa7u7uzJw5k9atWwPQt29fjh49Su/evbGwsGDkyJG8+OKLj+ydPKo4C+J4mL9KwYiIiIiIiIiIiDwmhpy/F5QWkf+T0tLScHR0JDU1VUl1ERERERERERGRAspvfk0n1UX+Y6pM3IyZpc3TDkPkmZU4re3TDkFEREREREREHiPVVJf/05KSkrCzs7vnlZSU9LRD5Msvv6RFixYUL14cBwcH6tWrx+bNm3P1+/DDD/Hw8MDKyoq6dety4MCBpxCtiIiIiIiIiIiI3I9Oqsv/aaVKlSI2Nva+7U/bDz/8QIsWLZgyZQpOTk4sXryY9u3bs3//fqpXrw7A559/zqhRo/j444+pW7cu4eHh+Pv7Ex8fT4kSJZ7yDkREREREREREROQunVSX/9MsLCzw9PS852VhYUGTJk0YNmwYw4YNw9HRkWLFijF+/Hjufk7g6tWr9O7dmyJFimBjY0Pr1q35+eefjWtERkbi5OTE+vXr8fLywsrKCn9/f86ePZuvGMPDwwkODqZ27dp4eXkxZcoUvLy8+Oabb4x9Zs2axYABA+jTpw+VK1fm448/xsbGhkWLFj3aFyYiIiIiIiIiIiL/iJLq8kxYsmQJFhYWHDhwgIiICGbNmsWnn34KQFBQEAcPHuTrr79m79695OTk0KZNG27fvm0cf+PGDSZPnszSpUuJjo4mJSWFV1555aFiyc7O5tq1axQtWhSAW7ducejQIZo3b27sY2ZmRvPmzdm7d+8958nIyCAtLc3kEhERERERERERkcdL5V/kmeDm5sbs2bMxGAx4e3tz7NgxZs+eTZMmTfj666+Jjo6mfv36ACxfvhw3NzfWr19P165dAbh9+zZz586lbt26wJ0kfaVKlThw4AB16tQpUCzvv/8+6enpdOvWDYBLly6RlZVFyZIlTfqVLFmSkydP3nOeqVOnEhYWVqC1RURERERERERE5J/RSXV5Jjz//PMYDAbjfb169fj55585ceIEFhYWxmQ5gLOzM97e3sTFxRmfWVhYULt2beN9xYoVcXJyMumTHytWrCAsLIzVq1f/41rpISEhpKamGq/8lqMRERERERERERGRh6eT6iJPyKpVq+jfvz9ffPGFSamXYsWKYW5uzvnz5036nz9/HhcXl3vOZ2lpiaWl5WOLV0RERERERERERHLTSXV5Juzfv9/kft++fXh5eVG5cmUyMzNN2i9fvkx8fDyVK1c2PsvMzOTgwYPG+/j4eFJSUqhUqVK+1l+5ciV9+vRh5cqVtG3b1qStcOHC1KxZk6ioKOOz7OxsoqKiqFevXoH2KSIiIiIiIiIiIo+XTqrLMyEpKYlRo0YxaNAgDh8+zAcffMDMmTPx8vKiQ4cODBgwgE8++QR7e3vGjh1L6dKl6dChg3F8oUKFGD58OHPmzMHCwoJhw4bx/PPP56ue+ooVKwgMDCQiIoK6devyxx9/AGBtbY2joyMAo0aNIjAwkFq1alGnTh3Cw8O5fv06ffr0KfBej4f54+DgUOBxIiIiIiIiIiIi8mBKqsszoXfv3vz555/UqVMHc3Nz3njjDQYOHAjA4sWLeeONN2jXrh23bt2iUaNGfPvttxQqVMg43sbGhjFjxtCjRw9+++03XnjhBRYuXJivtefPn09mZiZDhw5l6NChxueBgYFERkYC0L17dy5evMiECRP4448/qFatGps2bcr18VIRERERERERERF5ugw5OTk5TzsIkcepSZMmVKtWjfDw8IcaHxkZyYgRI0hJSXmkcT1qaWlpODo6kpqaqpPqIiIiIiIiIiIiBZTf/Np/5qR6Tk4OgwYNYs2aNVy9ehVHR0eCgoIeOpH6dwaDgXXr1tGxY8c823fs2MGLL77I1atXcXJyuuc8Hh4ejBgxghEjRjxUHKGhoaxfv57Y2Nh8j3lQ7P8X/F9JbP8bVJm4GTNLm6cdhogAidPaPriTiIiIiIiIiPyf8p/5UOmmTZuIjIxkw4YNJCcnU6VKlacaT2Rk5H2T609ScnIyrVu3fmzz//TTT3Tp0gUPDw8MBsMDf5Exbdo0DAbDQ/9i4V52795NgwYNcHZ2xtramooVKzJ79myTPndj/Pv117IsBeXj44OdnV2e1/Lly//ptkRERERERERERORf5D9zUj0hIQFXV1fq168PgIXFf2Zr/5iLi8tjnf/GjRuUL1+erl27MnLkyPv2jYmJ4ZNPPsHPz++Rx2Fra8uwYcPw8/PD1taW3bt3M2jQIGbPnm2snx4TE0NWVpZxzPHjx2nRogVdu3a957xBQUEEBQXds/3bb7/l9u3bebY9iprot27donDhwv94HhEREREREREREfnn/hMn1YOCghg+fDhJSUkYDAY8PDxy9UlOTqZt27ZYW1tTrlw5VqxYgYeHR4HKw1y6dIlOnTphY2ODl5cXX3/9dZ79duzYQZ8+fUhNTTWehA4NDTW237hxg759+2Jvb0/ZsmWZP3++yfhz584REBBA0aJFsbW1pVatWuzfvz/PtWJiYmjRogXFihXD0dGRxo0bc/jwYZM+BoOB9evXA5CYmIjBYGD16tW88MILWFtbU7t2bU6dOkVMTAy1atXCzs6O1q1bc/HixXy9l9q1azNjxgxeeeUVLC0t79kvPT2dnj17smDBAooUKZKrPSUlhUGDBlGyZEmsrKyoUqUKGzZsMOmzfv16vLy8sLKywt/fn7NnzxrbqlevTkBAAD4+Pnh4ePDqq6/i7+/Prl27jH2KFy+Oi4uL8dqwYQPPPfccjRs3ztdeU1JS6N+/P8WLF8fBwYGmTZuSkpKCp6cn2dnZeHl5kZmZiaenJ56entjb2zN79myee+454xzHjx+ndevW2NnZUbJkSXr16sWlS5eM7U2aNGHYsGGMGDGCYsWK4e/vn2csGRkZpKWlmVwiIiIiIiIiIiLyeP0nkuoRERFMmjSJMmXKkJycTExMTK4+vXv35vfff2fHjh2sXbuW+fPnc+HChQKtExYWRrdu3fjxxx9p06YNPXv25MqVK7n61a9fn/DwcBwcHEhOTiY5OZnRo0cb22fOnEmtWrU4cuQIQ4YM4bXXXiM+Ph64k3hu3Lgxv/32G19//TVHjx4lODiY7OzsPGO6du0agYGB7N69m3379uHl5UWbNm24du3affcyceJExo0bx+HDh7GwsKBHjx4EBwcTERHBrl27OH36NBMmTCjQ+3mQoUOH0rZtW5o3b56rLTs7m9atWxMdHc2yZcs4ceIE06ZNw9zc3Njnxo0bTJ48maVLlxIdHU1KSgqvvPLKPdc7cuQIe/bsuWfC/NatWyxbtoy+fftiMBjytYeuXbty4cIFvvvuOw4dOkSNGjVo1qwZV65coUKFCtSqVStXyZfly5fTo0cP4E5SvmnTplSvXp2DBw+yadMmzp8/T7du3UzGLFmyhMKFCxMdHc3HH3+cZyxTp07F0dHReLm5ueVrDyIiIiIiIiIiIvLw/hM1UhwdHbG3t8fc3DzPUicnT55k69atxpPYAJ9++ileXl4FWicoKIiAgAAApkyZwpw5czhw4ACtWrUy6Ve4cGEcHR0xGAx5xtOmTRuGDBkCwJgxY5g9ezbbt2/H29ubFStWcPHiRWJiYihatCgAnp6e94ypadOmJvfz58/HycmJnTt30q5du3uOGz16tPEE9BtvvEFAQABRUVE0aNAAgH79+hEZGfmAN5J/q1at4vDhw3n+wgNg69atHDhwgLi4OCpUqABA+fLlTfrcvn2buXPnUrduXeBO4rlSpUocOHCAOnXqGPuVKVOGixcvkpmZSWhoKP37989zzfXr15OSknLf0i5/tXv3bg4cOMCFCxeMJ/Lff/991q9fz5o1axg4cCA9e/Zk7ty5vPvuuwCcOnWKQ4cOsWzZMgDmzp1L9erVmTJlinHeRYsW4ebmxqlTp4x79/LyYvr06feNJyQkhFGjRhnv09LSlFgXERERERERERF5zP4TJ9UfJD4+HgsLC2rUqGF85unpmWcJkvv5ax1wW1tbHBwcCnza/e/z3E28350nNjaW6tWrGxPqD3L+/HkGDBiAl5cXjo6OODg4kJ6eTlJSUr5juFv329fX1+TZw+wtL2fPnuWNN95g+fLlWFlZ5dknNjaWMmXKGJPKebGwsKB27drG+4oVK+Lk5ERcXJxJv127dnHw4EE+/vhjwsPDWblyZZ7zLVy4kNatW1OqVKl87ePo0aOkp6fj7Oxs8jHSM2fOkJCQAMArr7xCYmIi+/btA+6cUq9RowYVK1Y0zrF9+3aT8Xfb7s4BULNmzQfGY2lpiYODg8klIiIiIiIiIiIij9d/4qT6k1KoUCGT+//H3r3H91z//x+/vbfZ+WTMbIxhG3MYc6pZOdcckkkOS5izEMthS+WwCDnzUXKojXLIp/ARIpaJdUDZIuc5jFpIthkZtv3+8PP+9s7O5lDdr5fL69L79XqeHs/n+90/zz09XgaDIc+0LMXtx8bGpkh99e7dm0uXLjFv3jwqV66MlZUVgYGB3Lhxo9Ax3El98tdnxZlbbr7//nsuXLhg8keNrKwsvvrqKxYsWEBmZmaR552fKlWqALf/SHD+/HkmTpxo/BcGd5w5c4bt27ezdu3aQvebkZGBu7s7cXFxd5U5OzsDt18K27JlS1auXMnjjz/OypUreemll0z66NChA2+//fZdfbi7uxs/29nZFTouEREREREREREReXD+FZvq1atX59atW+zfv994AvjEiRNcvnz5vo1paWlJVlZWkdv5+/uzdOlSfv/990KdVo+Pj+fdd9+lXbt2wO1T4X9+6eWjoFWrVhw4cMDkWZ8+fahRowaRkZGYm5vj7+/PuXPnTFKg/NWtW7fYt2+fMdXL0aNHSU1Nxc/PL8+xs7OzyczMvOt5dHQ05cqVo3379oWeR/369fn111+xsLDI9WW4d/To0YOIiAhCQ0M5efKkSd73+vXr8+mnn+Ll5YWFxb/ifz8REREREREREZF/lH/Frl6NGjVo3bo1AwcOZOHChZQqVYpRo0ZhY2NT6BdUFpWXlxcZGRnExsZSt25dbG1tsbW1LbBdaGgoU6ZMISQkhKlTp+Lu7s7+/fvx8PAgMDDwrvo+Pj58+OGHNGzYkPT0dMaMGVOip74L48aNGxw6dMj4+eeffyYhIQF7e3u8vb1xcHCgdu3aJm3s7OwoU6aM8XmzZs1o2rQpnTt3Zvbs2Xh7e3PkyBEMBoMxZ32pUqV4+eWXmT9/PhYWFgwbNozHH3/cuMn+zjvvUKlSJWM6la+++oqZM2cyfPhwk7Gzs7OJjo6md+/eRdrYbt26NYGBgYSEhDB9+nR8fX355Zdf2LRpE506dTLm63/uued46aWXeOmll2jRooVJepmhQ4eyZMkSQkNDiYiIwMXFhRMnTrB69WqWLl1q8mLW4joYFaxUMCIiIiIiIiIiIvfJvyKnOsDy5ctxc3OjadOmdOrUiQEDBuDg4JBnju971aRJEwYPHky3bt1wdXUt8KWTd1haWvLFF19Qrlw52rVrR506dZg2bVqem63vv/8+ly9fpn79+vTs2ZPhw4dTrly5kpxKgX755RcCAgIICAggJSWFmTNnEhAQkOcLQvPy6aef0qhRI0JDQ6lZsyYREREmp/1tbW2JjIzkhRdeICgoCHt7ez7++GNjeXZ2NmPHjqVevXo0bNiQd955h7fffps333zTZJzt27eTnJxM3759ixSfwWBg8+bNNG3alD59+uDr60v37t05c+aMMS89gIODAx06dCAxMZEePXqY9OHh4UF8fDxZWVk8/fTT1KlTh/DwcJydnTEz+9f87ygiIiIiIiIiIvK3ZcjJycl52EE8DOfOncPT05Pt27fTqlWrhx2O3CfNmzenXr16zJ07N9dyg8HAunXrCAkJKdFxT58+TZUqVdi/fz/16tUr0b7zkp6ejpOTE57hazCzKvhfRYjI/Xd6WuFTTImIiIiIiIjIw3Vnfy0tLS3fTBDFPhr74YcfEhQUhIeHB2fOnAFg7ty5/O9//ytul/fVl19+yYYNGzh16hRff/013bt3x8vLi6ZNmz7s0OQfyNPTk5SUlLvS3oiIiIiIiIiIiMjfW7E21RcuXMjIkSNp164dqampxhQdzs7OeZ4Ifthu3rzJa6+9Rq1atejUqROurq7ExcVRqlQpVqxYgb29fa5XrVq1HnboD11ea2Nvb8+uXbsednglpiR/B+bm5pQvX14vIxUREREREREREfmHKdaO33/+8x+WLFlCSEgI06ZNMz5v2LAho0ePLrHgSlJwcDDBwcG5lj377LM89thjuZaVKlXqfob1t5CQkJBnWYUKFR5cIMWUnZ1NREQES5cuxdLSksGDBzNx4kRj+W+//UanTp3YsmUL5cqV47XXXrsrJVBuv4PLly8zbNgwvvjiCzIyMqhYsSKvvfYaffr0uSv9S1hYGMuWLburjx07dtC8eXMyMzN5/fXXWbVqFampqdSuXZu3336b5s2bl/RyiIiIiIiIiIiIyD0o1qb6qVOnCAgIuOu5lZUVV69eveegHjQHBwccHBwedhiPLG9v74cdwj1ZtmwZI0eO5LvvvuObb74hLCyMoKAgnnrqKQCioqKYPn06M2bM4D//+Q+jR4/mzJkzuLi45NvvuHHjOHToEJ9//jlly5blxIkT/PHHH7nWnTdvnskfoKZNm8aqVauoUaMGAMOGDePQoUOsXr0aDw8P1q1bR5s2bThw4AA+Pj659pmZmUlmZqbxPj09vUjrIiIiIiIiIiIiIkVXrPQvVapUyfX08pYtW/Dz87vXmERKlL+/PxMmTMDHx4devXrRsGFDYmNjjeVhYWGEhobi7e3NlClTyMjIYM+ePQX2m5ycTEBAAA0bNsTLy4vWrVvToUOHXOs6OTlRvnx5ypcvz9dff82iRYtYu3Yt5cuXJzk5mejoaP773//y5JNPUq1aNUaPHs0TTzxBdHR0nuNPnToVJycn4+Xp6Vn0xREREREREREREZEiKdZJ9ZEjRzJ06FCuX79OTk4Oe/bsYdWqVUydOpWlS5eWdIwi98Tf39/k3t3dnQsXLuRabmdnh6Ojo0l5Xl566SU6d+7MDz/8wNNPP01ISAhNmjTJt83+/fvp2bMnCxYsICgoCIADBw6QlZWFr6+vSd3MzEzKlCmTZ19jx45l5MiRxvv09HRtrIuIiIiIiIiIiNxnxdpU79+/PzY2Nrzxxhtcu3aNF154AQ8PD+bNm0f37t1LOkaRe/LXfOgGg4Hs7OxCl+elbdu2nDlzhs2bN7Nt2zZatWrF0KFDmTlzZq71f/31V5599ln69+9Pv379jM8zMjIwNzfn+++/x9zc3KSNvb19nuNbWVlhZWVVYJwiIiIiIiIiIiJScoq8qX7r1i1WrlxJcHAwPXr04Nq1a2RkZFCuXLn7EZ/II83V1ZXevXvTu3dvnnzyScaMGZPrpvr169fp2LEjNWrUYPbs2SZlAQEBZGVlceHCBZ588skHFbqIiIiIiIiIiIgUQ5E31S0sLBg8eDCHDx8GwNbWFltb2xIPTORRN378eBo0aECtWrXIzMxk48aNeb5TYNCgQZw9e5bY2FguXrxofO7i4oKvry89evSgV69ezJo1i4CAAC5evEhsbCz+/v60b9/+QU1JREREREREREREClCs9C+NGzdm//79VK5cuaTjEfnbsLS0ZOzYsZw+fRobGxuefPJJVq9enWvdnTt3kpKSQs2aNU2e79ixg+bNmxMdHc3kyZMZNWoUP//8M2XLluXxxx/nvD2wYwABAABJREFUmWeeKXJcB6OCcXR0LNacREREREREREREJH+GnJycnKI2WrNmDWPHjuWVV16hQYMG2NnZmZT/9cWQInL/paen4+TkRFpamjbVRUREREREREREiqiw+2vF2lQ3MzO7uyODgZycHAwGA1lZWUXtUorJYDCwbt06QkJCci2Pi4ujRYsWXL58GWdn5zz78fLyIjw8nPDw8GLFMXHiRNavX09CQkKh2xQU+99BTEwM4eHhpKamPuxQjP/Te4avwcxKKZlEHiWnpymNk4iIiIiIiMijrrCb6nfvjhfCqVOn7rpOnjxp/K88umJiYvLdXH+QUlJSaNu27X3r/6effqJz5854eXlhMBiYO3duvvWnTZuGwWAw/mFh8ODB2Nvb53oNHjy40HHs3r2boKAgypQpg42NDTVq1GDOnDkmde7E+Ndr6NChRZ22iIiIiIiIiIiI3EfFyqn+d8mlfuPGDSwtLR92GJKH8uXL39f+r127RtWqVenSpQuvvPJKvnX37t3LokWLTFIXvfnmm4wePTrX+kVJr2JnZ8ewYcPw9/fHzs6O3bt3M2jQIOzs7Bg4cKBx/D//C4+DBw/y1FNP0aVLl0KPIyIiIiIiIiIiIvdfsU6qL1++PN/rYWnevDnDhg0jPDycsmXLEhwczMGDB2nbti329va4ubnRs2dPfvvtN2Ob7Oxspk+fjre3N1ZWVlSqVIm33nrLWH727Fm6du2Ks7MzLi4udOzYkdOnTxvLw8LCCAkJYebMmbi7u1OmTBmGDh3KzZs3jXUyMzOJjIzE09MTKysrvL29ef/998nJycHb25uZM2eazCMhIQGDwcCJEycKNe/ffvuNTp06YWtri4+PDxs2bMi1XlxcHH369CEtLc14EnrixInG8mvXrtG3b18cHByoVKkSixcvNml/7tw5QkNDcXFxwc7OjoYNG/Ldd9/lOtbevXt56qmnKFu2LE5OTjRr1owffvjBpI7BYGD9+vUAnD59GoPBwJo1a3jyySexsbGhUaNGHDt2jL1799KwYUPs7e1p27YtFy9eLNS6NGrUiBkzZtC9e3esrKzyrJeRkUGPHj1YsmQJpUuXNj4vV64c3t7elC1blhkzZhAUFETt2rUJCQlhz549Jn2sX78eHx8frK2tCQ4O5uzZs8aygIAAQkNDqVWrFl5eXrz44osEBweza9cuYx1XV1fKly9vvDZu3Ei1atVo1qxZoeYqIiIiIiIiIiIiD0axNtVHjBhhcg0ZMoSwsDAGDhxY7JzcJWXZsmVYWloSHx/PtGnTaNmyJQEBAezbt48tW7Zw/vx5unbtaqw/duxYpk2bxrhx4zh06BArV67Ezc0NgJs3bxIcHIyDgwO7du0iPj4ee3t72rRpw40bN4x97Nixg6SkJHbs2MGyZcuIiYkhJibGWN6rVy9WrVrF/PnzOXz4MIsWLcLe3h6DwUDfvn2Jjo42mUN0dDRNmzbF29u7UHOOioqia9eu/Pjjj7Rr144ePXrw+++/31WvSZMmzJ07F0dHR1JSUkhJSTE5iT1r1iwaNmzI/v37GTJkCC+99BJHjx4Fbm88N2vWjJ9//pkNGzaQmJhIREQE2dnZucZ05coVevfuze7du/n222/x8fGhXbt2XLlyJd+5TJgwgTfeeIMffvgBCwsLXnjhBSIiIpg3bx67du3ixIkTjB8/vlDrUlhDhw6lffv2tG7d+q6y7Oxs2rZtS3x8PB999BGHDh1i2rRpmJubG+tcu3aNt956i+XLlxMfH09qairdu3fPc7z9+/fz9ddf57lhfuPGDT766CP69u2LwWDIs5/MzEzS09NNLhEREREREREREbm/ipX+5fLly3c9O378OC+99BJjxoy556DuhY+PD9OnTwdg8uTJBAQEMGXKFGP5Bx98gKenJ8eOHcPd3Z158+axYMECevfuDUC1atV44oknAPj444/Jzs5m6dKlxs3N6OhonJ2diYuL4+mnnwagdOnSLFiwAHNzc2rUqEH79u2JjY1lwIABHDt2jDVr1rBt2zbjpm3VqlWN8YSFhTF+/Hj27NlD48aNuXnzJitXrrzr9Hp+wsLCCA0NBWDKlCnMnz+fPXv20KZNG5N6lpaWODk5YTAYck290q5dO4YMGQJAZGQkc+bMYceOHVSvXp2VK1dy8eJF9u7di4uLC0C+m/4tW7Y0uV+8eDHOzs7s3LmTZ555Js92o0ePJjg4GLj9x5vQ0FBiY2MJCgoCoF+/fiZ/sLhXq1ev5ocffmDv3r25lm/fvp09e/Zw+PBhfH19AdPvD27/8WXBggU89thjwO0/7Pj5+Rm/0zsqVqzIxYsXuXXrFhMnTqR///65jrl+/XpSU1MJCwvLN/apU6cSFRVV2KmKiIiIiIiIiIhICSjWSfXc+Pj4MG3aNEaMGFFSXRZLgwYNjJ8TExPZsWOHyQsma9SoAUBSUhKHDx8mMzOTVq1a5dpXYmIiJ06cwMHBwdjexcWF69evk5SUZKxXq1Ytk5PL7u7uXLhwAbidysXc3DzPU8keHh60b9+eDz74AIDPPvuMzMzMIuXS/nMecDs7OxwdHY3jF8Wf+7mz8f7neQQEBBg31Aty/vx5BgwYgI+PD05OTjg6OpKRkUFycnKhY7jzLwbq1Klj8qw4c8vN2bNnGTFiBCtWrMDa2jrXOgkJCVSsWNG4oZ4bCwsLGjVqZLyvUaMGzs7OHD582KTerl272LdvH++99x5z585l1apVufb3/vvv07ZtWzw8PPKNf+zYsaSlpRmvP6ecERERERERERERkfujWCfV8+zMwoJffvmlJLssMjs7O+PnjIwMOnTowNtvv31XPXd3d06ePJlvXxkZGTRo0IAVK1bcVebq6mr8XKpUKZMyg8FgTItiY2NTYMz9+/enZ8+ezJkzh+joaLp164atrW2B7QozflHc6zz+rHfv3ly6dIl58+ZRuXJlrKysCAwMNEmbU1AMd/51wF+fFWduufn++++5cOEC9evXNz7Lysriq6++YsGCBWRmZhZ53vmpUqUKcPuPBOfPn2fixInGf2Fwx5kzZ9i+fTtr164tsD8rK6t8c8WLiIiIiIiIiIhIySvWpvpfX4SZk5NDSkoKCxYsMKbpeBTUr1+fTz/9FC8vLyws7p6qj48PNjY2xMbG5pqKo379+nz88ceUK1cOR0fHYsVQp04dsrOz2blzZ645u+F22hU7OzsWLlzIli1b+Oqrr4o1VmFYWlqSlZVV5Hb+/v4sXbqU33//vVCn1ePj43n33Xdp164dcPtU+J9fEPsoaNWqFQcOHDB51qdPH2rUqEFkZCTm5ub4+/tz7tw5jh07ludp9Vu3brFv3z5jqpejR4+SmpqKn59fnmNnZ2eTmZl51/Po6GjKlStH+/bt72FmIiIiIiIiIiIicr8Ua1M9JCTE5N5gMODq6krLli2ZNWtWScRVIoYOHcqSJUsIDQ0lIiICFxcXTpw4werVq1m6dCnW1tZERkYSERGBpaUlQUFBXLx4kZ9++ol+/frRo0cPZsyYQceOHXnzzTepWLEiZ86cYe3atURERFCxYsUCY/Dy8qJ379707duX+fPnU7duXc6cOcOFCxeML0w1NzcnLCyMsWPH4uPjQ2Bg4H1bEy8vLzIyMoiNjaVu3brY2toW6lR8aGgoU6ZMISQkhKlTp+Lu7s7+/fvx8PDINV4fHx8+/PBDGjZsSHp6OmPGjCnRU9+FcePGDQ4dOmT8/PPPP5OQkIC9vT3e3t44ODhQu3ZtkzZ2dnaUKVPG+LxZs2Y0bdqUzp07M3v2bLy9vTly5AgGg8GYs75UqVK8/PLLzJ8/HwsLC4YNG8bjjz9u3GR/5513qFSpkjH10FdffcXMmTMZPny4ydjZ2dlER0fTu3fvXP8IJCIiIiIiIiIiIg9fsXbuSir9xv3m4eFBfHw8kZGRPP3002RmZlK5cmXatGmDmdntdPLjxo3DwsKC8ePH88svv+Du7s7gwYMBsLW15auvviIyMpLnnnuOK1euUKFCBVq1alWkk+sLFy7ktddeY8iQIVy6dIlKlSrx2muvmdTp168fU6ZMoU+fPiW3ALlo0qQJgwcPplu3bly6dIkJEyYwceLEAttZWlryxRdfMGrUKNq1a8etW7eoWbMm77zzTq7133//fQYOHEj9+vXx9PRkypQpjB49uoRnk79ffvmFgIAA4/3MmTOZOXMmzZo1Iy4urtD9fPrpp4wePZrQ0FCuXr2Kt7c306ZNM5bb2toSGRnJCy+8wM8//8yTTz7J+++/byzPzs5m7NixnDp1CgsLC6pVq8bbb7/NoEGDTMbZvn07ycnJ9O3bt/iTBg5GBRf7X1aIiIiIiIiIiIhI/gw5OTk5RW305ptvMnr06LtOOP/xxx/MmDGD8ePHl1iA/xa7du2iVatWnD171viCTpGiSE9Px8nJibS0NG2qi4iIiIiIiIiIFFFh99eKtalubm5OSkoK5cqVM3l+6dIlypUrV6yc3Y+6nJwcBg0axCeffMLly5dxcnIiLCyMuXPn3lO/mZmZXLx4EU9PT5o2bcrOnTtLJuAHxMvLi/DwcMLDw4vdx8SJE1m/fj0JCQklFtc/QVHX9s7/9J7hazCzKvyLbkXkwTg9Te9KEBEREREREXmUFXZT3aw4nefk5GAwGO56npiYWKiXWP4dbdmyhZiYGDZu3EhKSspdubiLa9WqVVSuXBmAXr16mZStWLECe3v7XK9y5cpRr169EonhjpiYGJydnUu0z8IYPXo0sbGxRW6X19rY29uza9eu+xCpiIiIiIiIiIiI/NsVKad66dKlMRgMGAwGfH19TTbWs7KyyMjIMOYj/6dJSkrC3d2dJk2aAJTYiyTDwsIICwvDYDBQpkwZk7Jnn32Wxx57LNd2CxYsKFJe8EfZnY3wosrvZHuFChXuISIRERERERERERGR3BXppPrcuXOZPXs2OTk5REVFMWfOHOP13nvvsXv37jxfXPl3FhYWxssvv0xycjIGgwEvL6+76qSkpNC+fXtsbGyoUqUKK1euxMvLq9jpYSIjI2nQoAH+/v48/fTTLFu2jMqVK+Pt7c3u3buZN28eiYmJxj9yxMTEAJCamkr//v1xdXXF0dGRli1bkpiYaOw3MTGRFi1a4ODggKOjIw0aNGDfvn3ExcXRp08f0tLSjH0W5gWmAFeuXCE0NBQ7OzsqVKhw12+goJgmTpxocuo+LCyMkJAQZs6cibu7O2XKlGHo0KHcvHnTWCclJYURI0ZQp04dnnrqKfbs2UPr1q3ZuHEj3t7e2NjY5BtzamoqgwYNws3NDWtra2rXrs3GjRuB22mMQkNDqVChAra2ttSpU4dVq1aZtG/evDnDhw8nIiICFxcXypcvf9d65TcGwO7du3nyySexsbHB09OT4cOHc/Xq1UKtuYiIiIiIiIiIiDwcRTpu3bt3bwCqVKlCkyZNKFWq1H0J6lEzb948qlWrxuLFi9m7dy/m5uZ06dLFpE6vXr347bffiIuLo1SpUowcOZILFy4Ue0wHBwdiYmLw8PDgwIEDDBgwAAcHByIiIujWrRsHDx5ky5YtbN++HQAnJycAunTpgo2NDZ9//jlOTk4sWrSIVq1acezYMVxcXOjRowcBAQEsXLgQc3NzEhISKFWqFE2aNGHu3LmMHz+eo0ePAhT69PiMGTN47bXXiIqKYuvWrYwYMQJfX1+eeuqpQsWUmx07duDu7s6OHTs4ceIE3bp1o169egwYMOCe1zs7O5u2bdty5coVPvroI6pVq8ahQ4cwNzcH4Pr16zRo0IDIyEgcHR3ZtGkTPXv2pFq1ajRu3NjYz7Jlyxg5ciTfffcd33zzDWFhYQQFBfHUU08VOEZSUhJt2rRh8uTJfPDBB1y8eJFhw4YxbNgwoqOjCzWPzMxMMjMzjffp6emFaiciIiIiIiIiIiLFV6wcJs2aNTN+vn79Ojdu3DApzy+J+9+Rk5MTDg4OmJubU758+bvKjxw5wvbt29m7dy8NGzYEYOnSpfj4+BR7zDfeeMP42cvLi9GjR7N69WoiIiKwsbHB3t4eCwsLk3h2797Nnj17uHDhAlZWVgDMnDmT9evX88knnzBw4ECSk5MZM2YMNWrUADCJ0cnJCYPBkOsc8xMUFMSrr74KgK+vL/Hx8cyZM4ennnqqUDHlpnTp0ixYsABzc3Nq1KhB+/btiY2NZcCAAfe83tu3b2fPnj0cPnwYX19fAKpWrWosr1ChAqNHjzbev/zyy2zdupU1a9aYbKr7+/szYcIE4PY6LliwgNjYWJ566qkCx5g6dSo9evQwvoTUx8eH+fPn06xZMxYuXIi1tXWB85g6dSpRUVGFmrOIiIiIiIiIiIiUjGJtql+7do2IiAjWrFnDpUuX7irPysq658D+To4ePYqFhQX169c3PvP29qZ06dLF7vPjjz9m/vz5JCUlkZGRwa1btwr8Y0ViYiIZGRl35Wb/448/SEpKAmDkyJH079+fDz/8kNatW9OlSxeqVatW7DgBAgMD77q/k/amMDHlplatWsZT3QDu7u4cOHAAuPf1TkhIoGLFisbN7r/KyspiypQprFmzhp9//pkbN26QmZmJra2tST1/f3+Te3d3d+Np+YLGSExM5Mcff2TFihXGZzk5OWRnZ3Pq1Cn8/PwKnMfYsWMZOXKk8T49PR1PT88C24mIiIiIiIiIiEjxFWtTfcyYMezYsYOFCxfSs2dP3nnnHX7++WcWLVrEtGnTSjrGf51vvvmGHj16EBUVRXBwME5OTqxevZpZs2bl2y4jIwN3d/dcX2Dq7OwM3M5f/sILL7Bp0yY+//xzJkyYwOrVq+nUqdN9mEnhYsrNX1MLGQwGsrOzSySmgvKtz5gxg3nz5jF37lzq1KmDnZ0d4eHhd/2LjPxiLGiMjIwMBg0axPDhw+8qq1SpUmGmgZWVlfH0v4iIiIiIiIiIiDwYxdpU/+yzz1i+fDnNmzenT58+PPnkk3h7e1O5cmVWrFhBjx49SjrOR1r16tW5desW+/fvp0GDBgCcOHGCy5cvF6u/r7/+msqVK/P6668bn505c8akjqWl5V3/IqB+/fr8+uuvWFhY5Poy1Tt8fX3x9fXllVdeITQ0lOjoaDp16pRrn4Xx7bff3nV/56R1YWMqintdb39/f86dO8exY8dyPUkeHx9Px44defHFF4HbOdiPHTtGzZo1Cx1jQWPUr1+fQ4cO4e3tXeg+RURERERERERE5OEr1qb677//bswP7ejoyO+//w7AE088wUsvvVRy0f1N1KhRg9atWzNw4EAWLlxIqVKlGDVqFDY2NhgMhiL35+PjQ3JyMqtXr6ZRo0Zs2rSJdevWmdTx8vLi1KlTxjQjDg4OtG7dmsDAQEJCQpg+fTq+vr788ssvbNq0iU6dOlGrVi3GjBnD888/T5UqVTh37hx79+6lc+fOxj4zMjKIjY2lbt262Nra3pXyJDfx8fFMnz6dkJAQtm3bxn//+182bdoEUGBMd3KiF8W9rnezZs1o2rQpnTt3Zvbs2Xh7e3PkyBEMBgNt2rTBx8eHTz75hK+//prSpUsze/Zszp8/X6RN9YLGiIyM5PHHH2fYsGH0798fOzs7Dh06xLZt21iwYEGR1+TPDkYF/+PeayAiIiIiIiIiIvKoMCtOo6pVq3Lq1Cng9gbnmjVrgNsn2PNL6fFPtnz5ctzc3GjatCmdOnViwIABODg4FOqFk3/17LPP8sorrzBs2DDq1avH119/zbhx40zqdO7cmTZt2tCiRQtcXV1ZtWoVBoOBzZs307RpU/r06YOvry/du3fnzJkzuLm5YW5uzqVLl+jVqxe+vr507dqVtm3bGl922aRJEwYPHky3bt1wdXVl+vTphYp31KhR7Nu3j4CAACZPnszs2bMJDg4GKDCm4rrX9f70009p1KgRoaGh1KxZk4iICOMp/TfeeIP69esTHBxM8+bNKV++PCEhIUWOMb8x/P392blzJ8eOHePJJ58kICCA8ePH4+HhUeRxRERERERERERE5MEx5OTk5BS10Zw5czA3N2f48OFs376dDh06kJOTw82bN5k9ezYjRoy4H7H+rZw7dw5PT0+2b99Oq1atHnY4/3ha79svKnVyciItLU0n1UVERERERERERIqosPtrxdpU/6szZ87w/fff4+3tjb+//71297f05ZdfkpGRQZ06dUhJSSEiIoKff/6ZY8eO3fVCS7l393O9w8LCSE1NZf369SUT7ANy5396z/A1mFkVnLZHRB6809PaP+wQRERERERERCQPhd1UL1b6lz+7fv06lStX5rnnnvvXbqgD3Lx5k9dee41atWrRqVMnXF1diYuLo1SpUqxYsQJ7e/tcr1q1aj3s0PO0a9euPOO2t7d/oLE0b96c8PBw431h1tvc3BxLS8u/zXqLiIiIiIiIiIjIo69YLyrNyspiypQpvPfee5w/f55jx45RtWpVxo0bh5eXF/369SvpOB95wcHBxjzif/Xss8/y2GOP5Vr2KJ9ib9iwIQkJCQ87jFwVZr179OiBn58fb7zxhrHsUV5vERERERERERERefQV66T6W2+9RUxMDNOnT8fS0tL4vHbt2ixdurTEgvuncHBwwNvbO9ercuXKDzu8PNnY2OQZt7e39wOLIywsjJ07dzJv3jwMBgMGg4HTp0+zc+dOGjdujJWVFe7u7rz66qvcunULBwcHJk+ezJ49e1i2bBk+Pj74+PhgYWFBxYoV6devH1WqVMHGxobq1aszb968Yse2ZcsWnnjiCZydnSlTpgzPPPMMSUlJxvLTp09jMBhYvXo1TZo0wdramtq1a7Nz506Tfg4ePEjbtm2xt7fHzc2Nnj178ttvv+U7dmZmJunp6SaXiIiIiIiIiIiI3F/F2lRfvnw5ixcvpkePHpibmxuf161blyNHjpRYcCIA8+bNIzAwkAEDBpCSkkJKSgqlSpWiXbt2NGrUiMTERBYuXMj777/P5MmT82zj6elJdnY2FStW5L///S+HDh1i/PjxvPbaa6xZs6ZYsV29epWRI0eyb98+YmNjMTMzo1OnTmRnZ5vUGzNmDKNGjWL//v0EBgbSoUMHLl26BEBqaiotW7YkICCAffv2sWXLFs6fP0/Xrl3zHXvq1Kk4OTkZL09Pz2LNQURERERERERERAqvWOlffv7551xPKmdnZ3Pz5s17Dkrkz5ycnLC0tMTW1pby5csD8Prrr+Pp6cmCBQswGAzUqFGDX375hcjISMaPH59rGwBzc3OioqKM91WqVOGbb75hzZo1BW5i56Zz584m9x988AGurq4cOnSI2rVrG58PGzbMWHfhwoVs2bKF999/n4iICBYsWEBAQABTpkwx6cfT05Njx47h6+ub69hjx45l5MiRxvv09HRtrIuIiIiIiIiIiNxnxTqpXrNmTXbt2nXX808++YSAgIB7DkqkIIcPHyYwMBCDwWB8FhQUREZGBufOncu37TvvvEODBg1wdXXF3t6exYsXk5ycXKw4jh8/TmhoKFWrVsXR0REvLy+Au/oLDAw0frawsKBhw4YcPnwYgMTERHbs2GHyQtUaNWoAmKSS+SsrKyscHR1NLhEREREREREREbm/inVSffz48fTu3Zuff/6Z7Oxs1q5dy9GjR1m+fDkbN24s6RhFSszq1asZPXo0s2bNIjAwEAcHB2bMmMF3331XrP46dOhA5cqVWbJkCR4eHmRnZ1O7dm1u3LhR6D4yMjLo0KEDb7/99l1l7u7uxYpLRERERERERERE7o8inVQ/efIkOTk5dOzYkc8++4zt27djZ2fH+PHjOXz4MJ999hlPPfXU/YpV/sUsLS3Jysoy3vv5+fHNN9+Qk5NjfBYfH4+DgwMVK1bMtc2dOk2aNGHIkCEEBATg7e2d72nw/Fy6dImjR4/yxhtv0KpVK/z8/Lh8+XKudb/99lvj51u3bvH999/j5+cHQP369fnpp5/w8vK662WwdnZ2xYpNRERERERERERE7o8inVT38fEhJSWFcuXK8eSTT+Li4sKBAwdwc3O7X/GJAODl5cV3333H6dOnsbe3Z8iQIcydO5eXX36ZYcOGcfToUSZMmMDIkSMxMzPLtY2Liws+Pj4sX76crVu3UqVKFT788EP27t1LlSpVihxT6dKlKVOmDIsXL8bd3Z3k5GReffXVXOu+8847+Pj44Ofnx5w5c7h8+TJ9+/YFYOjQoSxZsoTQ0FAiIiJwcXHhxIkTrF69mqVLl5q8DLgwDkYFKxWMiIiIiIiIiIjIfVKkk+p/PhUM8Pnnn3P16tUSDUgkN6NHj8bc3JyaNWvi6urKzZs32bx5M3v27KFu3boMHjyYfv368cYbb+TZJjk5mUGDBvHcc8/RrVs3HnvsMS5dusSQIUOKFZOZmRmrV6/m+++/p3bt2rzyyivMmDEj17rTpk1j2rRp1K1bl927d7NhwwbKli0LgIeHB/Hx8WRlZfH0009Tp04dwsPDcXZ2Nv6BQERERERERERERB4Nhpy/7pTnw8zMjF9//ZVy5coB4ODgQGJiIlWrVr1vAcqjLy4ujhYtWnD58mWcnZ3zrRsTE0N4eDipqakPJLaH7fTp01SpUoX9+/dTr169+zpWeno6Tk5OeIavwczK9r6OJSLFd3pa+4cdgoiIiIiIiIjk4s7+WlpaWr6ZIIp0DNZgMGAwGO56JlJY3bp149ixYw87jEeewWBg/fr1DzsMERERERERERER+Ysi5VTPyckhLCwMKysrAK5fv87gwYPvepni2rVrSy5C+UexsbHBxsbmYYdRKMnJydSsWTPP8kOHDlGpUqUHGJGIiIiIiIiIiIg8bEU6qd67d2/KlSuHk5MTTk5OvPjii3h4eBjv71xSMrZs2cITTzyBs7MzZcqU4ZlnniEpKQm4nVbEYDCwdu1aWrRoga2tLXXr1uWbb74xto+JicHZ2ZmtW7fi5+eHvb09bdq0ISUlxVinefPmhIeHm4wbEhJCWFiY8f7DDz+kYcOGODg4UL58eV544QUuXLhQrDndiemOiRMnUq9ePT788EO8vLxwcnKie/fuXLlyxVgnOzub6dOn4+3tjZWVFZUqVeKtt94ylh84cICWLVtiY2NDmTJlGDhwIBkZGcbysLAwQkJCmDJlCm5ubjg7O/Pmm29y69YtxowZg4uLCxUrViQ6Otok1qysLJo2bYrBYMDc3JzHHnuMjRs3kpCQQEJCAh4eHvnOdenSpbRt2xYrKyu6d+/Ou+++ayy7ceMGw4YNw93dHWtraypXrszUqVOB2y9YBejUqRMGg8F4LyIiIiIiIiIiIg9fkU6q/3XTUe6vq1evMnLkSPz9/cnIyGD8+PF06tSJhIQEY53XX3+dmTNn4uPjw+uvv05oaCgnTpzAwuL2V3vt2jVmzpzJhx9+iJmZGS+++CKjR49mxYoVhY7j5s2bTJo0ierVq3PhwgVGjhxJWFgYmzdvLpF5JiUlsX79ejZu3Mjly5fp2rUr06ZNM26cjx07liVLljBnzhyeeOIJUlJSOHLkiHGNgoODCQwMZO/evVy4cIH+/fszbNgwYmJijGN8+eWXVKxYka+++or4+Hj69evH119/TdOmTfnuu+/4+OOPGTRoEE899RQVK1bk5s2btG/fnsDAQL7++mssLCyYPHkygwcP5scff8TS0jLfOa1YsYLx48ezYMECAgIC2L9/PwMGDMDOzo7evXszf/58NmzYwJo1a6hUqRJnz57l7NmzAOzdu5dy5coRHR1NmzZtMDc3z3WMzMxMMjMzjffp6en38jWIiIiIiIiIiIhIIRRpU10erM6dO5vcf/DBB7i6unLo0CHs7e0BGD16NO3b337pXVRUFLVq1eLEiRPUqFEDuL0h/t5771GtWjUAhg0bxptvvlmkOPr27Wv8XLVqVebPn0+jRo3IyMgwxnEvsrOziYmJwcHBAYCePXsSGxvLW2+9xZUrV5g3bx4LFiygd+/eAFSrVo0nnngCgJUrV3L9+nWWL19uTEO0YMECOnTowNtvv42bmxsALi4uzJ8/HzMzM6pXr8706dO5du0ar732GnB7437atGns3r2b7t278/HHH5Odnc3SpUuN7w2Ijo7G2dmZuLg4nn766XznNGHCBGbNmsVzzz0HQJUqVTh06BCLFi2id+/eJCcn4+PjwxNPPIHBYKBy5crGtq6urgA4OztTvnz5PMeYOnUqUVFRRVtsERERERERERERuSdFSv8iD9bx48cJDQ2latWqODo6GtOAJCcnG+v4+/sbP7u7uwOYpGaxtbU1bqjfqVPU1C3ff/89HTp0oFKlSjg4ONCsWbO74rgXXl5exg31v8Z4+PBhMjMzadWqVa5tDx8+TN26dU3y+gcFBZGdnc3Ro0eNz2rVqoWZ2f/93N3c3KhTp47x3tzcnDJlyhjHTUxM5MSJEzg4OGBvb4+9vT0uLi5cv37dmIInL1evXiUpKYl+/foZ29rb2zN58mRj27CwMBISEqhevTrDhw/niy++KOxyGY0dO5a0tDTjdeeku4iIiIiIiIiIiNw/Oqn+COvQoQOVK1dmyZIleHh4kJ2dTe3atblx44axTqlSpYyf75yozs7OzrX8Tp2cnBzjvZmZmck93D7dfsed9CrBwcGsWLECV1dXkpOTCQ4ONonjXuQW4505lNRLTXMbI79xMzIyaNCgQa5pcu6cJM/LnXzuS5Ys4bHHHjMpu5PKpX79+pw6dYrPP/+c7du307VrV1q3bs0nn3xS6DlZWVkZXxosIiIiIiIiIiIiD4Y21R9Rly5d4ujRoyxZsoQnn3wSgN27d5f4OK6uriYvLs3KyuLgwYO0aNECgCNHjnDp0iWmTZuGp6cnAPv27SvxOPLi4+ODjY0NsbGx9O/f/65yPz8/YmJiuHr1qvG0enx8vDHNS3HVr1+fjz/+mHLlyuHo6Fiktm5ubnh4eHDy5El69OiRZz1HR0e6detGt27deP7552nTpg2///47Li4ulCpViqysrGLHLyIiIiIiIiIiIveH0r88okqXLk2ZMmVYvHgxJ06c4Msvv2TkyJElPk7Lli3ZtGkTmzZt4siRI7z00kukpqYayytVqoSlpSX/+c9/OHnyJBs2bGDSpEklHkderK2tiYyMJCIiguXLl5OUlMS3337L+++/D0CPHj2wtramd+/eHDx4kB07dvDyyy/Ts2dPYz714ujRowdly5alY8eO7Nq1i1OnThEXF8fw4cM5d+5cge2joqKYOnUq8+fP59ixYxw4cIDo6Ghmz54NwOzZs1m1ahVHjhzh2LFj/Pe//6V8+fI4OzsDt1PixMbG8uuvv3L58uViz0NERERERERERERKlk6qP6LMzMxYvXo1w4cPp3bt2lSvXp358+fTvHnzEh2nb9++JCYm0qtXLywsLHjllVeMp9Th9kn2mJgYXnvtNebPn0/9+vWZOXMmzz77bInGkZ9x48ZhYWHB+PHj+eWXX3B3d2fw4MHA7ZzxW7duZcSIETRq1AhbW1s6d+5s3LwuLltbW7766isiIyN57rnnuHLlChUqVKBVq1aFOrnev39/bG1tmTFjBmPGjMHOzo46deoQHh4OgIODA9OnT+f48eOYm5vTqFEjNm/ebMz7PmvWLEaOHMmSJUuoUKECp0+fLnTsB6OCi3y6XkRERERERERERArHkPPXhNoi8reUnp6Ok5MTaWlp2lQXEREREREREREposLur+mk+t+QwWBg3bp1hISE5FoeFxdHixYtuHz5sjGdSG68vLwIDw83np4uqokTJ7J+/XoSEhIK3aag2OXe1Z6wFTMr24cdhogUwulp7R92CCIiIiIiIiJSRMqp/i8QExOT7+Z6SWrbti329va5XlOmTCElJYW2bds+kFjup7zmaG9vz65dux52eCIiIiIiIiIiInKf/ONOqt+4cQNLS8uHHca/1tKlS/njjz9yLXNxccHFxeUBR3R/5Hc6v0KFCg8uEBEREREREREREXmg/vYn1Zs3b86wYcMIDw+nbNmyBAcHc/DgQeOJaTc3N3r27Mlvv/1mbJOdnc306dPx9vbGysqKSpUq8dZbbxnLz549S9euXXF2dsbFxYWOHTuavCgyLCyMkJAQZs6cibu7O2XKlGHo0KHcvHnTWCczM5PIyEg8PT2xsrLC29ub999/n5ycHLy9vZk5c6bJPBISEjAYDJw4caJQ8/7tt9/o1KkTtra2+Pj4sGHDhlzrxcXF0adPH9LS0jAYDBgMBiZOnGgsv3btGn379sXBwYFKlSqxePFik/bnzp0jNDQUFxcX7OzsaNiwId99912uY+3du5ewsDAef/xxGjRoQL9+/UhPT8fb2xtvb29cXFwwGAysX78egNOnT2MwGFizZg1PPvkkNjY2NGrUiGPHjrF3714aNmyIvb09bdu25eLFi4Val7i4OBo3boydnR3Ozs4EBQVx5swZ4P++tz8LDw83eflrQb+NO+vRuHFj6tatS/fu3bl06ZJxjj/99BNBQUFYW1tTtWpVoqKiuHXrFgA5OTlMnDiRSpUqYWVlhYeHB8OHDzf2/e677+Lj44O1tTVubm48//zzhZqziIiIiIiIiIiIPDh/+011gGXLlmFpaUl8fDzTpk2jZcuWBAQEsG/fPrZs2cL58+fp2rWrsf7YsWOZNm0a48aN49ChQ6xcuRI3NzcAbt68SXBwMA4ODuzatYv4+Hjs7e1p06YNN27cMPaxY8cOkpKS2LFjB8uWLSMmJoaYmBhjea9evVi1ahXz58/n8OHDLFq0CHt7ewwGA3379iU6OtpkDtHR0TRt2hRvb+9CzTkqKoquXbvy448/0q5dO3r06MHvv/9+V70mTZowd+5cHB0dSUlJISUlhdGjRxvLZ82aRcOGDdm/fz9DhgzhpZde4ujRowBkZGTQrFkzfv75ZzZs2EBiYiIRERFkZ2fnGtOVK1fo3bs3u3fv5ttvv8XHx4d27dpx5cqVfOcyYcIE3njjDX744QcsLCx44YUXiIiIYN68eezatYsTJ04wfvz4Atfk1q1bhISE0KxZM3788Ue++eYbBg4ciMFgKLDtHfn9Ngpaj127dtGrVy9GjBjBoUOHWLRoETExMcZN+U8//ZQ5c+awaNEijh8/zvr166lTpw4A+/btY/jw4bz55pscPXqULVu20LRp03xjzczMJD093eQSERERERERERGR++sfkf7Fx8eH6dOnAzB58mQCAgKYMmWKsfyDDz7A09OTY8eO4e7uzrx581iwYAG9e/cGoFq1ajzxxBMAfPzxx2RnZ7N06VLjZmx0dDTOzs7ExcXx9NNPA1C6dGkWLFiAubk5NWrUoH379sTGxjJgwACOHTvGmjVr2LZtG61btwagatWqxnjCwsIYP348e/bsoXHjxty8eZOVK1fedXo9P2FhYYSGhgIwZcoU5s+fz549e2jTpo1JPUtLS5ycnDAYDJQvX/6uftq1a8eQIUMAiIyMZM6cOezYsYPq1auzcuVKLl68yN69e41pW/Lb9G/ZsqXJ/eLFi3F2dmbnzp0888wzebYbPXo0wcHBAIwYMYLQ0FBiY2MJCgoCoF+/fiZ/sMhLeno6aWlpPPPMM1SrVg0APz+/AtvdceXKlXx/GwWtR1RUFK+++qqxbdWqVZk0aRIRERFMmDCB5ORkypcvT+vWrSlVqhSVKlWicePGACQnJ2NnZ8czzzyDg4MDlStXJiAgIN94p06dSlRUVKHnJyIiIiIiIiIiIvfuH3FSvUGDBsbPiYmJ7Nixw+TFkTVq1AAgKSmJw4cPk5mZSatWrXLtKzExkRMnTuDg4GBs7+LiwvXr10lKSjLWq1WrFubm5sZ7d3d3Lly4ANxO5WJubk6zZs1yHcPDw4P27dvzwQcfAPDZZ5+RmZlJly5dCj1nf39/42c7OzscHR2N4xfFn/u5s/H+53kEBAQUOg/6+fPnGTBgAD4+Pjg5OeHo6EhGRgbJycmFjuHOqfA7J7jvPCvM3FxcXAgLCyM4OJgOHTowb948UlJSChU7UOBvo6D1SExM5M033zT57Q0YMICUlBSuXbtGly5d+OOPP6hatSoDBgxg3bp1xtQwTz31FJUrV6Zq1ar07NmTFStWcO3atXzjHTt2LGlpacbr7NmzhZ6riIiIiIiIiIiIFM8/YlPdzs7O+DkjI4MOHTqQkJBgch0/fpymTZtiY2OTb18ZGRk0aNDgrvbHjh3jhRdeMNYrVaqUSTuDwWBMA1LQGAD9+/dn9erV/PHHH0RHR9OtWzdsbW0LPef8xi+Ke53Hn/Xu3ZuEhATmzZvH119/TUJCAmXKlDFJm1NQDHf+dcBfnxV2btHR0XzzzTc0adKEjz/+GF9fX7799lsAzMzMyMnJMan/5zz4Bc23ML+dqKgok9/NgQMHOH78ONbW1nh6enL06FHeffddbGxsGDJkCE2bNuXmzZs4ODjwww8/sGrVKtzd3Rk/fjx169YlNTU1z/GsrKxwdHQ0uUREREREREREROT++kdsqv9Z/fr1+emnn/Dy8jK+PPLOZWdnh4+PDzY2NsTGxubZ/vjx45QrV+6u9k5OToWKoU6dOmRnZ7Nz584867Rr1w47OzsWLlzIli1b6Nu3b7HmWxiWlpZkZWUVuZ2/vz8JCQm55mrPTXx8PMOHD6ddu3bUqlULKysrkxfEPigBAQGMHTuWr7/+mtq1a7Ny5UoAXF1d7zq5npCQYPxc0G+joPWoX78+R48evet34+3tjZnZ7f/VbGxs6NChA/PnzycuLo5vvvmGAwcOAGBhYUHr1q2ZPn06P/74I6dPn+bLL7+81+UQERERERERERGREvSPyKn+Z0OHDmXJkiWEhoYSERGBi4sLJ06cYPXq1SxduhRra2siIyOJiIjA0tKSoKAgLl68yE8//US/fv3o0aMHM2bMoGPHjrz55ptUrFiRM2fOsHbtWiIiIqhYsWKBMXh5edG7d2/69u3L/PnzqVu3LmfOnOHChQvGF6aam5sTFhbG2LFj8fHxITAw8L6tiZeXFxkZGcTGxlK3bl1sbW0LdSo+NDSUKVOmEBISwtSpU3F3d2f//v14eHjkGq+Pjw8ffvghDRs2JD09nTFjxhT5tPu9OHXqFIsXL+bZZ5/Fw8ODo0ePcvz4cXr16gXczvk+Y8YMli9fTmBgIB999BEHDx405i4v6LdR0HqMHz+eZ555hkqVKvH8889jZmZGYmIiBw8eZPLkycTExJCVlcVjjz2Gra0tH330ETY2NlSuXJmNGzdy8uRJmjZtSunSpdm8eTPZ2dlUr169yOtwMCpYp9ZFRERERERERETuk3/cSXUPDw/i4+PJysri6aefpk6dOoSHh+Ps7Gw8LTxu3DhGjRrF+PHj8fPzo1u3bsac3ba2tnz11VdUqlSJ5557Dj8/P/r168f169eLtFG5cOFCnn/+eYYMGUKNGjUYMGAAV69eNanTr18/bty4QZ8+fUpuAXLRpEkTBg8eTLdu3XB1dTW+1LUglpaWfPHFF5QrV4527dpRp04dpk2bZpJL/s/ef/99Ll++TP369enZsyfDhw+nXLlyJTmVfNna2nLkyBE6d+6Mr68vAwcOZOjQoQwaNAiA4OBgxo0bR0REBI0aNeLKlSvGDfc78vttFLQewcHBbNy4kS+++IJGjRrx+OOPM2fOHCpXrgyAs7MzS5YsISgoCH9/f7Zv385nn31GmTJlcHZ2Zu3atbRs2RI/Pz/ee+89Vq1aRa1atR7Y+omIiIiIiIiIiEjBDDl/TTItD8yuXbto1aoVZ8+eNb6gU6S40tPTcXJyIi0tTSfVRUREREREREREiqiw+2v/uPQvfweZmZlcvHiRiRMn0qVLF22oFyAnJ4dBgwbxySefcPnyZfbv30+9evVyrdu8eXPq1avH3Llziz3exIkTWb9+vUm+9b8KCwsjNTWV9evXF9hfScRUFLUnbMXMqvAvvRWRh+v0tPYPOwQRERERERERKYJ/XPqXv4NVq1ZRuXJlUlNT70rFsmLFCuzt7XO9/q2pQLZs2UJMTAwbN27E1taWJ554Itf12bVr18MOtVC8vLwe2Aa7iIiIiIiIiIiIlCydVH8IwsLCCAsLy7Xs2Wef5bHHHsu1rFSpUvcxqkdXUlIS7u7uNGnShMTExDzrVahQ4QFGJSIiIiIiIiIiIv9GOqn+iHFwcMDb2zvX684LL/9NwsLCePnll0lOTsZgMNC6des818fGxgaA7OxsIiIicHFxoXz58kycONGkz+TkZDp27Ii9vT2Ojo507dqV8+fP5xlDVlYWI0eOxNnZmTJlyhAREUFxX0XQvHlzzpw5wyuvvILBYMBgMBjL4uPjad68Oba2tpQuXZrg4GAuX76cZ1+ZmZmkp6ebXCIiIiIiIiIiInJ/aVNdHmnz5s3jzTffpGLFiqSkpLB3794C2yxbtgw7Ozu+++47pk+fzptvvsm2bduA2xvuHTt25Pfff2fnzp1s27aNkydP0q1btzz7mzVrFjExMXzwwQfs3r2b33//nXXr1hVrPmvXrqVixYq8+eabpKSkkJKSAkBCQgKtWrWiZs2afPPNN+zevZsOHTqQlZWVZ19Tp07FycnJeHl6ehYrJhERERERERERESk8pX+RR5qTkxMODg6Ym5tTvnz5QrXx9/dnwoQJAPj4+LBgwQJiY2N56qmniI2N5cCBA5w6dcq4Cb18+XJq1arF3r17adSo0V39zZ07l7Fjx/Lcc88B8N5777F169ZizcfFxQVzc3McHBxM5jN9+nQaNmzIu+++a3xWUA79sWPHMnLkSON9enq6NtZFRERERERERETuM51Ul38cf39/k3t3d3cuXLgAwOHDh/H09DTZfK5ZsybOzs4cPnz4rr7S0tJISUkxyXNvYWFBw4YNSzTmOyfVi8LKygpHR0eTS0RERERERERERO4vbarLP85fX+hqMBjIzs5+SNEUzp188CIiIiIiIiIiIvJo06a6/Kv4+flx9uxZzp49a3x26NAhUlNTqVmz5l31nZyccHd357vvvjM+u3XrFt9//32xY7C0tLwrV7q/vz+xsbHF7lNEREREREREREQeDOVUl3+V1q1bU6dOHXr06MHcuXO5desWQ4YMoVmzZnmmdBkxYgTTpk3Dx8eHGjVqMHv2bFJTU4sdg5eXF1999RXdu3fHysqKsmXLMnbsWOrUqcOQIUMYPHgwlpaW7Nixgy5dulC2bNki9X8wKlipYERERERERERERO4TnVSXfxWDwcD//vc/SpcuTdOmTWndujVVq1bl448/zrPNqFGj6NmzJ7179yYwMBAHBwc6depU7BjefPNNTp8+TbVq1XB1dQXA19eXL774gsTERBo3bkxgYCD/+9//sLDQ371EREREREREREQeJYacnJychx2E/DPFxMQQHh5+T6e6/8ni4uJo0aIFly9fxtnZ+Z77S09Px8nJCc/wNZhZ2d57gCLy0Jye1v5hhyAiIiIiIiLyr3Nnfy0tLS3fTBA6qS7ykDRp0oSUlBScnJwedigiIiIiIiIiIiJSSNpUv49u3LjxsEP4R0lOTsbe3j7PKzk5+YHEcfPmzRKJydLSkvLly2MwGB5E2CIiIiIiIiIiIlICtKlegpo3b86wYcMIDw+nbNmyBAcHc/DgQdq2bYu9vT1ubm707NmT3377zdgmOzub6dOn4+3tjZWVFZUqVeKtt94ylp89e5auXbvi7OyMi4sLHTt25PTp08bysLAwQkJCmDlzJu7u7pQpU4ahQ4eabPxmZmYSGRmJp6cnVlZWeHt78/7775OTk4O3tzczZ840mUdCQgIGg4ETJ04UOOfU1FQGDRqEm5sb1tbW1K5dm40bN+Zad+LEidSrV48PPviASpUqYW9vz5AhQ8jKymL69OmUL1+ecuXKmcz/z2M0bNiQmzdv4u7uzuzZs0lISCAhIYFp06bh7u6Ot7c3Xl5ezJo1y6S9l5cXU6ZMoW/fvjg4OFCpUiUWL15c4NwATp8+jcFg4OOPP6ZZs2ZYW1uzYsUKAJYuXcrTTz/NzZs3KVeuHKNHjzbGlJCQwAcffECHDh2wtramYcOGrF+/HoPBQEJCAnA7/YvBYDCmxzlz5gwdOnSgdOnS2NnZUatWLTZv3lyoOEVEREREREREROTB0FsQS9iyZct46aWXiI+PJzU1lZYtW9K/f3/mzJnDH3/8QWRkJF27duXLL78EYOzYsSxZsoQ5c+bwxBNPkJKSwpEjR4DbJ6KDg4MJDAxk165dWFhYMHnyZNq0acOPP/6IpaUlADt27MDd3Z0dO3Zw4sQJunXrRr169RgwYAAAvXr14ptvvmH+/PnUrVuXU6dO8dtvv2EwGOjbty/R0dGMHj3aOIfo6GiaNm2Kt7d3vnPNzs6mbdu2XLlyhY8++ohq1apx6NAhzM3N82yTlJTE559/zpYtW0hKSuL555/n5MmT+Pr6snPnTr7++mv69u1L69ateeyxx0zGWLFihckY3t7efP/994wYMYKJEyfSrVs3vv76a4YMGUKZMmUICwszjjtr1iwmTZrEa6+9xieffMJLL71Es2bNqF69eqG+11dffZVZs2YREBBg3FgfP348CxYsICAggP379zNgwACqVKlC7969SU9P56WXXqJdu3asWrWKM2fOEB4enu8YQ4cO5caNG3z11VfY2dlx6NAh7O3t86yfmZlJZmam8T49Pb1QcxEREREREREREZHi06Z6CfPx8WH69OkATJ48mYCAAKZMmWIs/+CDD/D09OTYsWO4u7szb948FixYQO/evQGoVq0aTzzxBAAff/wx2dnZLF261JgiJDo6GmdnZ+Li4nj66acBKF26NAsWLMDc3JwaNWrQvn17YmNjGTBgAMeOHWPNmjVs27aN1q1bA1C1alVjPGFhYYwfP549e/bQuHFjbt68ycqVK+86vZ6b7du3s2fPHg4fPoyvr+9dfecmOzubDz74AAcHB2rWrEmLFi04evQomzdvxszMjOrVq/P222+zY8cOHnvssQLHmD17Nq1atWLcuHEA+Pr6cujQIWbMmGGyqd6uXTuGDBkCQGRkJHPmzGHHjh2F3lQPDw/nueeeM95PmDCBWbNmGZ9VqVKFQ4cOsWjRInr37s3KlSsxGAwsWbIEa2tratasyc8//2z8Q0dukpOT6dy5M3Xq1CnUWk6dOpWoqKhCxS8iIiIiIiIiIiIlQ+lfSliDBg2MnxMTE9mxY4dJju0aNWoAt09sHz58mMzMTFq1apVrX4mJiZw4cQIHBwdjexcXF65fv05SUpKxXq1atUxOh7u7u3PhwgXgdioXc3NzmjVrlusYHh4etG/fng8++ACAzz77jMzMTLp06VLgXBMSEqhYsaJxs7swvLy8cHBwMN67ublRs2ZNzMzMTJ79Of78xjh8+DBBQUEmz4KCgjh+/DhZWVnGZ/7+/sbPBoOB8uXLG8cojIYNGxo/X716laSkJPr162fy3U6ePNn4vRw9ehR/f3+sra2N7Ro3bpzvGMOHD2fy5MkEBQUxYcIEfvzxx3zrjx07lrS0NON19uzZQs9HREREREREREREikcn1UuYnZ2d8XNGRgYdOnTg7bffvqueu7s7J0+ezLevjIwMGjRoYMzh/Weurq7Gz6VKlTIpMxgMZGdnA2BjY1NgzP3796dnz57MmTOH6OhounXrhq2tbYHtCtP3X+UW673GX9xx74xRGH/9XgGWLFnCY489ZlIvv9Q3Benfvz/BwcFs2rSJL774gqlTpzJr1ixefvnlXOtbWVlhZWVV7PFERERERERERESk6HRS/T6qX78+P/30E15eXnh7e5tcdnZ2+Pj4YGNjQ2xsbJ7tjx8/Trly5e5q7+TkVKgY6tSpQ3Z2Njt37syzTrt27bCzs2PhwoVs2bKFvn37Fqpvf39/zp07x7FjxwpVvzgKGsPPz4/4+HiTZ/Hx8fj6+t7TBnd+3Nzc8PDw4OTJk3d9L1WqVAGgevXqHDhwwCTn+d69ewvs29PTk8GDB7N27VpGjRrFkiVL7sscREREREREREREpHi0qX4fDR06lN9//53Q0FD27t1LUlISW7dupU+fPmRlZWFtbU1kZCQREREsX76cpKQkvv32W95//30AevToQdmyZenYsSO7du3i1KlTxMXFMXz4cM6dO1eoGLy8vOjduzd9+/Zl/fr1xj7WrFljrGNubk5YWBhjx47Fx8eHwMDAQvXdrFkzmjZtSufOndm2bRunTp0yvoS0pBQ0xqhRo4iNjWXSpEkcO3aMZcuWsWDBApMXr94PUVFRTJ06lfnz53Ps2DEOHDhAdHQ0s2fPBuCFF14gOzubgQMHcvjwYbZu3WrMU38nP/5fhYeHs3XrVk6dOsUPP/zAjh078PPzu6/zEBERERERERERkaJR+pf7yMPDg/j4eCIjI3n66afJzMykcuXKtGnTxphDfNy4cVhYWDB+/Hh++eUX3N3dGTx4MAC2trZ89dVXREZG8txzz3HlyhUqVKhAq1atcHR0LHQcCxcu5LXXXmPIkCFcunSJSpUq8dprr5nU6devH1OmTKFPnz5FmuOnn37K6NGjCQ0N5erVq3h7ezNt2rQi9XEvY9SvX581a9Ywfvx4Jk2ahLu7O2+++abJS0rvh/79+2Nra8uMGTMYM2YMdnZ21KlTh/DwcAAcHR357LPPeOmll6hXrx516tRh/PjxvPDCCyZ51v8sKyuLoUOHcu7cORwdHWnTpg1z5swpcmwHo4KL9PsQERERERERERGRwjPk5OTkPOwg5OHbtWsXrVq14uzZs7i5uT3scP6RVqxYQZ8+fUhLSyuxXPF/lp6ejpOTE2lpadpUFxERERERERERKaLC7q/ppPpD1rx5c+rVq8fcuXMfyviZmZlcvHiRiRMn0qVLF22ol6Dly5dTtWpVKlSoQGJiIpGRkXTt2jXXDfWYmBjCw8NJTU0FYOLEiaxfv56EhIQij1t7wlbMrAp+0ayIPLpOT2v/sEMQERERERERkTwop/pDtnbtWiZNmvTQxl+1ahWVK1cmNTWV6dOnm5StWLECe3v7XK9atWqVaBwTJ06kXr16RWpjMBhYv379PY07ZcqUPOfYtm3be+r7119/5cUXX8TPz49XXnmFLl26sHjx4lzrduvW7b6+8FVERERERERERERKhk6qP2QuLi4PdfywsLA8848/++yzPPbYY7mWlSpV6j5G9eAMHjyYrl275lp2rylaIiIiiIiIKFRdGxub+5ISRkREREREREREREqWTqo/ZM2bNze+3PLdd9/Fx8cHa2tr3NzceP755wvVR3Z2NtOnT8fb2xsrKysqVarEW2+9ZSw/cOAALVu2xMbGhjJlyjBw4EAyMjKM5WFhYYSEhDBz5kzc3d0pU6YMQ4cOxdraGm9vb7y9vfniiy9o27YttWvXJigoiFGjRpmMP3XqVKpUqYKNjQ1169blk08+MZbHxcVhMBiIjY2lYcOG2Nra0qRJE44ePQrcTn0SFRVFYmIiBoMBg8FATExMvnP28vICoFOnThgMBuM93H4xa7Vq1bC0tKR69ep8+OGHefbj4uJinKO3tzdly5Zl2rRpBAYG4ufnR8uWLUlMTDTWv3Oi/oMPPqBSpUrY29szZMgQsrKymD59OuXLl6dcuXIm6w8we/Zs6tSpg52dHZ6engwZMsTkO4iJicHZ2TnfOYuIiIiIiIiIiMjDp5Pqj4h9+/YxfPhwPvzwQ5o0acLvv//Orl27CtV27NixLFmyhDlz5vDEE0+QkpLCkSNHALh69SrBwcEEBgayd+9eLly4QP/+/Rk2bJjJxvWOHTtwd3dnx44dnDhxgm7dulGvXj0GDBhQYGxTp07lo48+4r333sPHx4evvvqKF198EVdXV5o1a2as9/rrrzNr1ixcXV0ZPHgwffv2JT4+nm7dunHw4EG2bNnC9u3bAXBycsp3znv37qVcuXJER0fTpk0bzM3NAVi3bh0jRoxg7ty5tG7dmo0bN9KnTx8qVqxIixYtClzLLl26YGNjw+eff46TkxOLFi2iVatWHDt2zPivCpKSkvj888/ZsmULSUlJPP/885w8eRJfX1927tzJ119/Td++fWndurXxpL+ZmRnz58+nSpUqnDx5kiFDhhAREcG7775biG84d5mZmWRmZhrv09PTi92XiIiIiIiIiIiIFI421R8RycnJ2NnZ8cwzz+Dg4EDlypUJCAgosN2VK1eYN28eCxYsoHfv3gBUq1aNJ554AoCVK1dy/fp1li9fjp2dHQALFiygQ4cOvP3228YXk5YuXZoFCxZgbm5OjRo1aN++PbGxsQwYMCDf2DIzM5kyZQrbt28nMDAQgKpVq7J7924WLVpksqn+1ltvGe9fffVV2rdvz/Xr17GxscHe3h4LCwvKly9fqPVydXUFwNnZ2aTNzJkzCQsLY8iQIQCMHDmSb7/9lpkzZxa4qb5792727NnDhQsXsLKyMva3fv16PvnkEwYOHAjcPpn/wQcf4ODgQM2aNWnRogVHjx5l8+bNmJmZUb16dd5++2127Nhh3FS/868R4PYp+8mTJzN48OB72lSfOnUqUVFRxW4vIiIiIiIiIiIiRaf0L4+Ip556isqVK1O1alV69uzJihUruHbtWoHtDh8+TGZmJq1atcqzvG7dusYNdYCgoCCys7ON6VcAatWqZTztDeDu7s6FCxcKjO3EiRNcu3aNp556yuQln8uXLycpKckkFn9/f5P+AeMYJeXw4cMEBQWZPAsKCuLw4cMFtk1MTCQjI4MyZcqYzOXUqVMmc/Hy8sLBwcF47+bmRs2aNTEzMzN59ue5bd++nVatWlGhQgUcHBzo2bMnly5dKtR3nJexY8eSlpZmvM6ePVvsvkRERERERERERKRwdFL9EeHg4MAPP/xAXFwcX3zxBePHj2fixIns3bs331zbJfVyy7++eNRgMJCdnV1gbHfygm/atIkKFSqY9HHntHduYxgMBgDjGI+CjIwM3N3diYuLu6vsz99BbmuV3/qdPn2aZ555hpdeeom33noLFxcXdu/eTb9+/bhx4wa2trbFitfKyuquNRYREREREREREZH7SyfVHyEWFha0bt2a6dOn8+OPP3L69Gm+/PLLfNv4+PhgY2NDbGxsruV+fn4kJiZy9epV47P4+HhjmpJ7ja1mzZpYWVmRnJxs8sJPb29vPD09C92/paUlWVlZha4Ptze3/9rGz8+P+Ph4k2fx8fHUrFmzwP7q16/Pr7/+ioWFxV1zKVu2bJFi+7Pvv/+e7OxsZs2axeOPP46vry+//PJLsfsTERERERERERGRh0cn1R8RGzdu5OTJkzRt2pTSpUuzefNmsrOzC9z4tra2JjIykoiICCwtLQkKCuLixYv89NNP9OvXjx49ejBhwgR69+7NxIkTuXjxIi+//DI9e/Y05lO/l9gcHBwYPXo0r7zyCtnZ2TzxxBOkpaURHx+Po6OjMc97Qby8vDh16hQJCQlUrFgRBweHAk9he3l5ERsbS1BQEFZWVpQuXZoxY8bQtWtXAgICaN26NZ999hlr1641vgA1P61btyYwMJCQkBCmT59u3PzetGkTnTp1omHDhoWay195e3tz8+ZN/vOf/9ChQwfi4+N57733itVXYRyMCsbR0fG+9S8iIiIiIiIiIvJvppPqjwhnZ2fWrl1Ly5Yt8fPz47333mPVqlXUqlWrwLbjxo1j1KhRjB8/Hj8/P7p162bM521ra8vWrVv5/fffadSoEc8//zytWrViwYIFJRbbpEmTGDduHFOnTsXPz482bdqwadMmqlSpUugxOnfuTJs2bWjRogWurq6sWrWqwDazZs1i27ZteHp6Gl+cGhISwrx585g5cya1atVi0aJFREdH07x58wL7MxgMbN68maZNm9KnTx98fX3p3r07Z86cKfQfIHJTt25dZs+ezdtvv03t2rVZsWIFU6dOLXZ/IiIiIiIiIiIi8vAYcnJych52ECJy79LT03FyciItLU0n1UVERERERERERIqosPtrSv9SQnJychg0aBCffPIJly9fxsnJibCwMObOnVsi/RsMBtatW0dISEiJ9PegeHl5ER4eTnh4eLH7mDhxIuvXrychIaHE4irI33W9AWpP2IqZVfFefioij57T09o/7BBERERERERE5E+U/qWEbNmyhZiYGDZu3EhKSgq1a9cukX6Tk5Oxt7cHIDQ0FHt7e5MrOTk513YTJ06kXr16JRLDHTExMTg7O5don3lZsWKFcY4zZ87kxIkTxvvCpMQpqM+/XsXtU0RERERERERERP5ddFK9hCQlJeHu7k6TJk0AsLAomaX18PAgISEBHx8fZs+ezVNPPXVX+T/Rs88+y2OPPZZrWalSpR6ZPkVEREREREREROTfRSfVS0BYWBgvv/wyycnJGAwGvLy87qqTkpJC+/btsbGxoUqVKqxcuRIvL68C08NYWFjg7e0NgLu7O97e3nh7e7NkyRLatWuHo6MjVatWZdy4cdy8eRO4faI8KiqKxMREDAYDBoOBmJgYAFJTU+nfvz+urq44OjrSsmVLEhMTjeMlJibSokULHBwccHR0pEGDBuzbt4+4uDj69OlDWlqasc+JEycWan2uXLlCaGgodnZ2VKhQgXfeecekPLeYTp48aZzrRx99xPPPP2+8nzBhAiEhIcycORN3d3fKlCnD0KFDjfPPa73r1KnDxo0bjf38+apcuXK+c4iMjMTX1xdbW9u71hv+718GLFq0CE9PT2xtbenatStpaWnGOnFxcTRu3Bg7OzucnZ0JCgrizJkzxvL//e9/1K9fH2tra6pWrUpUVBS3bt0q1BqLiIiIiIiIiIjIg6GT6iVg3rx5VKtWjcWLF7N3717Mzc3p0qWLSZ1evXrx22+/ERcXR6lSpRg5ciQXLlwo9pgODg7ExMTg4eHBgQMHGDBgAA4ODkRERNCtWzcOHjzIli1b2L59OwBOTk4AdOnSBRsbGz7//HOcnJxYtGgRrVq14tixY7i4uNCjRw8CAgJYuHAh5ubmJCQkUKpUKZo0acLcuXMZP348R48eBTCmpSnIjBkzeO2114iKimLr1q2MGDECX19f46n7gmLKzY4dO3B3d2fHjh2cOHGCbt26Ua9ePQYMGPDA1/uOEydOsGbNGj777DPS09Pp168fQ4YMYcWKFdy6dYuQkBAGDBjAqlWruHHjBnv27MFgMACwa9cuevXqxfz583nyySdJSkpi4MCBAEyYMCHXmDIzM8nMzDTep6enF3t+IiIiIiIiIiIiUjjaVC8BTk5OODg4YG5uTvny5e8qP3LkCNu3b2fv3r00bNgQgKVLl+Lj41PsMd944w3jZy8vL0aPHs3q1auJiIjAxsYGe3t7LCwsTOLZvXs3e/bs4cKFC1hZWQEwc+ZM1q9fzyeffMLAgQNJTk5mzJgx1KhRA8AkRicnJwwGQ65zzE9QUBCvvvoqAL6+vsTHxzNnzhyeeuqpQsWUm9KlS7NgwQLMzc2pUaMG7du3JzY2lgEDBjzw9b7j+vXrLF++nAoVKgDwn//8h/bt2zNr1iwsLS1JS0vjmWeeoVq1agD4+fkZ20ZFRfHqq6/Su3dvAKpWrcqkSZOIiIjIc1N96tSpREVFFXtOIiIiIiIiIiIiUnTaVH8Ajh49ioWFBfXr1zc+8/b2pnTp0sXu8+OPP2b+/PkkJSWRkZHBrVu3cHR0zLdNYmIiGRkZlClTxuT5H3/8QVJSEgAjR46kf//+fPjhh7Ru3ZouXboYN4GLKzAw8K77O2lvChNTbmrVqoW5ubnx3t3dnQMHDgAPb70rVapk3FC/M8/s7GyOHj1Ks2bNCAsLIzg4mKeeeorWrVvTtWtX3N3djesQHx/PW2+9ZWyflZXF9evXuXbtGra2tnfFNHbsWEaOHGm8T09Px9PTs9hzFBERERERERERkYJpU/1v6JtvvqFHjx5ERUURHByMk5MTq1evZtasWfm2y8jIwN3dnbi4uLvKnJ2dgdu5wV944QU2bdrE559/zoQJE1i9ejWdOnW6DzMpXEy5+euLRQ0GA9nZ2SUc3W3FXe+/io6OZvjw4WzZsoWPP/6YN954g23btvH444+TkZFBVFQUzz333F3trK2tc+3PysrKeLpfREREREREREREHgxtqj8A1atX59atW+zfv58GDRoAt/NvX758uVj9ff3111SuXJnXX3/d+OzPL7wEsLS0JCsry+RZ/fr1+fXXX7GwsMj1Zap3+Pr64uvryyuvvEJoaCjR0dF06tQp1z4L49tvv73r/k7qk8LGVBQPY70BkpOT+eWXX/Dw8ABuz9PMzIzq1asb6wQEBBAQEMDYsWMJDAxk5cqVPP7449SvX5+jR48aX0orIiIiIiIiIiIijyZtqj8ANWrUoHXr1gwcOJCFCxdSqlQpRo0ahY2NjfFFlUXh4+NDcnIyq1evplGjRmzatIl169aZ1PHy8uLUqVMkJCRQsWJFHBwcaN26NYGBgYSEhDB9+nR8fX355Zdf2LRpE506daJWrVqMGTOG559/nipVqnDu3Dn27t1L586djX1mZGQQGxtL3bp1sbW1zTUtyV/Fx8czffp0QkJC2LZtG//973/ZtGkTQIEx3cmJXhQPY73h9ony3r17M3PmTNLT0xk+fDhdu3alfPnynDp1isWLF/Pss8/i4eHB0aNHOX78OL169QJg/PjxPPPMM1SqVInnn38eMzMzEhMTOXjwIJMnTy5SvAejggtMBSQiIiIiIiIiIiLFY/awA/i3WL58OW5ubjRt2pROnToxYMAAHBwc8kztkZ9nn32WV155hWHDhlGvXj2+/vprxo0bZ1Knc+fOtGnThhYtWuDq6sqqVaswGAxs3ryZpk2b0qdPH3x9fenevTtnzpzBzc0Nc3NzLl26RK9evfD19aVr1660bdvW+DLMJk2aMHjwYLp164arqyvTp08vVLyjRo1i3759BAQEMHnyZGbPnk1wcDBAgTEV14Neb7idt/25556jXbt2PP300/j7+/Puu+8CYGtry5EjR+jcuTO+vr4MHDiQoUOHMmjQIACCg4PZuHEjX3zxBY0aNeLxxx9nzpw5VK5cudhrICIiIiIiIiIiIiXPkJOTk/Owg/g3OnfuHJ6enmzfvp1WrVo97HAeqLCwMFJTU1m/fv0DG/N+r/fEiRNZv349CQkJharv5eVFeHg44eHhedYxGAysW7eOkJCQQvWZnp6Ok5MTaWlpOqkuIiIiIiIiIiJSRIXdX1P6lwfkyy+/JCMjgzp16pCSkkJERAReXl40bdr0YYcGQPPmzalXrx5z5869r20elEd9vffu3Yudnd196bv2hK2YWRWclkdE/v5OT2v/sEMQERERERER+ddR+pcH5ObNm7z22mvUqlWLTp064erqSlxcHKVKlWLFihXY29vnetWqVethh56n1NRU3n333Txjf1hu3LjxyK+3q6trofLRi4iIiIiIiIiIyKNFm+oPSHBwMAcPHuTatWucP3+edevWGfNlP/vssyQkJOR6bd68+b7HFhYWxs6dO5k3bx4GgwGDwcDp06fZuXMnjRs3xsrKCnd3d1599VVu3bplbJOYmMjNmze5evUqV69eZePGjXz//fe0bdsWZ2dnbGxsqF69OvPmzSt2bM2bN2fYsGEMGzYMJycnypYty7hx4/hz1iIvLy8mTZpEr169cHR0ZODAgQQHB/Pee+/RoEED0tPT2bdvH7NmzeLq1avG9XZycmLAgAG0bt2a7OxsHB0deeWVV7h48SIdO3bE3t4ef39/9u3bZxwrJiYGZ2dn1q9fj4+PD9bW1gQHB9OvXz9j6pekpCQ6duyIm5sb9vb2NGrUiO3bt5vMy8vLy+SE//Hjx2natCnW1tbUrFmTbdu2FXvNRERERERERERE5P7RpvojwMHBAW9v71yvB/Giynnz5hEYGMiAAQNISUkhJSWFUqVK0a5dOxo1akRiYiILFy7k/fffZ/LkyXm2efLJJ6latSo1a9Zk/fr1HDp0iPHjx/Paa6+xZs2aYse3bNkyLCws2LNnD/PmzWP27NksXbrUpM7MmTOpW7cu+/fvZ9y4cSQlJdGmTRs6d+7Mjz/+yMcff8zu3bsZNmyYcb1LlSrF8uXLadu2LYmJiYSEhDBq1Ch69erFiy++yA8//EC1atXo1auXySb+tWvXeOutt1i+fDnx8fGkpqbSvXt3Y3lGRgbt2rUjNjaW/fv306ZNGzp06EBycnKu88vOzua5557D0tKS7777jvfee4/IyMgC1yUzM5P09HSTS0RERERERERERO4v5VQXnJycsLS0xNbWlvLlywPw+uuv4+npyYIFCzAYDNSoUYNffvmFyMhIxo8fn2sbAHNzc6Kiooz3VapU4ZtvvmHNmjV07dq1WPF5enoyZ84cDAYD1atX58CBA8yZM4cBAwYY67Rs2ZJRo0YZ7/v370+PHj2MLwL18fFh/vz5NGvWjIULF2JtbQ1Au3btGDRoEADjx49n4cKFNGrUiC5dugAQGRlJYGAg58+fN87z5s2bLFiwgMceewy4venv5+fHnj17aNy4MXXr1qVu3brGWCZNmsS6devYsGEDw4YNu2t+27dv58iRI2zduhUPDw8ApkyZQtu2bfNdl6lTp5qstYiIiIiIiIiIiNx/OqkuuTp8+DCBgYEYDAbjs6CgIDIyMjh37ly+bd955x0aNGiAq6sr9vb2LF68OM9T2oXx+OOPm8QRGBjI8ePHycrKMj5r2LChSZvExERiYmJM8qUHBweTnZ3NqVOnjPX8/f2Nn93c3ACoU6fOXc8uXLhgfGZhYUGjRo2M9zVq1MDZ2ZnDhw8Dt0+qjx49Gj8/P5ydnbG3t+fw4cN5rsHhw4fx9PQ0bqjfmWNBxo4dS1pamvE6e/ZsgW1ERERERERERETk3uikupSo1atXM3r0aGbNmkVgYCAODg7MmDGD77777r6Oa2dnZ3KfkZHBoEGDGD58+F11K1WqZPxcqlQp4+c7G/e5PcvOzi50LKNHj2bbtm3MnDkTb29vbGxseP7557lx40ah+ygMKysrrKysSrRPERERERERERERyZ821QUAS0tLk5Pffn5+fPrpp+Tk5Bg3luPj43FwcKBixYq5trlTp0mTJgwZMsT4LCkp6Z5i++uG/LfffouPjw/m5uZ5tqlfvz6HDh3C29v7nsbOza1bt9i3bx+NGzcG4OjRo6SmpuLn5wfcXoOwsDA6deoE3N7gP336dJ79+fn5cfbsWVJSUnB3dwduz1FEREREREREREQePUr/IgB4eXnx3Xffcfr0aX777TeGDBnC2bNnefnllzly5Aj/+9//mDBhAiNHjsTMzCzXNtnZ2fj4+LBv3z62bt3KsWPHGDduHHv37r2n2JKTkxk5ciRHjx5l1apV/Oc//2HEiBH5tomMjOTrr79m2LBhJCQkcPz4cf73v//lmtO8qEqVKsXLL7/Md999x/fff09YWBiPP/64cZPdx8eHtWvXkpCQQGJiIi+88EK+J91bt26Nr68vvXv3JjExkV27dvH666/fc5wiIiIiIiIiIiJS8nRSXYDbKUt69+5NzZo1+eOPPzh16hSbN29mzJgx1K1bFxcXF/r168cbb7yRb5tBgwaxf/9+unXrhsFgIDQ0lCFDhvD5558XO7ZevXrxxx9/0LhxY8zNzRkxYgQDBw7Mt42/vz87d+7k9ddf58knnyQnJ4dq1arRrVu3Ysdxh62tLZGRkbzwwgv8/PPPPPnkk7z//vvG8tmzZ9O3b1+aNGlC2bJliYyMJD09Pc/+zMzMWLduHf369aNx48Z4eXkxf/582rRpU6z4DkYF4+joWKy2IiIiIiIiIiIikj9DTk5OzsMOQiQvzZs3p169esydO/dhhwJATEwM4eHhpKamPuxQ7pKeno6TkxNpaWnaVBcRERERERERESmiwu6v/atOqsfFxdGiRQsuX76Ms7NzifZtMBhYt24dISEhJdpvbhYvXsykSZP4+eefmT17NuHh4fd9zL8TLy8vwsPD7+u63M/f0r2qPWErZla2DzsMEXmEnJ7W/mGHICIiIiIiIvKP8Y/dVH/UTjiXlPT0dIYNG8bs2bPp3LkzTk5ODzukYktOTqZmzZp5lh86dKhY/e7duxc7O7vihnWX3H5LTZo0ISUl5W+9/iIiIiIiIiIiIlJ0/9hN9X+q5ORkbt68Sfv27XF3d3/Y4dwTDw8PEhIS8i2Pi4srcr+urq7FD6oAYWFhhIWFAVC+fPn7No6IiIiIiIiIiIg8mswedgBw+yTwyy+/THh4OKVLl8bNzY0lS5Zw9epV+vTpg4ODA97e3iYvuzx48CBt27bF3t4eNzc3evbsyW+//Qbc3vjcuXMn8+bNw2AwYDAYOH36tLHt999/T8OGDbG1taVJkyYcPXrUJJ6FCxdSrVo1LC0tqV69Oh9++KFJ+fHjx2natCnW1tbUrFmTbdu2mZTfuHGDYcOG4e7ujrW1NZUrV2bq1KmFWovk5GQ6duyIvb09jo6OdO3alfPnzwO383nXqVMHgKpVq941r7x89tlnNGrUCGtra8qWLUunTp2MZZcvX6ZXr16ULl0aW1tb2rZty/Hjx43lMTExODs7s3HjRqpXr46trS3PP/88165dY9myZXh5eVG6dGmGDx9OVlaWsZ2XlxeTJ0+mV69e2NvbU7lyZTZs2MDFixeN86tfvz6pqal4e3vj7e3NRx99xPPPP2+8t7CwYO7cuXh5eRn7DQsLIyQkhJkzZ+Lu7k6ZMmUYOnQoN2/eNBn7z6fKU1NTGTRoEG5ublhbW1O7dm02btwIwKVLlwgNDaVChQrY2tpSp04dVq1aZTJebr+luLg4DAaDSW71Tz/9lFq1amFlZYWXlxezZs0y+R68vLyYMmUKffv2xcHBgUqVKrF48WJj+b38bkREREREREREROTBeCQ21QGWLVtG2bJl2bNnDy+//DIvvfQSXbp0oUmTJvzwww88/fTT9OzZk2vXrpGamkrLli0JCAhg3759bNmyhfPnz9O1a1cA5s2bR2BgIAMGDCAlJYWUlBQ8PT2NY73++uvMmjWLffv2YWFhQd++fY1l69atY8SIEYwaNYqDBw8yaNAg+vTpw44dOwDIzs7mueeew9LSku+++4733nuPyMhIk7nMnz+fDRs2sGbNGo4ePcqKFStMNobzkp2dTceOHfn999/ZuXMn27Zt4+TJk3Tr1g2Abt26sX37dgD27Nlz17xys2nTJjp16kS7du3Yv38/sbGxNG7c2FgeFhbGvn372LBhA9988w05OTm0a9fOZJP62rVrzJ8/n9WrV7Nlyxbi4uLo1KkTmzdvZvPmzXz44YcsWrSITz75xGTsOXPmEBQUxP79+2nfvj09e/akV69evPjii/zwww9Uq1aNXr16UdR35e7YsYOkpCR27NjBsmXLiImJISYmJs81bdu2LfHx8Xz00UccOnSIadOmYW5uDsD169dp0KABmzZt4uDBgwwcOJCePXuyZ88eoODf0h3ff/89Xbt2pXv37hw4cICJEycybty4u+KaNWsWDRs2ZP/+/QwZMoSXXnrJ+Eedov5uMjMzSU9PN7lERERERERERETk/npk0r/UrVuXN954A4CxY8cybdo0ypYty4ABAwAYP348Cxcu5Mcff2T79u0EBAQwZcoUY/sPPvgAT09Pjh07hq+vL5aWltja2uaaouOtt96iWbNmALz66qu0b9+e69evY21tzcyZMwkLC2PIkCEAjBw5km+//ZaZM2fSokULtm/fzpEjR9i6dSseHh4ATJkyhbZt2xr7T05OxsfHhyeeeAKDwUDlypULtQaxsbEcOHCAU6dOGTduly9fTq1atdi7dy+NGjWiTJkywO0UJ4VJP/LWW2/RvXt3oqKiTNYabp+437BhA/Hx8TRp0gSAFStW4Onpyfr16+nSpQsAN2/eNJ7eB3j++ef58MMPOX/+PPb29tSsWZMWLVqwY8cO4x8AANq1a8egQYOA//v+GjVqZOw3MjKSwMBAzp8/X6RUKqVLl2bBggWYm5tTo0YN2rdvT2xsrPG38mfbt29nz549HD58GF9fX+D2Kf87KlSowOjRo433L7/8Mlu3bmXNmjU0btwYJyenfH9Ld8yePZtWrVoxbtw4AHx9fTl06BAzZswwpou5syZ3fluRkZHMmTOHHTt2UL169SL/bqZOnWryvYqIiIiIiIiIiMj998icVPf39zd+Njc3p0yZMsZUJwBubm4AXLhwgcTERHbs2IG9vb3xqlGjBgBJSUlFGutOXvILFy4AcPjwYYKCgkzqBwUFcfjwYWO5p6encUMdIDAw0KR+WFgYCQkJVK9eneHDh/PFF18UvAB/6vvPJ6Fr1qyJs7OzcfyiSkhIoFWrVnmOZ2FhwWOPPWZ8VqZMGapXr24ynq2trXFDHW5/F15eXtjb25s8u7OGd/x5ne98f3l9p0VRq1Yt40lzuP0d5tVHQkICFStWNG6o/1VWVhaTJk2iTp06uLi4YG9vz9atW0lOTi5STHn9bo4fP26SFufPa2IwGChfvrwx9qL+bsaOHUtaWprxOnv2bJFiFhERERERERERkaJ7ZE6qlypVyuTeYDCYPDMYDMDtdB4ZGRl06NCBt99++65+CvPyzrz6LSn169fn1KlTfP7552zfvp2uXbvSunXru9KjPAg2Njb33EdB382dZ39dw9zWOb+1NzMzuysVzJ/T0OQXT17fX0HznzFjBvPmzWPu3LnUqVMHOzs7wsPDuXHjRr7tiiu/2Iv6u7GyssLKyuq+xCkiIiIiIiIiIiK5e2ROqhdF/fr1+emnn/Dy8jK+1PLOZWdnB4ClpaXJCeHC8vPzIz4+3uRZfHw8NWvWNJafPXuWlJQUY/m33357Vz+Ojo5069aNJUuW8PHHH/Ppp5/y+++/Fzj22bNnTU4cHzp0iNTUVOP4ReXv709sbGye4926dYvvvvvO+OzSpUscPXq02OPdC1dXV3799VeTjfWEhIR76tPf359z585x7NixXMvj4+Pp2LEjL774InXr1qVq1ap31S3Mbymv342vr6/JqfqCFOd3IyIiIiIiIiIiIg/O33JTfejQofz++++Ehoayd+9ekpKS2Lp1K3369DFufnp5efHdd99x+vRpfvvtt0KfRB8zZgwxMTEsXLiQ48ePM3v2bNauXWvMu926dWt8fX3p3bs3iYmJ7Nq1i9dff92kj9mzZ7Nq1SqOHDnCsWPH+O9//0v58uVxdnbOd+zWrVtTp04devTowQ8//MCePXvo1asXzZo1o2HDhkVfKGDChAmsWrWKCRMmcPjwYQ4cOGA84e/j40PHjh0ZMGAAu3fvJjExkRdffJEKFSrQsWPHYo13L5o3b87FixeZPn06SUlJvPPOO3z++ef31GezZs1o2rQpnTt3Ztu2bcaT4Fu2bAFur8G2bdv4+uuvOXz4MIMGDeL8+fMmfRTmtzRq1ChiY2OZNGkSx44dY9myZSxYsMAkX3tBivu7ERERERERERERkQfnkUn/UhQeHh7Ex8cTGRnJ008/TWZmJpUrV6ZNmzaYmd3+O8Ho0aPp3bs3NWvW5I8//uDUqVOF6jskJIR58+Yxc+ZMRowYQZUqVYiOjqZ58+bA7RQl69ato1+/fjRu3BgvLy/mz59PmzZtjH04ODgwffp0jh8/jrm5OY0aNWLz5s3G2PJiMBj43//+x8svv0zTpk0xMzOjTZs2/Oc//yneQnF7o/q///0vkyZNYtq0aTg6OtK0aVNjeXR0NCNGjOCZZ57hxo0bNG3alM2bN9+VpuRB8PPz491332XKlClMmjSJzp07M3r0aBYvXnxP/X766aeMHj2a0NBQrl69ire3N9OmTQPgjTfe4OTJkwQHB2Nra8vAgQMJCQkhLS3N2L4wv6X69euzZs0axo8fz6RJk3B3d+fNN980eUlpQYr7u/mrg1HBODo6FqmNiIiIiIiIiIiIFI4h569JrEXkbyk9PR0nJyfS0tK0qS4iIiIiIiIiIlJEhd1f+1ueVJd/Bi8vL8LDwwkPDy+wbkxMDOHh4aSmpt6X/v9Jak/YipmV7cMOQ0QeIaentX/YIYiIiIiIiIj8Y/wtc6r/Xa1YsQJ7e/tcr1q1ahWrz1q1auXZ54oVK0p4BiVr7969DBw48G/b//0SExOjPOoiIiIiIiIiIiKPKJ1Uf4CeffZZHnvssVzLipvDfPPmzdy8eTPXMjc3t2L1+aC4urr+rfsXERERERERERGRfx+dVH+AHBwc8Pb2zvWqXLlysfqsXLlynn06ODiU8AyK5sqVK/To0QM7Ozvc3d2ZM2cOzZs3N6Zj8fLyYu7cucb6qampDBo0CDc3N6ytralduzYbN27Mte+kpCQ6duyIm5sb9vb2NGrUiO3bt5vU+Wv/BoOBRYsW8cwzz2Bra4ufnx/ffPMNJ06coHnz5tjZ2dGkSROSkpIKNb/CxjB58mR69eqFvb09lStXZsOGDVy8eJGOHTtib2+Pv78/+/btAyAuLo4+ffqQlpaGwWDAYDAwceLEQsUjIiIiIiIiIiIi95821eW+GTlyJPHx8WzYsIFt27axa9cufvjhh1zrZmdn07ZtW+Lj4/noo484dOgQ06ZNw9zcPNf6GRkZtGvXjtjYWPbv30+bNm3o0KEDycnJ+cY0adIkevXqRUJCAjVq1OCFF15g0KBBjB07ln379pGTk8OwYcMKNb/CxjBnzhyCgoLYv38/7du3p2fPnvTq1YsXX3yRH374gWrVqtGrVy9ycnJo0qQJc+fOxdHRkZSUFFJSUhg9enSu42dmZpKenm5yiYiIiIiIiIiIyP2l9C9yX1y5coVly5axcuVKWrVqBUB0dDQeHh651t++fTt79uzh8OHD+Pr6AlC1atU8+69bty5169Y13k+aNIl169axYcOGfDfF+/TpQ9euXQGIjIwkMDCQcePGERwcDMCIESPo06dPoeZY2BjatWvHoEGDABg/fjwLFy6kUaNGdOnSxSSO8+fPU758eZycnDAYDJQvXz7f8adOnUpUVFShYhUREREREREREZGSoZPqcl+cPHmSmzdv0rhxY+MzJycnqlevnmv9hIQEKlasaNxQL0hGRgajR4/Gz88PZ2dn7O3tOXz4cIEn1f39/Y2f7+Scr1Onjsmz69evF+rUd2FjKMyYABcuXChwzD8bO3YsaWlpxuvs2bNFai8iIiIiIiIiIiJFp5Pq8kiwsbEpUv3Ro0ezbds2Zs6cibe3NzY2Njz//PPcuHEj33Z/fiGswWDI81l2dnaJxVCSY/6ZlZUVVlZWRWojIiIiIiIiIiIi90Yn1eW+qFq1KqVKlWLv3r3GZ2lpaRw7dizX+v7+/pw7dy7P8r+Kj48nLCyMTp06UadOHcqXL8/p06dLIvRCu18xWFpakpWVde8BioiIiIiIiIiISInTSXW5LxwcHOjduzdjxozBxcWFcuXKMWHCBMzMzIwns/+sWbNmNG3alM6dOzN79my8vb05cuQIBoOBNm3a3FXfx8eHtWvX0qFDBwwGA+PGjSvySe97db9i8PLyIiMjg9jYWOrWrYutrS22traFbn8wKhhHR8d7jkNERERERERERETuppPqct/Mnj2bwMBAnnnmGVq3bk1QUBB+fn5YW1vnWv/TTz+lUaNGhIaGUrNmTSIiIvI8sT179mxKly5NkyZN6NChA8HBwdSvX/9+TueBxdCkSRMGDx5Mt27dcHV1Zfr06SUQrYiIiIiIiIiIiJQEQ05OTs7DDkL+Ha5evUqFChWYNWsW/fr1e9jh/OOkp6fj5OREWlqaTqqLiIiIiIiIiIgUUWH315T+5QGIiYkhPDyc1NTUhx2K0cSJE1m4cCEXLlxg3bp1rF+/ntTUVNavX19iY+zfv58jR47QuHFj0tLSePPNNwHo2LEj8GiuS0mIi4ujRYsWXL58GWdn5wc+fu0JWzGzKny6GBH55zs9rf3DDkFERERERETkH0PpXx6Abt26FfoFnA/C4cOHiYqKYtGiRaSkpNC2bVvmzZtHTEzMPfXr5eXF3LlzTZ7NnDmTunXr0rp1a65evcquXbsoW7YsULx1ad68OeHh4fcUZ2HVqlULe3v7XK8VK1bkGU+TJk1ISUnBycnpgcQpIiIiIiIiIiIiD45Oqv9/WVlZGAwGzMxK/u8MNjY22NjYlHi/xZWUlATcPjF+56WhVlZW+ba5ceMGlpaWRRonICCA77//Ps/yh7kuhZnP5s2buXnzZq5lbm5uebaztLSkfPny9xSfiIiIiIiIiIiIPJoeyZPqy5cvp0yZMmRmZpo8DwkJoWfPngD873//o379+lhbW1O1alWioqK4deuWse7s2bOpU6cOdnZ2eHp6MmTIEDIyMozlMTExODs7s2HDBmrWrImVlRXJycnExcXRuHFj7OzscHZ2JigoiDNnzhQYc2JiIi1atMDBwQFHR0caNGjAvn37TMa6Y+LEidSrV48PP/wQLy8vnJyc6N69O1euXDHWyc7OZvr06Xh7e2NlZUWlSpV46623jOVnz56la9euODs74+LiQseOHTl9+nSBcU6cOJEOHToAYGZmZtxUDwsLIyQkxFivefPmDBs2jPDwcMqWLUtwcDA5OTlMnDiRSpUqYWVlhYeHB8OHDzfWP3PmDK+88goGg8HYb36Kui5hYWHs3LmTefPmGce4M+eDBw/Stm1b7O3tcXNzo2fPnvz222/5zgfy/51UrlwZb29vzp8/T//+/fH396dRo0YMHTqUW7du5RlPXFwcBoPBJK3Np59+Sq1atbCyssLLy4tZs2aZrIWXlxdTpkyhb9++ODg4UKlSJRYvXpzv+mVmZpKenm5yiYiIiIiIiIiIyP31SG6qd+nShaysLDZs2GB8duHCBTZt2kTfvn3ZtWsXvXr1YsSIERw6dIhFixYRExNjsulsZmbG/Pnz+emnn1i2bBlffvklERERJuNcu3aNt99+m6VLl/LTTz/h4uJCSEgIzZo148cff+Sbb75h4MCBhdog7tGjBxUrVmTv3r18//33vPrqq5QqVSrP+klJSaxfv56NGzeyceNGdu7cybRp04zlY8eOZdq0aYwbN45Dhw6xcuVK4+nomzdvEhwcjIODA7t27SI+Ph57e3vatGnDjRs38o1z9OjRREdHA5CSkkJKSkqedZctW4alpSXx8fG89957fPrpp8yZM4dFixZx/Phx1q9fT506dQBYu3YtFStW5M033yyw3/zkty7z5s0jMDCQAQMGGMfw9PQkNTWVli1bEhAQwL59+9iyZQvnz5+na9eu+c4HCv6dJCQk0KpVK2rWrMk333zD7t276dChA1lZWXnG81fff/89Xbt2pXv37hw4cICJEycybty4u9LtzJo1i4YNG7J//36GDBnCSy+9xNGjR/Ncq6lTp+Lk5GS8chtbRERERERERP4fe/cd3uP5/////krIXhIrSARJiIiI2YhZUWq0dosian5QVVsVCYqqICg1+k5oqfZtdVA1Y8QeiRVBKlKVlraRiBEkfn/4eX37qshQqt593I7jOo5c13WO53lJ/3nm7PMUEXmy/pHlX6ytrenSpQuRkZF07NgRgM8++wx3d3caNWpE06ZNGT16ND169ACgfPnyTJo0iZEjRzJhwgQAkzrXHh4eTJ48mf79+zN//nzj8zt37jB//nz8/f0B+P3330lLS6NVq1ZUqFABAB8fn3zFnJyczIgRI6hUqRIAXl5eubbPzs4mKioKe3t7ALp168bWrVt5//33uXbtGhEREcybN8+4xgoVKlCvXj0AvvjiC7Kzs1myZIkx4R8ZGYmTkxPR0dG89NJLj5zXzs7OuDs8rxIlXl5eTJ8+3Xi/fv16SpYsSXBwMIULF8bd3Z3atWsD4OzsjLm5Ofb29n+p9Elu38XR0RELCwtsbGxM5pg3bx4BAQFMmTLF+Ow///kPbm5unDlzBm9v7xzXA3n/nkyfPp2aNWua/N74+voaf84pnj+bOXMmTZo0Ydy4cQB4e3tz6tQpPvzwQ0JCQoztWrRowYABAwAYNWoUs2bNYvv27VSsWDHHcceMGcPQoUON9+np6Uqsi4iIiIiIiIiIPGX/yJ3qAH369GHTpk389NNPwP1SISEhIRgMBuLi4pg4caLJwZEPdgvfuHEDgC1bttCkSRNKly6Nvb093bp147fffjO+h/sJ0apVqxrvnZ2dCQkJoVmzZrRu3ZqIiIh877geOnQovXv3Jjg4mGnTphnrlj+Kh4eHMXEM4OrqyuXLl4H7B4lmZmbSpEmTHPvGxcVx7tw57O3tjet3dnbm1q1bec5bEDVq1DC579ixIzdv3qR8+fL06dOHtWvXmpTceRJy+y6PEhcXx/bt201+Hx78ceOP3+PP64G8f08e7FT/K+Lj4wkKCjJ5FhQUxNmzZ8nKyjI+++PvosFgoGTJkrmu3dLSEgcHB5NLREREREREREREnq5/bFI9ICAAf39/li1bxuHDhzl58qRxV29GRgZhYWHExsYar+PHj3P27FmsrKxISkqiVatWVK1aldWrV3P48GE++ugjAJPyKNbW1g+VdomMjGTv3r3UrVuXL774Am9vb/bt25dnvKGhoZw8eZKWLVuybds2KleuzNq1ax/Z/s+lYQwGA9nZ2ca4cpORkUGNGjVM1h8bG8uZM2fo0qVLnrHml62trcm9m5sbCQkJzJ8/H2trawYMGECDBg0eeZjn48jtuzxKRkYGrVu3fuh7nD17lgYNGjxyPfn5Pfk7D1J9nLWLiIiIiIiIiIjI3+sfWf7lgd69ezN79mx++ukngoODjaUtqlevTkJCAp6enjn2O3z4MNnZ2YSHh2Nmdv/vBl9++WW+5w0ICCAgIIAxY8YQGBjIihUreOGFF/Ls5+3tjbe3N++88w6dO3cmMjKStm3b5nveB7y8vLC2tmbr1q307t37offVq1fniy++oHjx4n/77mRra2tat25N69atGThwIJUqVeL48eNUr14dCwsLk53XT0NOc1SvXp3Vq1fj4eFBoUL5/5XOz+9J1apV2bp1K2FhYfmO5898fHyIiYkxeRYTE4O3tzfm5ub5jldERERERERERESevX90Ur1Lly4MHz6cxYsXs2zZMuPz8ePH06pVK9zd3enQoQNmZmbExcVx4sQJJk+ejKenJ3fu3GHu3Lm0bt3a5GDK3Jw/f55FixbxyiuvUKpUKRISEjh79izdu3fPtd/NmzcZMWIEHTp0oFy5cly8eJGDBw/Svn37x1q3lZUVo0aNYuTIkVhYWBAUFMSVK1c4efIkvXr1omvXrnz44Ye8+uqrTJw4kTJlynDhwgXWrFnDyJEjKVOmzGPNm5eoqCiysrKoU6cONjY2fPbZZ1hbW1O2bFngfumWnTt38vrrr2NpaUnRokWfeAweHh7s37+fpKQkY9mbgQMHsnjxYjp37szIkSNxdnbm3LlzrFy5kiVLljwycZ2f35MxY8bg5+fHgAED6N+/PxYWFmzfvp2OHTtStGjRHOP5s2HDhlGrVi0mTZrEa6+9xt69e5k3b55JnfYn6URYM5WCEREREREREREReUr+seVfABwdHWnfvj12dna0adPG+LxZs2Z8++23bNq0iVq1avHCCy8wa9YsY3LX39+fmTNn8sEHH1ClShWWL1/O1KlT85zPxsaG06dP0759e7y9venbty8DBw6kX79+ufYzNzfnt99+o3v37nh7e9OpUydefvnlR+5uzo9x48YxbNgwxo8fj4+PD6+99pqxvraNjQ07d+7E3d2ddu3a4ePjQ69evbh169ZTTaY6OTmxePFigoKCqFq1Klu2bOGbb77BxcUFgIkTJ5KUlESFChUoVqzYU4lh+PDhmJubU7lyZYoVK0ZycjKlSpUiJiaGrKwsXnrpJfz8/BgyZAhOTk7GHeg5yc/vibe3N5s2bSIuLo7atWsTGBjIV199ZdwRn1M8f1a9enW+/PJLVq5cSZUqVRg/fjwTJ040OaRUREREREREREREng+Ge/fu3XvWQeSmSZMm+Pr6MmfOnGcdihRQdHQ0jRs3JjU1FScnp3z3Cw0NZcGCBVy+fJm1a9ea/EHlf0lSUhLlypXj6NGjVKtW7S+Pl56ejqOjI25DvsTM0uavBygi//OSprV81iGIiIiIiIiI/GM8yK+lpaXlunn5H7tTPTU1lbVr1xIdHc3AgQOfdTj/cxo1asSQIUOeap+6deuSkpKCo6NjvvvEx8cTFhbGwoULSUlJ4eWXXy5QjCIiIiIiIiIiIiJP0z82qR4QEEBISAgffPABFStWfNbh4Ovri52dXY7X8uXLn3V4Jh4Vp52dHbt27frb4nj11Vfx9PTE3t7+oTimTJmSY5/ExERj35IlS2JpaflYc9+5c+ex4xYRERERERERERF5lH9sUj0pKYm0tDSGDx/+rEMBYMOGDcTGxuZ4vfLKK886PBOPijM2NpaaNWsSEhLCjh07iIiIwGAwYDAYSEpKYseOHdSuXRtLS0tcXV0ZPXo0d+/eBXhkn9y8+eabXL9+nZ07dxIbG8u4ceMwGAzMnTuXqKgo7OzsaN68OSkpKcD9si+tW7cGwMzMDIPBAEB2drbxQFZLS0uqVavGxo0bjfMkJSVhMBj44osvaNiwIVZWVsY/dPznP//B19fXuKZBgwYZ+129epXevXtTrFgxHBwcePHFF4mLi8vXNw4NDaVatWosXLgQNzc3bGxs6NSpE2lpacY2ecX9Z6mpqXTt2pVixYphbW2Nl5cXkZGR+YpHRERERERERERE/h6FnnUAz4sHh6A+Dzw9PXN9HxERwZkzZ6hSpQoTJ04EICsrixYtWhASEsKyZcs4ffo0ffr0wcrKitDQ0Bz75HUY6YP35cuXx8nJiRIlSpCZmcmKFStYsWIFZmZmvPHGGwwfPpzly5czfPhwPDw86NmzpzHR/iDe8PBwFi5cSEBAAP/5z3945ZVXOHnyJF5eXsZ2o0ePJjw8nICAAKysrFiwYAFDhw5l2rRpvPzyy6SlpRETE2Ns37FjR6ytrfnuu+9wdHRk4cKFNGnShDNnzuDs7Jzndz537hxffvkl33zzDenp6fTq1YsBAwYYE/r5jfuBcePGcerUKb777juKFi3KuXPnuHnz5iPnz8zMJDMz03ifnp6eZ8wiIiIiIiIiIiLy1yip/i/k6OiIhYUFNjY2lCxZEoCxY8fi5ubGvHnzMBgMVKpUiUuXLjFq1CjGjx+fY5/HcefOHT7++GMqVKgAwKBBg4xJejs7O+OBpn+cY8aMGYwaNYrXX38dgA8++IDt27cze/ZsPvroI2O7IUOG0K5dO+P95MmTGTZsGG+//bbxWa1atQDYvXs3Bw4c4PLly8YSMzNmzGDdunWsWrWKvn375rmWW7dusWzZMkqXLg3A3LlzadmyJeHh4ZQsWTLfcT+QnJxMQEAANWvWBMDDwyPX+adOnUpYWFiecYqIiIiIiIiIiMiT848t/yJ/r/j4eAIDA40lVwCCgoLIyMjg4sWLT2weGxsbY0IdwNXVlcuXLz+yfXp6OpcuXSIoKMjkeVBQEPHx8SbPHiSjAS5fvsylS5do0qRJjuPGxcWRkZGBi4uLSa338+fPG+u658Xd3d2YUAcIDAwkOzubhISEAsX9wP/93/+xcuVKqlWrxsiRI9mzZ0+u848ZM4a0tDTj9eOPP+YrbhEREREREREREXl82qkuf6vChQub3BsMBu7du/dExra1tTX+bG1tnWvbjIwMXF1diY6Ofujdg93yf7eXX36ZCxcusGHDBjZv3kyTJk0YOHAgM2bMyLG9paXlYx/kKiIiIiIiIiIiIo9HO9X/pSwsLMjKyjLe+/j4sHfvXpMEd0xMDPb29pQpUybHPn8HBwcHSpUqZVIL/UFslStXfmQ/e3t7PDw82Lp1a47vq1evzs8//0yhQoXw9PQ0uYoWLZqv2JKTk7l06ZLxft++fZiZmVGxYsXHjrtYsWL06NGDzz77jNmzZ7No0aJ8xSIiIiIiIiIiIiJ/D+1U/5fy8PBg//79JCUlYWdnx4ABA5g9ezZvvfUWgwYNIiEhgQkTJjB06FDMzMxy7OPs7Gx89zSNGDGCCRMmUKFCBapVq0ZkZCSxsbHGA0EfJTQ0lP79+1O8eHFefvllrl27RkxMDG+99RbBwcEEBgbSpk0bpk+fjre3N5cuXWL9+vW0bdvWpJTMo1hZWdGjRw9mzJhBeno6gwcPplOnTsZ68AWNe/z48dSoUQNfX18yMzP59ttv8fHxKfgHExERERERERERkadGSfV/qeHDh9OjRw8qV67MzZs3OX/+PBs2bGDEiBH4+/vj7OxMr169eO+993Ltk9dhmk/C4MGDSUtLY9iwYVy+fJnKlSvz9ddf4+XllWu/Hj16cOvWLWbNmsXw4cMpWrQoHTp0AO6XndmwYQNjx46lZ8+eXLlyhZIlS9KgQQNKlCiRr7g8PT1p164dLVq04Pfff6dVq1bMnz//seO2sLBgzJgxJCUlYW1tTf369Vm5cmU+v9L/cyKsGQ4ODgXuJyIiIiIiIiIiInkz3HtSBa1F/kVCQ0NZt24dsbGxzzoUo/T0dBwdHUlLS1NSXUREREREREREpIDym1/TTnUpkOjoaBo3bkxqauozO9Dzn65Ro0ZUq1aN2bNnP/YYUVFRDBkyhKtXrxa4b5UJ32NmafPYc4uIPK6kaS2fdQgiIiIiIiIiT50OKpXH1r9/f+zs7HK8+vfv/6zD+0t8fX0fuba8armLiIiIiIiIiIjI/y7tVP8Hu337NhYWFs86jEeaOHEiw4cPz/Hd815+ZMOGDdy5cyfHdyVKlMDe3p7Q0NC/NygRERERERERERF55rRT/R+kUaNGDBo0iCFDhlC0aFGaNWvGzJkz8fPzw9bWFjc3NwYMGEBGRoZJv5iYGBo1aoSNjQ1FihShWbNmpKamApCdnc3UqVMpV64c1tbW+Pv7s2rVqnzHtGHDBry9vbG2tqZx48YkJSUZ3xUvXhxPT09+/vlnevbsiZ+fH40bN2bOnDnY2toa282fPx8vLy+srKwoUaKE8bDQB/FNnz4dT09PLC0tcXd35/33389XbD/++COdOnXCyckJZ2dnXn31VZP4QkJCaNOmDTNmzMDV1RUXFxcGDhxokizPzMxk1KhRuLm5YWlpiaenJ5988glly5bF09OTn376iS5duuDr60v9+vVZsmQJ1tbWxv7Xr1+ne/fu2NnZ4erqSnh4+ENxZmZmMnz4cEqXLo2trS116tQhOjrapE1UVBTu7u7Y2NjQtm1bfvvtt3x9AxEREREREREREfl7Kan+D7N06VIsLCyIiYnh448/xszMjDlz5nDy5EmWLl3Ktm3bGDlypLF9bGwsTZo0oXLlyuzdu5fdu3fTunVrsrKyAJg6dSrLli3j448/5uTJk7zzzju88cYb7NixI89YfvzxR9q1a0fr1q2JjY2ld+/ejB492qRNYmIizZs3p3379hw7dowvvviC3bt3M2jQIAAOHTrE4MGDmThxIgkJCWzcuJEGDRoY+48ZM4Zp06Yxbtw4Tp06xYoVKyhRokSesd25c4dmzZphb2/Prl27iImJwc7OjubNm3P79m1ju+3bt5OYmMj27dtZunQpUVFRREVFGd93796dzz//nDlz5hAfH8/ChQuxs7MD4KeffqJFixbUqlWLuLg4FixYwCeffMLkyZON/UeMGMGOHTv46quv2LRpE9HR0Rw5csQk1kGDBrF3715WrlzJsWPH6NixI82bN+fs2bMA7N+/n169ejFo0CBiY2Np3LixyRyPkpmZSXp6usklIiIiIiIiIiIiT5fh3r179551EHJfo0aNSE9Pfygp+0erVq2if//+/PrrrwB06dKF5ORkdu/e/VDbzMxMnJ2d2bJlC4GBgcbnvXv35saNG6xYsSLXeN59912++uorTp48aXw2evRoPvjgA+NBpb1798bc3JyFCxca2+zevZuGDRty/fp1NmzYQM+ePbl48SL29vYm41+7do1ixYoxb948evfunfvH+ZPPPvuMyZMnEx8fj8FgAO6Xy3FycmLdunW89NJLhISEEB0dTWJiIubm5gB06tQJMzMzVq5cyZkzZ6hYsSKbN28mODj4oTnGjh3L6tWrTeaYP38+o0aNIi0tjRs3buDi4sJnn31Gx44dAfj9998pU6YMffv2Zfbs2SQnJ1O+fHmSk5MpVaqUcezg4GBq167NlClT6NKlC2lpaaxfv974/vXXX2fjxo25HlQaGhpKWFjYQ8/dhnypg0pF5JnQQaUiIiIiIiLyPEtPT8fR0ZG0tLRcy1urpvo/TI0aNUzut2zZwtSpUzl9+jTp6encvXuXW7ducePGDWxsbIiNjTUmdP/s3Llz3Lhxg6ZNm5o8v337NgEBAXnGEh8fT506dUye/TE5DxAXF8exY8dMDu+8d+8e2dnZnD9/nqZNm1K2bFnKly9P8+bNad68OW3btsXGxob4+HgyMzNp0qRJnrH8WVxcHOfOnXsoUX/r1i0SExON976+vsaEOoCrqyvHjx8H7u/yNzc3p2HDho9cf2BgoDGhDhAUFERGRgYXL14kNTWV27dvm3wjZ2dnKlasaLw/fvw4WVlZeHt7m4ydmZmJi4uLcZ62bduavA8MDGTjxo25foMxY8YwdOhQ4316ejpubm659hEREREREREREZG/Rkn1f5g/1iJPSkqiVatW/N///R/vv/8+zs7O7N69m169enH79m1sbGxM6nv/2YPa6+vXr6d06dIm7ywtLZ9IvBkZGfTr14/Bgwc/9M7d3R0LCwuOHDlCdHQ0mzZtYvz48YSGhnLw4MFcY8/PvDVq1DBJ5j9QrFgx48+FCxc2eWcwGMjOzgb4S/PnV0ZGBubm5hw+fNgkuQ8Yy8w8LktLyyf27ygiIiIiIiIiIiL5o6T6P9jhw4fJzs4mPDwcM7P75e+//PJLkzZVq1Zl69atOZYBqVy5MpaWliQnJz9yN3ZufHx8+Prrr02e7du3z+S+evXqnDp1Ck9Pz0eOU6hQIYKDgwkODmbChAk4OTmxbds2WrRogbW1NVu3bi1w+Zfq1avzxRdfULx48Vz/V4zc+Pn5kZ2dzY4dO3Is/+Lj48Pq1au5d++ecbd6TEwM9vb2lClTBmdnZwoXLsz+/ftxd3cHIDU1lTNnzhi/d0BAAFlZWVy+fJn69evnGIePjw/79+83efbn7ywiIiIiIiIiIiL/DEqq/4N5enpy584d5s6dS+vWrY2Hl/7RmDFj8PPzY8CAAfTv3x8LCwu2b99Ox44dKVq0KMOHD+edd94hOzubevXqkZaWRkxMDA4ODvTo0SPX+fv37094eDgjRoygd+/eHD582OSQT4BRo0bxwgsvMGjQIHr37o2trS2nTp1i8+bNzJs3j2+//ZYffviBBg0aUKRIETZs2EB2djYVK1bEysqKUaNGMXLkSCwsLAgKCuLKlSucPHmSXr165Rpb165d+fDDD3n11VeZOHEiZcqU4cKFC6xZs4aRI0dSpkyZPL+vh4cHPXr04M0332TOnDn4+/tz4cIFLl++TKdOnRgwYACzZ8/mrbfeYtCgQSQkJDBhwgSGDh2KmZkZdnZ29OrVixEjRuDi4kLx4sUZO3as8Q8gAN7e3nTt2pXu3bsTHh5OQEAAV65cYevWrVStWpWWLVsyePBggoKCmDFjBq+++irff/99nqVfcnMirNlj/6FBREREREREREREcmeWdxN5Vvz9/Zk5cyYffPABVapUYfny5UydOtWkjbe3N5s2bSIuLo7atWsTGBjIV199RaFC9/9eMmnSJMaNG8fUqVPx8fGhefPmrF+/nnLlyuU5v7u7O6tXr2bdunX4+/vz8ccfM2XKFJM2VatWZceOHZw5c4b69esTEBDA+PHjjYdyOjk5sWbNGl588UV8fHz4+OOP+fzzz/H19QVg3LhxDBs2jPHjx+Pj48Nrr73G5cuX84zNxsaGnTt34u7uTrt27fDx8aFXr17cunWrQAnlBQsW0KFDBwYMGEClSpXo06cP169fB6B06dJs2LCBAwcO4O/vT//+/enVqxfvvfeesf+HH35I/fr1ad26NcHBwdSrV++huviRkZF0796dYcOGUbFiRdq0acPBgweNu9tfeOEFFi9eTEREBP7+/mzatMlkDhEREREREREREfnnMNy7d+/esw5CRP66/J5OLCIiIiIiIiIiIg/Lb35N5V/EqFGjRlSrVo3Zs2c/8bE9PDwYMmQIQ4YMeeJj58fTXNs/LZYqE77HzNLmqYwtIpIfSdNaPusQRERERERERJ4alX/5F4qOjsZgMNCzZ0/s7OyM165du5g/fz52dnb079//mcY4ZcoUk9j+eNWpUweDwcDVq1efaYxPk8FgYN26dc86DBEREREREREREfkT7VT/F3v33XcZO3as8b5r1674+Pjw3nvvPfPyIf3796dTp045vjt69Ogj34mIiIiIiIiIiIg8Tf/qneobN26kXr16ODk54eLiQqtWrUhMTASgbt26jBo1yqT9lStXKFy4MDt37gQgJSWFli1bYm1tTbly5VixYgUeHh75LuthMBhYuHAhrVq1wsbGBh8fH/bu3cu5c+do1KgRtra21K1b1xjTAwsWLKBChQpYWFhQsWJFPv3004fGXbJkCW3btsXGxgYvLy++/vprAJKSkmjcuDFw/5BTLy8vJk+ejKenJ9bW1jg4OLBo0SIqVapEyZIlCQ0NNY577949QkNDcXd3x9LSklKlSjF48OB8f+8/mjlzJn5+ftja2uLm5saAAQPIyMgwvr927RrvvPMOtWrVwt/fn1dffZUzZ85QqFAhY0K9SJEiGAwGQkJC8jXn3bt3GTRoEI6OjhQtWpRx48bxxyMFUlNT6d69O0WKFMHGxoaXX36Zs2fPGt+HhoZSrVo1kzFnz56Nh4eHyRyDBw82/k6NGjWKHj160KZNG5N+2dnZjBw5Emdn54e+84Px2rZti8FgMBn/jzIzM0lPTze5RERERERERERE5On6VyfVr1+/ztChQzl06BBbt27FzMyMtm3bkp2dTdeuXVm5cqVJ0vWLL76gVKlS1K9fH4Du3btz6dIloqOjWb16NYsWLeLy5csFimHSpEl0796d2NhYKlWqRJcuXejXrx9jxozh0KFD3Lt3j0GDBhnbr127lrfffpthw4Zx4sQJ+vXrR8+ePdm+fbvJuGFhYXTq1Iljx47RokULunbtyu+//46bmxurV68GICEhgZSUFCIiIoz9li5diq2tLfv372f69OlMnDiRzZs3A7B69WpmzZrFwoULOXv2LOvWrcPPz69gH/3/Z2Zmxpw5czh58iRLly5l27ZtjBw50vh+4MCBZGZmsnPnTo4fP84HH3yAnZ1dnvHnZunSpRQqVIgDBw4QERHBzJkzWbJkifF9SEgIhw4d4uuvv2bv3r3cu3ePFi1acOfOnXyv64MPPmD58uVERkYSExNDenp6jmVccvvOBw8eBCAyMpKUlBTj/Z9NnToVR0dH4+Xm5pbvOEVEREREREREROTxGO79MWv8L/frr79SrFgxjh8/TokSJShVqhTbtm0zJtHr1q1LgwYNmDZtGqdPn8bHx4eDBw9Ss2ZNAM6dO4eXlxezZs3K14GcBoOB9957j0mTJgGwb98+AgMD+eSTT3jzzTcBWLlyJT179uTmzZsABAUF4evry6JFi4zjdOrUievXr7N+/focx71+/Tp2dnZ89913NG/enOjoaBo3bkxqaipOTk7GcRo1akRWVha7du0yPqtduzYvvvgi06ZNY+bMmSxcuJATJ05QuHDhAn3bvA4qXbVqFf379+fXX38FoGrVqrRv354JEyY81PZR8eemUaNGXL58mZMnT2IwGAAYPXo0X3/9NadOneLs2bN4e3sTExND3bp1Afjtt99wc3Nj6dKldOzYkdDQUNatW0dsbKxx3NmzZzN79mySkpIAKFmyJMOHD2f48OEAZGVlUb58eQICAozJ9by+M9z/N1y7du1DO9z/KDMzk8zMTON9eno6bm5uuA35UgeVisgzpYNKRURERERE5HmUnp6Oo6MjaWlpuZbH/lfvVD979iydO3emfPnyODg4GMtsJCcnU6xYMV566SWWL18OwPnz59m7dy9du3YF7u+SLlSoENWrVzeO5+npSZEiRQoUQ9WqVY0/lyhRAsBk93eJEiW4deuWsbRHfHw8QUFBJmMEBQURHx//yHFtbW1xcHDI1y76P/YDcHV1Nfbr2LEjN2/epHz58vTp04e1a9dy9+7d/CzzIVu2bKFJkyaULl0ae3t7unXrxm+//caNGzcAGDx4MJMnTyYoKIgJEyZw7Nixx5rnj1544QVjQh0gMDCQs2fPkpWVRXx8PIUKFaJOnTrG9y4uLlSsWPGhb/soaWlp/PLLL9SuXdv4zNzcnBo1ajzUNrfvnF+WlpY4ODiYXCIiIiIiIiIiIvJ0/auT6q1bt+b3339n8eLF7N+/n/379wNw+/Zt4P7BnatWreLOnTusWLECPz+/xy538ih/3PH9IOGb07Ps7OzHHvfBOPkZI7d+bm5uJCQkMH/+fKytrRkwYAANGjQoUHkUuF/XvVWrVlStWpXVq1dz+PBhPvroI+D/ffvevXvzww8/0K1bN44fP07NmjWZO3dugeZ50szMzPjz/9hR0LU/8Lj/PiIiIiIiIiIiIvJs/WuT6r/99hsJCQm89957NGnSBB8fH1JTU03avPrqq9y6dYuNGzeyYsUK4y51gIoVK3L37l2OHj1qfHbu3LmHxnjSfHx8iImJMXkWExND5cqV8z2GhYUFcL80SUFZW1vTunVr5syZQ3R0NHv37uX48eMFGuPw4cNkZ2cTHh7OCy+8gLe3N5cuXXqonZubG/3792fNmjUMGzaMxYsX/6X4H/zR5IF9+/bh5eWFubk5Pj4+3L1716TNg9+RB9+2WLFi/PzzzyaJ9T+WgnF0dKREiRImNdCzsrI4cuRIgeKE+0n3x/n3ERERERERERERkaer0LMO4FkpUqQILi4uLFq0CFdXV5KTkxk9erRJG1tbW9q0acO4ceOIj4+nc+fOxneVKlUiODiYvn37smDBAgoXLsywYcOwtrY2KTHypI0YMYJOnToREBBAcHAw33zzDWvWrGHLli35HqNs2bIYDAa+/fZbWrRogbW1NXZ2dnn2i4qKIisrizp16mBjY8Nnn32GtbU1ZcuWLdAaPD09uXPnDnPnzqV169bExMTw8ccfm7QZMmQIL7/8Mt7e3qSmprJ9+3Z8fHz+UvzJyckMHTqUfv36ceTIEebOnUt4eDgAXl5evPrqq/Tp04eFCxdib2/P6NGjKV26NK+++ipwvxb6lStXmD59Oh06dGDjxo189913JmVX3nrrLaZOnYqnpyeVKlVi7ty5pKamFvh3wsPDg61btxIUFISlpWWBygqdCGumUjAiIiIiIiIiIiJPyb92p7qZmRkrV67k8OHDVKlShXfeeYcPP/zwoXZdu3YlLi6O+vXr4+7ubvJu2bJllChRggYNGtC2bVv69OmDvb09VlZWTy3uNm3aEBERwYwZM/D19WXhwoVERkbSqFGjfI9RunRpwsLCGD16NCVKlGDQoEH56ufk5MTixYsJCgqiatWqbNmyhW+++QYXF5cCrcHf35+ZM2fywQcfUKVKFZYvX87UqVNN2mRlZTFw4EB8fHxo3rw53t7ezJ8//y/F3717d27evEnt2rUZOHAgb7/9Nn379jW+j4yMpEaNGrRq1YrAwEDu3bvHhg0bjKVafHx8mD9/Ph999BH+/v4cOHDAeCDpA6NGjaJz5850796dwMBA7OzsaNasWYF/J8LDw9m8eTNubm4EBAQUqK+IiIiIiIiIiIg8PYZ7fy4SLY/t4sWLuLm5GQ/hfF7du3ePfv36sWrVKlJTU3F0dCQkJITZs2c/kfENBgNr166lTZs2T2S8f7Ls7Gx8fHzo1KkTkyZNKlDfgn6nB6cTuw35EjNLm8eIVkTk6Uqa1vJZhyAiIiIiIiLySA/ya2lpablWgvjXln95ErZt20ZGRgZ+fn6kpKQwcuRIPDw8aNCgwbMO7S/ZuHEjUVFRREdHU758eTp06PBEx09JSSlQOZPnyYULF9i0aRMNGzYkMzOTefPmcf78ebp06fKsQxMREREREREREZEn4F9b/uVJuHPnDu+++y6+vr60bduWYsWKER0dTeHChVm+fDl2dnY5Xr6+vs869FwlJibi6upK3bp1KVmyJIUK5f63l127dj1yrTnVOi9ZsiSWlpZPLN7k5ORc509OTja2vXPnzhObNydmZmZERUVRq1YtgoKCOH78OFu2bDHWgxcREREREREREZHnm5Lqf0GzZs04ceIEN27c4JdffmHt2rXGQztfeeUVYmNjc7w2bNjwjCN/tJCQEN566y2Sk5MxGAx4eHg81CYlJYWWLVtibW1NuXLlSExMxNHRkbfffjvH9f6ZwWBg3bp1ANy+fZtBgwbh6uqKlZUVZcuWfai++qMYDAYWLFhAnz59uHPnDkWKFGHq1KnGeb/99luuX7/O7t27adiwIVZWVixfvpzs7GwmTpxImTJlsLS0pFq1amzcuNE4blJSEgaDgZUrV1K3bl2srKyoUqUKO3bsMJl/x44d1K5dG0tLS1xdXRk9ejSurq7ExMSQlpbGf/7zH65du0azZs1wcXEhODiY69evA3Dw4EGaNm1K0aJFcXR0pGHDhhw5ciR//0giIiIiIiIiIiLyzKj8y1Nib2+Pvb39sw6jwCIiIqhQoQKLFi3i4MGDmJub07FjR5M23bt359dffzXuyh86dCipqakUK1YMT0/PAs03Z84cvv76a7788kvc3d358ccf+fHHH/Pdf9y4cUybNo25c+fy6aef8s477xAcHIyPj49xh/3YsWMJDw8nICAAKysrIiIiCA8PZ+HChQQEBPCf//yHV155hZMnT+Ll5WUce8SIEcyePZvKlSszc+ZMWrduzfnz53FxceGnn36iRYsWhISEsGzZMk6fPk2fPn2wsrIiNDSUlJQUOnfuzPTp02nbti3Xrl1j165dPDjC4Nq1a/To0YO5c+dy7949wsPDadGiBWfPns33701mZiaZmZnG+/T09Hx/NxEREREREREREXk8SqqLCUdHR+zt7TE3N6dkyZIPvT99+jRbtmzh4MGD1KxZE4AlS5aYJKMLIjk5GS8vL+rVq4fBYDDu9M+vjh070rt3bwAmTZrE5s2bmTt3LvPnzze2GTJkCO3atTPez5gxg1GjRvH6668D8MEHH7B9+3Zmz57NRx99ZGw3aNAg2rdvD8CCBQvYuHEjn3zyCSNHjmT+/Pm4ubkxb948DAYDlSpV4tKlS4waNYrx48eTkpLC3bt3adeunXFNfn5+xrFffPFFk3UsWrQIJycnduzYQatWrfK19qlTpxIWFlaQzyUiIiIiIiIiIiJ/kcq/SIEkJCRQqFAhqlevbnzm6en52AePhoSEEBsbS8WKFRk8eDCbNm0qUP/AwMCH7uPj402ePUj+w/3d3JcuXSIoKMikTVBQ0EP9/jh2oUKFqFmzprFNfHw8gYGBGAwGkzEyMjK4ePEi/v7+NGnSBD8/Pzp27MjixYtJTU01tv3ll1/o06cPXl5eODo64uDgQEZGhkn997yMGTOGtLQ041WQHf4iIiIiIiIiIiLyeJRUl2eqevXqnD9/nkmTJnHz5k06depEhw4dnugctra2T3S8/DA3N2fz5s189913VK5cmblz51KxYkXOnz8PQI8ePYiNjSUiIoI9e/YQGxuLi4sLt2/fzvcclpaWODg4mFwiIiIiIiIiIiLydCmpLgVSsWJF7t69y9GjR43Pzp07Z7ILu6AcHBx47bXXWLx4MV988QWrV6/m999/z1ffffv2PXTv4+OT61ylSpUiJibG5HlMTAyVK1d+5Nh3797l8OHDxrF9fHzYu3evsUb6gzHs7e0pU6YMcP8g1aCgIMLCwjh69CgWFhasXbvW2Hbw4MG0aNECX19fLC0t+fXXX/O1ZhEREREREREREXl2VFNdCqRSpUoEBwfTt29fFixYQOHChRk2bBjW1tYmpVDya+bMmbi6uhIQEICZmRn//e9/KVmyJE5OTvnq/9///peaNWtSr149li9fzoEDB/jkk09y7TNixAgmTJhAhQoVqFatGpGRkcTGxrJ8+XKTdh999BFeXl74+Pgwa9YsUlNTefPNNwEYMGAAs2fP5q233mLQoEEkJCQwYcIEhg4dipmZGfv372fr1q289NJLFC9enP3793PlyhVjUt7Ly4tPP/2UmjVrkp6ezogRI7C2ti7w9xMREREREREREZG/l5LqUmDLli2jV69eNGjQgJIlSzJ16lROnjyJlZVVgceyt7dn+vTpnD17FnNzc2rVqsWGDRswM8vf/0QRFhbGypUrGTBgAK6urnz++ecP7Tj/s8GDB5OWlsawYcO4fPkylStX5uuvv37osNVp06Yxbdo0YmNj8fT05Ouvv6Zo0aIAlC5dmg0bNjBixAj8/f1xdnamV69evPfee8D9HfE7d+5k9uzZpKenU7ZsWcLDw3n55ZcB+OSTT+jbty/Vq1fHzc2NKVOmMHz48IJ+vhydCGumUjAiIiIiIiIiIiJPieHeH+tXiDyGixcv4ubmxpYtW2jSpMnfNq/BYGDt2rW0adPmiY6blJREuXLlOHr0KNWqVXuiYz9N6enpODo6kpaWpqS6iIiIiIiIiIhIAeU3v6ad6v9j/o6E8LZt28jIyMDPz4+UlBRGjhyJh4cHDRo0eCrz5SQkJKRAba9evcq6deue2PzR0dE0btyY1NTUfJeq+btUmfA9ZpY2zzoMEZGnJmlay2cdgoiIiIiIiPyL6aBSKbA7d+7w7rvv4uvrS9u2bSlWrBjR0dEULlyY5cuXY2dnl+Pl6+ub7znyGiciIiLfY0VERBAVFWW8b9SoEUOGDCnAikVERERERERERETu0051KbBmzZrRrFmzHN+98sor1KlTJ8d3hQsXzvcceY3j6OhIfisXOTo65nteAA8Pj3yPLSIiIiIiIiIiIv8u2qn+nMrOzmb69Ol4enpiaWmJu7s777///kPtoqOjMRgMfP/99wQEBGBtbc2LL77I5cuX+e677/Dx8cHBwYEuXbpw48aNfI9//PhxXnzxRaytrXFxcaFv375kZGRgb2+Pp6cnkydPZvjw4axbt4769etTp04dpk+fzp07d/Jc27vvvktwcDCenp4mV/v27VmxYgVly5YlJCTEpJb6qlWr8PPzM8YTHBzM9evXAUzahoSEsGPHDiIiIjAYDBgMBpKSkvKMacOGDXh7e2NtbU3jxo0f6vPbb7/RuXNnSpcujY2NDX5+fnz++efG98uWLcPFxYXMzEyTfm3atKFbt24AxMXF0bhxY+zt7XFwcKBGjRocOnQoz9hERERERERERETk76Ok+nNqzJgxTJs2jXHjxnHq1ClWrFhBiRIlHtk+NDSUefPmsWfPHn788Uc6derE7NmzWbFiBevXr2fTpk3MnTs3X+Nfv36dZs2aUaRIEQ4ePMh///tftmzZwqBBg0zm3L59O4mJiWzfvp2lS5cSFRVlUoblUbp27cqBAwdITEw0Pjt58iTHjh2jS5cuD7VPSUmhc+fOvPnmm8THxxMdHU27du1y3G0eERFBYGAgffr0ISUlhZSUFNzc3HKN58cff6Rdu3a0bt2a2NhYevfuzejRo03a3Lp1ixo1arB+/XpOnDhB37596datGwcOHACgY8eOZGVl8fXXXxv7XL58mfXr1/Pmm28a112mTBkOHjzI4cOHGT16dK67+zMzM0lPTze5RERERERERERE5OlS+Zfn0LVr14iIiGDevHn06NEDgAoVKlCvXr1H7rqePHkyQUFBAPTq1YsxY8aQmJhI+fLlAejQoQPbt29n1KhRuY4PsGLFCm7dusWyZcuwtbUFYN68ebRu3ZoPPvjAmHwvUqQI8+bNw9zcnEqVKtGyZUu2bt1Knz59cl2fr68v/v7+rFixgnHjxgH3a6zXqVMHT0/Ph9qnpKRw9+5d2rVrR9myZQHw8/PLcWxHR0csLCywsbGhZMmSucbxwIIFC6hQoQLh4eEAVKxYkePHj/PBBx8Y25QuXZrhw4cb79966y2+//57vvzyS2rXro21tTVdunQhMjKSjh07AvDZZ5/h7u5Oo0aNAEhOTmbEiBFUqlQJAC8vr1zjmjp1KmFhYflag4iIiIiIiIiIiDwZ2qn+HIqPjyczM5MmTZrku0/VqlWNP5coUQIbGxtjQv3Bs8uXL+dr/Pj4ePz9/Y0JdYCgoCCys7NJSEgwPvP19cXc3Nx47+rqapwjL127dmXFihUA3Lt3j88//5yuXbvm2Nbf358mTZrg5+dHx44dWbx4MampqfmaJz/i4+Mfqu8eGBhocp+VlcWkSZPw8/PD2dkZOzs7vv/+e5KTk41t+vTpw6ZNm/jpp58AiIqKIiQkBIPBAMDQoUPp3bs3wcHBTJs2zWSnfk7GjBlDWlqa8frxxx+fxHJFREREREREREQkF0qqP4esra0L3OePZUQMBsNDZUUMBgPZ2dmPPX5ec/55jrx07tyZhIQEjhw5YixZ89prr+XY1tzcnM2bN/Pdd99RuXJl5s6dS8WKFTl//vxfXkN+ffjhh0RERDBq1Ci2b99ObGwszZo14/bt28Y2AQEB+Pv7s2zZMg4fPszJkycJCQkxvg8NDeXkyZO0bNmSbdu2UblyZdauXfvIOS0tLXFwcDC5RERERERERERE5OlSUv055OXlhbW1NVu3bn0m4/v4+BAXF2c8CBQgJiYGMzMzKlas+ERiKFOmDA0bNmT58uUsX76cpk2bUrx48Ue2NxgMBAUFERYWxtGjR7GwsHhkQtrCwoKsrKx8x+Lj42Osjf7Avn37TO5jYmJ49dVXeeONN/D396d8+fKcOXPmobF69+5NVFQUkZGRBAcHP1TP3dvbm3feeYdNmzbRrl07IiMj8x2niIiIiIiIiIiIPH1Kqj+HrKysGDVqFCNHjmTZsmUkJiayb98+Pvnkk79l/K5du2JlZUWPHj04ceIE27dv56233qJbt265HpZaUF27dmXlypX897//fWTpF4D9+/czZcoUDh06RHJyMmvWrOHKlSv4+Pjk2N7Dw4P9+/eTlJTEr7/+mufu+f79+3P27FlGjBhBQkICK1aseOjAVS8vLzZv3syePXuIj4+nX79+/PLLLw+N1aVLFy5evMjixYuNB5QC3Lx5k0GDBhEdHc2FCxeIiYnh4MGDj1yDiIiIiIiIiIiIPBs6qPQ5NW7cOAoVKsT48eO5dOkSrq6u9O/f/28Z38bGhu+//563336bWrVqYWNjQ/v27Zk5c+YTmx/uH546aNAgzM3NadOmzSPbOTg4sHPnTmbPnk16ejply5YlPDycl19+Ocf2w4cPp0ePHlSuXJmbN29y/vx5PDw8Hjm+u7s7q1ev5p133mHu3LnUrl2bKVOmmCTF33vvPX744QeaNWuGjY0Nffv2pU2bNqSlpZmM5ejoSPv27Vm/fr3JmszNzfntt9/o3r07v/zyC0WLFqVdu3aPdRDpibBmKgUjIiIiIiIiIiLylBju3bt371kHIfJv0qRJE3x9fZkzZ84THTc9PR1HR0fS0tKUVBcRERERERERESmg/ObXtFNdHikpKYly5cpx9OhRqlWr9qzDea40atSIatWqMXv2bOOz1NRUoqOjiY6OZv78+XmOERUVxZAhQ7h69WqB5q4y4XvMLG0KGLGIyPMlaVrLZx2CiIiIiIiI/EupprrkW3R0NAaDocBJ3j/btWsXdnZ2j7z+bv37939kLE+ypE5AQAAhISF88MEHT+xAVxEREREREREREfl7aae6/O1q1qxJbGzssw7DaOLEiQwfPjzHd0+yjEpSUtITG0tERERERERERESeDe1UF7Kzs5k+fTqenp5YWlri7u7O+++/b9ImKSmJxo0bA1CkSBEMBgMhISEArFq1Cj8/P6ytrXFxcSE4OJjr168b+y5ZsgQfHx+srKyoVKkSkZGReHp64unpyZQpU2jXrh1ubm54enri7u5OQEAA3bt3z1fsP/74I506dcLJyQlnZ2deffVVk+R1SEgIbdq0YcaMGbi6uuLi4sLAgQO5c+eOsY2joyOLFy+mcePG+Pr60rx5c3bs2IGnpyfFixdnx44d1K5dG0tLS1xdXRk9ejR379419r9+/Trdu3fHzs4OV1dXwsPDH4ozMzOT4cOHU7p0aWxtbalTpw7R0dEmbaKionB3d8fGxoa2bdvy22+/5esbiIiIiIiIiIiIyN9HSXVhzJgxTJs2jXHjxnHq1ClWrFhBiRIlTNq4ubmxevVqABISEkhJSSEiIoKUlBQ6d+7Mm2++SXx8PNHR0bRr144H598uX76c8ePH8/777xMfH8+UKVMYN24cS5cuBWDOnDlcv36d0aNHAzB27FiuXr3KvHnz8oz7zp07NGvWDHt7e3bt2kVMTAx2dnY0b96c27dvG9tt376dxMREtm/fztKlS4mKiiIqKsr4vnv37nz++efMmTOH+Ph4Fi5caCxD89NPP9GiRQtq1apFXFwcCxYs4JNPPmHy5MnG/iNGjGDHjh189dVXbNq0iejoaI4cOWIS66BBg9i7dy8rV67k2LFjdOzYkebNm3P27FkA9u/fT69evRg0aBCxsbE0btzYZI6cZGZmkp6ebnKJiIiIiIiIiIjI02W49yD7Kf9K165do1ixYsybN4/evXubvPvzQaXR0dE0btyY1NRUnJycADhy5Ag1atQgKSmJsmXLPjS+p6cnkyZNonPnzsZnkydPZsOGDezZsweAvXv30rBhQ0aPHs3UqVPZvn079erVyzP2zz77jMmTJxMfH4/BYADg9u3bODk5sW7dOl566SVCQkKIjo4mMTERc3NzADp16oSZmRkrV67kzJkzVKxYkc2bNxMcHPzQHGPHjmX16tUmc8yfP59Ro0aRlpbGjRs3cHFx4bPPPqNjx44A/P7775QpU4a+ffsye/ZskpOTKV++PMnJyZQqVco4dnBwMLVr12bKlCl06dKFtLQ01q9fb3z/+uuvs3HjxkfWsA8NDSUsLOyh525DvtRBpSLyP08HlYqIiIiIiMiTlp6ejqOjI2lpabmWhdZO9X+5+Ph4MjMzadKkyWP19/f3p0mTJvj5+dGxY0cWL15MamoqcL8sSmJiIr169TI5/HPy5MkkJiYaxwgMDGT48OFMmjSJYcOG5SuhDhAXF8e5c+ewt7c3ju3s7MytW7dMxvf19TUm1AFcXV25fPkyALGxsZibm9OwYcMc54iPjycwMNCYUAcICgoiIyODixcvkpiYyO3bt6lTp47xvbOzs8lBpMePHycrKwtvb2+T77Bjxw5jnPHx8SZjPPguuRkzZgxpaWnG68cff8zrk4mIiIiIiIiIiMhfpINK/+Wsra3/Un9zc3M2b97Mnj172LRpE3PnzmXs2LHs378fG5v7u6UXL178UML4j0nu7OxsYmJiMDc359y5c/meOyMjgxo1arB8+fKH3hUrVsz4c+HChU3eGQwGsrOzgb++/vzIyMjA3Nycw4cPm6wbMJaZeRyWlpZYWlr+1fBERERERERERESkALRT/V/Oy8sLa2trtm7dmmdbCwsLALKyskyeGwwGgoKCCAsL4+jRo1hYWLB27VpKlChBqVKl+OGHH4wHkz64ypUrZ+z/4Ycfcvr0aXbs2MHGjRuJjIzMV+zVq1fn7NmzFC9e/KHxHR0d8zWGn58f2dnZ7NixI8f3Pj4+7N27lz9WSYqJicHe3p4yZcpQoUIFChcuzP79+43vU1NTOXPmjPE+ICCArKwsLl++/FCcJUuWNM7zxzEA9u3bl681iIiIiIiIiIiIyN9HO9X/5aysrBg1ahQjR47EwsKCoKAgrly5wsmTJx8qCVO2bFkMBgPffvstLVq0wNrampMnT7J161Zeeuklihcvzv79+7ly5Qo+Pj4AhIWFMXjwYBwdHWnevDmZmZkcOnSI1NRUhg4dytGjRxk/fjyrVq0iKCiImTNn8vbbb9OwYUPKly+fa+xdu3blww8/5NVXX2XixImUKVOGCxcusGbNGkaOHEmZMmXyXL+Hhwc9evTgzTffZM6cOfj7+3PhwgUuX75Mp06dGDBgALNnz+att95i0KBBJCQkMGHCBIYOHYqZmRl2dnb06tWLESNG4OLiQvHixRk7dixmZv/v71Xe3t507dqV7t27Ex4eTkBAAFeuXGHr1q1UrVqVli1bMnjwYIKCgpgxYwavvvoq33//PRs3bnyMf1E4EdYs15pPIiIiIiIiIiIi8vi0U10YN24cw4YNY/z48fj4+PDaa68Za47/UenSpQkLC2P06NGUKFGCQYMG4eDgwM6dO2nRogXe3t689957hIeH8/LLLwPQu3dvlixZQmRkJH5+fjRs2JCoqCjKlSvHrVu3eOONNwgJCaF169YA9O3bl8aNG9OtW7eHdsT/mY2NDTt37sTd3Z127drh4+NDr169uHXrVoGSygsWLKBDhw4MGDCASpUq0adPH65fv25c84YNGzhw4AD+/v7079+fXr168d577xn7f/jhh9SvX5/WrVsTHBxMvXr1qFGjhskckZGRdO/enWHDhlGxYkXatGnDwYMHcXd3B+CFF15g8eLFRERE4O/vz6ZNm0zmEBERERERERERkX8Gw70/1rUQkedWfk8nFhERERERERERkYflN7+m8i/PkXv37tGvXz9WrVpFamoqR48epVq1as86rL+sUaNGVKtWjdmzZz+V8Tw8PBgyZAhDhgx5IuPnd97cPM2Yqkz4HjNLmyc+rojI8yJpWstnHYKIiIiIiIj8D1NS/TmyceNGoqKiiI6Opnz58hQtWvRZh/RUTZkyhSlTpuT4rn79+nz33Xf5GufgwYPY2to+ydBERERERERERETkX0pJ9edIYmIirq6u1K1b91mHkqPbt29jYWHxxMbr378/nTp1yvGdtbV1vscpVqzYkwpJRERERERERERE/uV0UOlzIiQkhLfeeovk5GQMBgMeHh65ts/Ozmbq1KmUK1cOa2tr/P39WbVqlfFdmTJlWLBggUmfo0ePYmZmxoULFwC4evUqvXv3plixYjg4OPDiiy8SFxdnbB8aGkq1atVYsmQJ5cqVw8rKKs91XL9+ne7du2NnZ4erqyvh4eEPtcnMzGT48OH4+fnh7+9P165duXjxIp6ensYrKSmJRo0aYWNjQ5EiRWjWrBmpqak5zunh4WFSksVgMLBkyRLatm2LjY0NXl5efP311yZ9Tpw4wcsvv4ydnR0lSpSgW7du/PrrrwVaR0HMnDkTPz8/bG1tcXNzY8CAAWRkZOTaJzMzk/T0dJNLREREREREREREni4l1Z8TERERTJw4kTJlypCSksLBgwdzbT916lSWLVvGxx9/zMmTJ3nnnXd444032LFjB2ZmZnTu3JkVK1aY9Fm+fDlBQUGULVsWgI4dO3L58mW+++47Dh8+TPXq1WnSpAm///67sc+5c+dYvXo1a9asITY2Ns91jBgxgh07dvDVV1+xadMmoqOjOXLkiEmbQYMGsXfvXlauXMmxY8fo2LEjzZs35+zZswDExsbSpEkTKleuzN69e9m9ezetW7cmKysrP58SgLCwMDp16sSxY8do0aIFXbt2Na7r6tWrvPjiiwQEBHDo0CE2btzIL7/8YrJrPj/rKAgzMzPmzJnDyZMnWbp0Kdu2bWPkyJG59pk6dSqOjo7Gy83N7bHnFxERERERERERkfxR+ZfnhKOjI/b29pibm1OyZMlc22ZmZjJlyhS2bNlCYGAgAOXLl2f37t0sXLiQhg0b0rVrV8LDw0lOTsbd3Z3s7GxWrlzJe++9B8Du3bs5cOAAly9fxtLSEoAZM2awbt06Vq1aRd++fYH7JV+WLVuWrxIrGRkZfPLJJ3z22Wc0adIEgKVLl1KmTBljm+TkZCIjI0lOTqZUqVIADB8+nI0bNxIZGcmUKVOYPn06NWvWZP78+cZ+vr6++f2UwP2d/507dwbu126fM2cOBw4coHnz5sybN4+AgACTeu7/+c9/cHNz48yZM5QqVSrPdRTUHw8s9fDwYPLkyfTv399kjX82ZswYhg4darxPT09XYl1EREREREREROQpU1L9f9C5c+e4ceMGTZs2NXl++/ZtAgICAKhWrRo+Pj6sWLGC0aNHs2PHDi5fvkzHjh0BiIuLIyMjAxcXF5Mxbt68SWJiovG+bNmy+a5ZnpiYyO3bt6lTp47xmbOzMxUrVjTeHz9+nKysLLy9vU36ZmZmGmOJjY01xvm4qlatavzZ1tYWBwcHLl++DNxf+/bt27Gzs8txDTdv3sxzHQW1ZcsWpk6dyunTp0lPT+fu3bvcunWLGzduYGNjk2MfS0tL4x88RERERERERERE5O+hpPr/oAe1uNevX0/p0qVN3v0xCdu1a1djUn3FihU0b97cmLjOyMjA1dWV6Ojoh8Z3cnIy/mxra/vEYzc3N+fw4cOYm5ubvHuQ5C7IIaWPUrhwYZN7g8FAdna2MYbWrVvzwQcfPNTP1dWVc+fO/eX5/ygpKYlWrVrxf//3f7z//vs4Ozuze/duevXqxe3btx+ZVBcREREREREREZG/n5Lq/4MqV66MpaUlycnJNGzY8JHtunTpwnvvvcfhw4dZtWoVH3/8sfFd9erV+fnnnylUqFCeh6LmV4UKFShcuDD79+/H3d0dgNTUVM6cOWOMMyAggKysLC5fvkz9+vVzHKdq1aps3bqVsLCwJxLXn1WvXp3Vq1fj4eFBoUIP/yeSn3UUxOHDh8nOziY8PBwzs/vHHHz55Zd/bREiIiIiIiIiIiLyVCip/j/I3t6e4cOH884775CdnU29evVIS0sjJiYGBwcHevToAdyv3V23bl169epFVlYWr7zyinGM4OBgAgMDadOmDdOnT8fb25tLly6xfv162rZtS82aNQscl52dHb169WLEiBG4uLhQvHhxxo4da0wkA3h7e9O1a1e6d+9OeHg4AQEBXLlyha1bt1K1alVatmzJmDFj8PPzY8CAAfTv3x8LCwu2b99Ox44dKVq06F/+fgMHDmTx4sV07tyZkSNH4uzszLlz51i5ciVLlizJ1zoKwtPTkzt37jB37lxat25NTEyMyR84CupEWDMcHBweu7+IiIiIiIiIiIg82uNlAeUfb9KkSYwbN46pU6fi4+ND8+bNWb9+PeXKlTNp17VrV+Li4mjbtq1JWRWDwcCGDRto0KABPXv2xNvbm9dff50LFy5QokSJx47rww8/pH79+rRu3Zrg4GDq1atHjRo1TNpERkbSvXt3hg0bRsWKFWnTpg0HDx407gr39vZm06ZNxMXFUbt2bQIDA/nqq69y3FX+OEqVKkVMTAxZWVm89NJL+Pn5MWTIEJycnIyJ8/ysI7/8/f2ZOXMmH3zwAVWqVGH58uVMnTr1iaxFREREREREREREnizDvXv37j3rIESeB/fu3aNfv36sWrWK1NRUjh49SrVq1R5rrOjoaBo3bkxqaqpJjfq/Ij09HUdHR9yGfImZpeqwi4gkTWv5rEMQERERERGR58iD/FpaWlqulSBU/kUknzZu3EhUVBTR0dGUL1/+iZSaERERERERERERkeeLkurPoeTkZCpXrvzI96dOnTKWSvk7/VPjelISExNxdXWlbt26ubbbtWsXL7/88iPfZ2RkPOnQRERERERERERE5G+ipPpzqFSpUsTGxub6/ln4p8b1JISEhLB06VLgfr35smXLkpSUlGPbmjVrcuTIERYtWsTKlSu5cuUK5cqVY+DAgY9Mtr/55pscOnSIgwcPYmlpye3bt6lTpw5+fn4sW7bsaS1LRERERERERERECkhJ9edQoUKF8PT0fNZhPOSfGteTEBERQYUKFVi0aBEHDx7E3Nz8kW2tra3573//y/r16/nkk0/w8vJi586d9O/fn6pVq+b4jebMmYO/vz+jR49m1qxZjB07lqtXrzJv3rxHzpOZmUlmZqbxPj09/a8tUkRERERERERERPKkpLpIPjg6OmJvb4+5uTklS5bMtW1mZiZTpkxhy5YtBAYGAlC+fHl2797NwoULadiw4UN97Ozs+Oyzz2jYsCH29vbMnj2b7du353ogwtSpUwkLC/trCxMREREREREREZECUVJd5Ak7d+4cN27coGnTpibPb9++TUBAwCP7BQYGMnz4cCZNmsSoUaOoV69ervOMGTOGoUOHGu/T09Nxc3P7a8GLiIiIiIiIiIhIrpRUF3nCHhxEun79ekqXLm3yztLS8pH9srOziYmJwdzcnHPnzuU5j6WlZa7jiYiIiIiIiIiIyJOnpLrIE1a5cmUsLS1JTk7OsdTLo3z44YecPn2aHTt20KxZMyIjI+nZs+dTjFREREREREREREQKSkl1kSfM3t6e4cOH884775CdnU29evVIS0sjJiYGBwcHevTo8VCfo0ePMn78eFatWkVQUBAzZ87k7bffpmHDhpQvX/4ZrEJERERERERERERyoqS6yFMwadIkihUrxtSpU/nhhx9wcnKievXqvPvuuw+1vXXrFm+88QYhISG0bt0agL59+7J+/Xq6devGzp07MTc3z/fcJ8Ka5XrAqYiIiIiIiIiIiDw+w7179+496yBE5K9LT0/H0dGRtLQ0JdVFREREREREREQKKL/5Ne1UF/n/JSUlUa5cOY4ePUq1atX+ljk9PDwYMmQIQ4YMeWJjVpnwPWaWNk9sPBGR/yVJ01o+6xBERERERETkOWf2rAOQZ69Ro0YFTuo+Tp//FcnJydjZ2T3ySk5OftYhioiIiIiIiIiIyFOineoiBVSqVCliY2NzfS8iIiIiIiIiIiL/m7RT/V8uJCSEHTt2EBERgcFgwGAwkJSUxI4dO6hduzaWlpa4uroyevRo7t69m2ufvJw8eZJWrVrh4OCAvb099evXJzExEYCDBw/StGlTihYtiqOjIw0bNuTIkSMm/Q0GA0uWLKFt27bY2Njg5eXF119/ne85AJYsWYKPjw9WVlZUqlSJ+fPnF/ibFSpUiIsXL+Ll5UVCQgLt2rWjSpUqvPHGG9y6dYtChf7f36pWr16Nr68vlpaWeHh4EB4e/shx7927R2hoKO7u7lhaWlKqVCkGDx5c4PhERERERERERETk6VFS/V8uIiKCwMBA+vTpQ0pKCikpKRQuXJgWLVpQq1Yt4uLiWLBgAZ988gmTJ09+ZB83N7dc5/npp59o0KABlpaWbNu2jcOHD/Pmm28aE/XXrl2jR48e7N69m3379uHl5UWLFi24du2ayThhYWF06tSJY8eO0aJFC7p27crvv/+erzmWL1/O+PHjef/994mPj2fKlCmMGzeOpUuXPvb3GzFiBOHh4Rw8eJBixYrRunVr7ty5A8Dhw4fp1KkTr7/+OsePHyc0NJRx48YRFRWV41irV69m1qxZLFy4kLNnz7Ju3Tr8/PweOXdmZibp6ekml4iIiIiIiIiIiDxdKv/yL+fo6IiFhQU2NjaULFkSgLFjx+Lm5sa8efMwGAxUqlSJS5cuMWrUKMaPH59jn7x89NFHODo6snLlSgoXLgyAt7e38f2LL75o0n7RokU4OTmxY8cOWrVqZXweEhJC586dAZgyZQpz5szhwIEDNG/ePM85JkyYQHh4OO3atQOgXLlynDp1ioULF9KjR4+CfjrjmE2bNgVg6dKllClThrVr19KpUydmzpxJkyZNGDdunDGWU6dO8eGHHxISEvLQWMnJyZQsWZLg4GAKFy6Mu7s7tWvXfuTcU6dOJSws7LHiFhERERERERERkcejnerykPj4eAIDAzEYDMZnQUFBZGRkcPHixccaMzY2lvr16xuT3X/2yy+/0KdPH7y8vHB0dMTBwYGMjIyHDv2sWrWq8WdbW1scHBy4fPlynnNcv36dxMREevXqZXKo6OTJk03KwxRUYGCg8WdnZ2cqVqxIfHw8cP87BgUFmbQPCgri7NmzZGVlPTRWx44duXnzJuXLl6dPnz6sXbvWuMs+J2PGjCEtLc14/fjjj4+9DhEREREREREREckf7VSXv4W1tXWu73v06MFvv/1GREQEZcuWxdLSksDAQG7fvm3S7s8Jc4PBQHZ2dp5zZGRkALB48WLq1Klj8s7c3Dzf63ia3NzcSEhIYMuWLWzevJkBAwbw4YcfsmPHjhz/UGBpaYmlpeUziFREREREREREROTfSzvVBQsLC5Od0z4+Puzdu5d79+4Zn8XExGBvb0+ZMmVy7JOXqlWrsmvXLmO98T+LiYlh8ODBtGjRwniw56+//lqgdeQ2R4kSJShVqhQ//PADnp6eJle5cuUKNM8f7du3z/hzamoqZ86cwcfHB7j/HWNiYkzax8TE4O3t/chEvrW1Na1bt2bOnDlER0ezd+9ejh8//tjxiYiIiIiIiIiIyJOlneqCh4cH+/fvJykpCTs7OwYMGMDs2bN56623GDRoEAkJCUyYMIGhQ4diZmaWYx9nZ2fju5wMGjSIuXPn8vrrrzNmzBgcHR3Zt28ftWvXpmLFinh5efHpp59Ss2ZN0tPTGTFiRJ672ws6R1hYGIMHD8bR0ZHmzZuTmZnJoUOHSE1NZejQoY/17SZOnIiLiwslSpRg7NixFC1alDZt2gAwbNgwatWqxaRJk3jttdfYu3cv8+bNY/78+TmOFRUVRVZWFnXq1MHGxobPPvsMa2trypYtW6CYToQ1w8HB4bHWIyIiIiIiIiIiIrnTTnVh+PDhmJubU7lyZYoVK8adO3fYsGEDBw4cwN/fn/79+9OrVy/ee++9R/b5c+3zP3NxcWHbtm1kZGTQsGFDatSoweLFi41lTT755BNSU1OpXr063bp1Y/DgwRQvXrxA68hrjt69e7NkyRIiIyPx8/OjYcOGREVF/aWd6tOmTePtt9+mRo0a/Pzzz3zzzTdYWFgAUL16db788ktWrlxJlSpVGD9+PBMnTszxkFIAJycnFi9eTFBQEFWrVmXLli188803uLi4PHZ8IiIiIiIiIiIi8mQZ7v2xxoeI5Et0dDSNGzcmNTUVJyenZx0OAOnp6Tg6OpKWlqad6iIiIiIiIiIiIgWU3/yayr/IY/n555/p1q0be/bsoXDhwly9ehWDwcDatWuN5U/+rZ5Uwt3Dw4MhQ4YwZMiQAvWrMuF7zCxtHnteEZF/m6RpLZ91CCIiIiIiIvIcUfmX/yEhISGPldAODQ2lWrVqBeoza9YsUlJSiI2N5cyZM/Tv3x+Azp07Y2dnZ3I9ePc86d+//0PreJ7XIyIiIiIiIiIiIk+GdqrLY0lMTKRGjRp4eXkB9w/sXLhwITNnzqRp06YmbZ/HUiQTJ05k+PDhOb5zcHCgePHiqHKSiIiIiIiIiIjIv492qj+HVq1ahZ+fH9bW1ri4uBAcHMyIESNYunQpX331FQaDAYPBQHR0NACjRo3C29sbGxsbypcvz7hx47hz5w4AUVFRhIWFERcXZ+wXFRWV6/weHh6sXr2aZcuWYTAYCAkJMR4q6urqiqenJ56enixevJgWLVrg4eHx0LwPTJ48meLFi2Nvb0/v3r0ZPXp0gXbNL1myBB8fH6ysrKhUqRLz5883vktKSsJgMLBmzRoaN26MjY0N/v7+7N2712SMmJgYGjVqhI2NDUWKFKFZs2YULlwYT09P3NzcmDNnDnXr1qVKlSqEhIRw4cIFk/4bNmzA29sba2trGjduTFJS0kNx7t69m/r162NtbY2bmxuDBw/m+vXrxveXL1+mdevWWFtbU65cOZYvX57n2jMzM0lPTze5RERERERERERE5OnSTvXnTEpKCp07d2b69Om0bduWa9eusWvXLrp3705ycjLp6elERkYC4OzsDIC9vT1RUVGUKlWK48eP06dPH+zt7Rk5ciSvvfYaJ06cYOPGjWzZsgUAR0fHXGM4ePAg3bt3x8HBgYiICKytrXNsl9u8AMuXL+f9999n/vz5BAUFsXLlSsLDwylXrly+vsXy5csZP3488+bNIyAggKNHj9KnTx9sbW3p0aOHsd3YsWOZMWMGXl5ejB07ls6dO3Pu3DkKFSpEbGwsTZo04c033yQiIoJChQqxfft2srKyABg5ciSrV69m6dKllC1blunTp9OsWTPOnTuHs7MzP/74I+3atWPgwIH07duXQ4cOMWzYMJM4ExMTad68OZMnT+Y///kPV65cYdCgQQwaNMj4bxUSEsKlS5fYvn07hQsXZvDgwVy+fDnX9U+dOpWwsLB8fSsRERERERERERF5Mgz3VMPiuXLkyBFq1KhBUlISZcuWNXkXEhLC1atXWbduXa5jzJgxg5UrV3Lo0CHgfk31devWERsbm+842rRpg5OTk8mu9rwOKv3zvC+88AI1a9Zk3rx5xjb16tUjIyMjX7F4enoyadIkOnfubHw2efJkNmzYwJ49e0hKSqJcuXIsWbKEXr16AXDq1Cl8fX2Jj4+nUqVKdOnSheTkZHbv3v3Q+NevX6dIkSJERUXRpUsXAO7cuWM8QHTEiBG8++67fPXVV5w8edLYb/To0XzwwQfGg0p79+6Nubk5CxcuNLbZvXs3DRs25Pr16yQnJ1OxYkUOHDhArVq1ADh9+jQ+Pj7MmjXrkQeVZmZmkpmZabxPT0/Hzc0NtyFf6qBSEZEC0EGlIiIiIiIiAvfza46OjqSlpeVa0lo71Z8z/v7+NGnSBD8/P5o1a8ZLL71Ehw4dKFKkyCP7fPHFF8yZM4fExEQyMjK4e/fu31LnPK95ExISGDBggEmf2rVrs23btjzHvn79OomJifTq1Ys+ffoYn9+9e/ehnfZVq1Y1/uzq6grcL7dSqVIlYmNj6dixY45zJCYmcufOHYKCgozPChcuTO3atYmPjwcgPj6eOnXqmPQLDAw0uY+Li+PYsWMmJV3u3btHdnY258+f58yZMxQqVIgaNWoY31eqVAknJ6dcv4GlpSWWlpa5thEREREREREREZEnSzXVnzPm5uZs3ryZ7777jsqVKzN37lwqVqzI+fPnc2y/d+9eunbtSosWLfj22285evQoY8eO5fbt2081zqc9b0ZGBgCLFy8mNjbWeJ04cYJ9+/aZtC1cuLDxZ4PBAEB2djbAI0vXPEkZGRn069fPJM64uDjOnj1LhQoVnvr8IiIiIiIiIiIi8uQoqf4cMhgMBAUFERYWxtGjR7GwsGDt2rVYWFgYa4E/sGfPHsqWLcvYsWOpWbMmXl5eDx20mVO/vyo/81asWJGDBw+aPPvz/aOUKFGCUqVK8cMPPxgPRn1w5bcmO9zfxb5169Yc31WoUAELCwtiYmKMz+7cucPBgwepXLkyAD4+Phw4cMCk35+T+tWrV+fUqVMPxenp6YmFhQWVKlXi7t27HD582NgnISGBq1ev5nsdIiIiIiIiIiIi8vdQ+ZfnzP79+9m6dSsvvfQSxYsXZ//+/Vy5cgUfHx9u3brF999/T0JCAi4uLjg6OuLl5UVycjIrV66kVq1arF+/nrVr15qM6eHhwfnz54mNjaVMmTLY29v/5bIi+Zn3rbfeok+fPtSsWZO6devyxRdfcOzYMcqXL5+vOcLCwhg8eDCOjo40b96czMxMDh06RGpqKkOHDs3XGGPGjMHPz48BAwbQv39/LCws2L59Ox07dqRo0aL83//9HyNGjMDZ2Rl3d3emT5/OjRs3jDXa+/fvT3h4OCNGjKB3794cPnzYpM48wKhRo3jhhRcYNGgQvXv3xtbWllOnTrF582bmzZtHxYoVad68Of369WPBggUUKlSIIUOGPPYu+hNhzf6W8j4iIiIiIiIiIiL/Rtqp/pxxcHBg586dtGjRAm9vb9577z3Cw8N5+eWX6dOnDxUrVqRmzZoUK1aMmJgYXnnlFd555x0GDRpEtWrV2LNnD+PGjTMZs3379jRv3pzGjRtTrFgxPv/8878cZ37m7dq1K2PGjGH48OFUr16d8+fPExISgpWVVb7m6N27N0uWLCEyMhI/Pz8aNmxIVFRUgXaqe3t7s2nTJuLi4qhduzaBgYF89dVXFCp0/+9N06ZNo3379nTr1o3q1atz7tw5vv/+e2MNe3d3d1avXs26devw9/fn448/ZsqUKSZzVK1alR07dnDmzBnq169PQEAA48ePp1SpUsY2kZGRlCpVioYNG9KuXTv69u1L8eLF870OERERERERERER+XsY7t27d+9ZByH/mxo1akS1atWYPXt2vvs0bdqUkiVL8umnn+bZNikpiXLlynH06FGqVav2+IH+j3hwOrHbkC8xs7R51uGIiDzXkqa1fNYhiIiIiIiIyN/sQX4tLS0t10oQ2qkuT82aNWuYNGnSI9/fuHGDmTNncvLkSU6fPs2ECRPYsmULPXr0+Buj/Otu3bpFSEgIfn5+FCpUiDZt2hSo/5o1a2jatCnFihXDwcGBwMBAvv/++6cTrIiIiIiIiIiIiPwlSqrLQ5YvX46dnV2Ol6+vb77HcXZ2xt7e/pHvDQYDGzZsoEGDBtSoUYNvvvmG1atXExwcDPDIGOzs7Ni1a9dfXueTkpWVhbW1NYMHDzbGXhA7d+6kadOmbNiwgcOHD9O4cWNat27N0aNHn0K0IiIiIiIiIiIi8lcoqS4PeeWVV4iNjc3x2rBhQ77HadSoEUOGDAFg/vz5eHl5YWVlRYkSJejQoQPW1tZs2bKF3377jevXr3PkyBHatWtn7B8bG8uRI0cYMGAALi4u3L59G3t7e/r27UvNmjUfmi8rK4tevXpRrlw5rK2tqVixIhERESZtoqOjqV27Nra2tjg5OREUFMSFCxcAiIuLo3Hjxtjb2+Pg4ECNGjU4dOhQnuu0tbVlwYIF9OnTh5IlS+b7+zwwe/ZsRo4cSa1atfDy8mLKlCl4eXnxzTffFHgsEREREREREREReboKPesA5J/H3t4+1x3mBXXo0CEGDx7Mp59+St26dfn999/ztdPc09OTUaNGsWTJEmbNmkW9evVISUnh9OnTWFtbP9Q+OzubMmXK8N///hcXFxf27NlD3759cXV1pVOnTty9e5c2bdrQp08fPv/8c27fvs2BAwcwGAzA/YNTAwICWLBgAebm5sTGxlK4cOEn9h3yKzs7m2vXruHs7Jxru8zMTDIzM4336enpTzs0ERERERERERGRfz0l1eWpS05OxtbWllatWmFvb0/ZsmUJCAjIs9+1a9eIiIhg3rx5xjrrFSpUoF69ejm2L1y4MGFhYcb7cuXKsXfvXr788ks6depEeno6aWlptGrVigoVKgDg4+NjEueIESOoVKkSAF5eXo+95r9ixowZZGRk0KlTp1zbTZ061WS9IiIiIiIiIiIi8vSp/Is8dU2bNqVs2bKUL1+ebt26sXz5cm7cuJFnv/j4eDIzM2nSpEm+5/roo4+oUaMGxYoVw87OjkWLFpGcnAzcr/EeEhJCs2bNaN26NREREaSkpBj7Dh06lN69exMcHMy0adNITEws+GL/ohUrVhAWFsaXX35J8eLFc207ZswY0tLSjNePP/74N0UpIiIiIiIiIiLy76Wkujx19vb2HDlyhM8//xxXV1fGjx+Pv78/V69ezbVfTiVecrNy5UqGDx9Or1692LRpE7GxsfTs2ZPbt28b20RGRrJ3717q1q3LF198gbe3N/v27QMgNDSUkydP0rJlS7Zt20blypVZu3Ztgdf7uFauXEnv3r358ssv83XgqaWlJQ4ODiaXiIiIiIiIiIiIPF1KqsvfolChQgQHBzN9+nSOHTtGUlIS27Zty7WPl5cX1tbWbN26NV9zxMTEULduXQYMGEBAQACenp457jYPCAhgzJgx7NmzhypVqrBixQrjO29vb9555x02bdpEu3btiIyMLNhCH9Pnn39Oz549+fzzz2nZsuXfMqeIiIiIiIiIiIgUnGqqy1P37bff8sMPP9CgQQOKFCnChg0byM7OpmLFirn2s7KyYtSoUYwcORILCwuCgoK4cuUKJ0+epFevXg+19/LyYtmyZXz//feUK1eOTz/9lIMHD1KuXDkAzp8/z6JFi3jllVcoVaoUCQkJnD17lu7du3Pz5k1GjBhBhw4dKFeuHBcvXuTgwYO0b98+X2s8deoUt2/f5vfff+fatWvExsYCUK1atTz7rlixgh49ehAREUGdOnX4+eefgfs79R0dHfM1v4iIiIiIiIiIiPw9lFSXp87JyYk1a9YQGhrKrVu38PLy4vPPP8fX1zfPvuPGjaNQoUKMHz+eS5cu4erqSv/+/XNs269fP44ePcprr72GwWCgc+fODBgwgO+++w4AGxsbTp8+zdKlS/ntt99wdXVl4MCB9OvXj7t37/Lbb7/RvXt3fvnlF4oWLUq7du3yfRBoixYtuHDhgvH+wUGs9+7dy7PvokWLuHv3LgMHDmTgwIHG5z169CAqKipf8//RibBmKgUjIiIiIiIiIiLylBju5SfrJyL/eOnp6Tg6OpKWlqakuoiIiIiIiIiISAHlN7+mnerPkUaNGlGtWjVmz579rEORf7AqE77HzNLmWYchIvKvlDRN52KIiIiIiIj8r9NBpc+RNWvWMGnSpGcdxhOTnJyMnZ3dI6/k5OQc+4WGhuarVvkfGQwG1q1b91hxvvzyy4+MccqUKXn29/X1fWT/5cuXP1ZMIiIiIiIiIiIi8mxop/pzxNnZ+VmH8ESVKlXKeKDno97/EyxZsoSbN2/m+C4//yYbNmzgzp07Ob4rUaLEX4pNRERERERERERE/l7aqf4cadSoEUOGDAFg/vz5eHl5YWVlRYkSJejQoUO+xsjOzmb69Ol4enpiaWmJu7s777//vvH98ePHefHFF7G2tsbFxYW+ffuSkZFhfB8SEkKbNm2YMWMGrq6uuLi4MHDgQJOkcW6xZWdnM3XqVMqVK4e9vT3t27cnNjYWT09PPD09uXjxIl5eXly4cIEXXngBGxsb6tatS0JCAgBRUVGEhYURFxeHwWDAYDDkeZinh4cHAG3btsVgMBjvARYsWECFChWwsLCgYsWKfPrppw/1L126tDG+B1eFChX47LPPqFatGpaWlpQqVYrBgwebzDl58mS6d++Or68vTZo04dSpUzg6OjJs2DCqVatGu3btjOsCuHDhAq1bt6ZIkSLY2tri6+vLhg0bcv8HFRERERERERERkb+VkurPoUOHDjF48GAmTpxIQkICGzdupEGDBvnqO2bMGKZNm8a4ceM4deoUK1asMO6Wvn79Os2aNaNIkSIcPHiQ//73v2zZsoVBgwaZjLF9+3YSExPZvn07S5cuJSoqypjYziu2qVOnsmzZMj7++GNOnjzJO++8wxtvvMGOHTtM5hg7dizh4eEcOnSIQoUK8eabbwLw2muvMWzYMHx9fUlJSSElJYXXXnst1zUfPHgQgMjISFJSUoz3a9eu5e2332bYsGGcOHGCfv360bNnT7Zv357nd1y9ejWzZs1i4cKFnD17lnXr1uHn52fSZtasWQQFBXH06FFatmxJt27d6N69O2+88QZHjhyhQoUKdO/enQdnBQ8cOJDMzEx27tzJ8ePH+eCDD7Czs3tkDJmZmaSnp5tcIiIiIiIiIiIi8nQZ7j3I6Mk/3oODShs0aEDPnj25ePEi9vb2+e5/7do1ihUrxrx58+jdu/dD7xcvXsyoUaP48ccfsbW1Be6XLmndujWXLl2iRIkShISEEB0dTWJiIubm5gB06tQJMzMzVq5cyZo1ax4ZW2ZmJs7OzmzZsoXAwEDj8969e3Pjxg1WrFhBdHQ0jRs3ZsuWLTRp0sQYQ8uWLbl58yZWVlaEhoaybt26XEvH/JnBYGDt2rW0adPG+CwoKAhfX18WLVpkfNapUyeuX7/O+vXrcx1v5syZLFy4kBMnTlC4cOGH3nt4eFC/fn3jzveff/4ZV1dXxo0bx8SJEwHYt28fgYGBpKSkULJkSapWrUr79u2ZMGFCvtYUGhpKWFjYQ8/dhnypg0pFRJ4RHVQqIiIiIiLy/EpPT8fR0ZG0tDQcHBwe2U471Z9DTZs2pWzZspQvX55u3bqxfPlybty4kWe/+Ph4MjMzjcnqnN77+/sbE+pwP/GcnZ1tUqbE19fXmFAHcHV15fLly3nGdu7cOW7cuEHTpk1NDutctmwZiYmJJrFUrVrVZHzAOMeTEh8fT1BQkMmzoKAg4uPj8+zbsWNHbt68Sfny5enTpw9r167l7t27Jm3+uIYH/zfAH3ezP3j2YF2DBw9m8uTJBAUFMWHCBI4dO5ZrDGPGjCEtLc14/fjjj3nGLSIiIiIiIiIiIn+NkurPIXt7e44cOcLnn3+Oq6sr48ePx9/fn6tXr+baz9ra+onM/+ed2QaDgezs7Dxje1Cbff369cTGxhqvU6dOsWrVqkfOYTAYAIxz/BO4ubmRkJDA/Pnzsba2ZsCAATRo0MCktnxOa8htXb179+aHH36gW7duHD9+nJo1azJ37txHxmBpaYmDg4PJJSIiIiIiIiIiIk+XkurPqUKFChEcHMz06dM5duwYSUlJbNu2Ldc+Xl5eWFtbs3Xr1hzf+/j4EBcXx/Xr143PYmJiMDMzo2LFin85tsqVK2NpaUlycvJDB3+6ubnle3wLCwuysrLy3R7uJ7P/3MfHx4eYmBiTZzExMVSuXDlfY1pbW9O6dWvmzJlDdHQ0e/fu5fjx4wWK68/c3Nzo378/a9asYdiwYSxevPgvjSciIiIiIiIiIiJPVqFnHYAU3LfffssPP/xAgwYNKFKkCBs2bCA7OzvPxLeVlRWjRo1i5MiRWFhYEBQUxJUrVzh58iS9evWia9euTJgwgR49ehAaGsqVK1d466236Natm7FUyV+Jzd7enuHDh/POO++QnZ1NvXr1SEtLIyYmBgcHB3r06JGvOTw8PDh//jyxsbGUKVMGe3t7LC0t8+yzdetWgoKCsLS0pEiRIowYMYJOnToREBBAcHAw33zzDWvWrGHLli15xhAVFUVWVhZ16tTBxsaGzz77DGtra8qWLZuvNeRkyJAhvPzyy3h7e5Oamsr27dvx8fEp8Dgnwppp17qIiIiIiIiIiMhToqT6c8jJyYk1a9YQGhrKrVu38PLy4vPPP8fX1zfPvuPGjaNQoUKMHz+eS5cu4erqSv/+/QGwsbHh+++/5+2336ZWrVrY2NjQvn17Zs6c+cRimzRpEsWKFWPq1Kn88MMPODk5Ub16dd599918z9G+fXvWrFlD48aNuXr1KpGRkYSEhOTaJzw8nKFDh7J48WJKly5NUlISbdq0ISIighkzZvD2229Trlw5IiMjadSoUb7WOW3aNIYOHUpWVhZ+fn588803uLi45Hsdf5aVlcXAgQO5ePEiDg4ONG/enFmzZj32eCIiIiIiIiIiIvLkGe7du3fvWQchIn9dfk8nFhERERERERERkYflN7+mnepiolGjRlSrVo3Zs2f/K+Z9FIPBwNq1a2nTps2zDqXAqkz4HjNLm2cdhoiIPEFJ01o+6xBERERERETk/6ek+v+Q5OTkXA/ZPHXqFO7u7gBER0fTuHFjUlNTcXJy+psifLQ1a9ZQuHDhx+q7fPly+vXrl+O7smXLcvLkyccat3Pnzpibmz/RMUVEREREREREROT5pqT6/5BSpUoRGxub6/t/Kmdn58fu+8orr1CnTp0c3z1uoh5g5syZNG3a9ImOKSIiIiIiIiIiIs83s2cdwLO2ceNG6tWrh5OTEy4uLrRq1YrExEQA6taty6hRo0zaX7lyhcKFC7Nz504AUlJSaNmyJdbW1pQrV44VK1bg4eGR7zImBoOBhQsX0qpVK2xsbPDx8WHv3r2cO3eORo0aYWtrS926dY0xPbBgwQIqVKiAhYUFFStW5NNPP6VQoUJ4enri6emJl5cX0dHRjBgxgqpVq/Lyyy+zYcMGAJKSkmjcuDEARYoUwWAwmBz0mZ2dzciRI3F2dqZkyZKEhoYa3927d4/Q0FDc3d2xtLSkVKlSDB48OF9rnT9/Pl5eXlhZWVGiRAk6dOhgfNeoUSOGDBlivPfw8GDKlCm8+eab2Nvb4+7uzqJFi0zGu3jxIp07d6Zs2bL4+/vz+uuv89tvvxm/wcmTJ2nbti1WVlaUL1+esLAw7t69m69YAVxdXY1jLV68mBYtWlC1alUaN27MuHHjuHPnjrFtaGgo1apVY+HChbi5uWFjY0OnTp1IS0sztomOjqZ27drY2tri5OREUFAQFy5cML7/6quvqF69+mPHKyIiIiIiIiIiIk/fvz6pfv36dYYOHcqhQ4fYunUrZmZmtG3bluzsbLp27crKlSv541muX3zxBaVKlaJ+/foAdO/enUuXLhEdHc3q1atZtGgRly9fLlAMkyZNonv37sTGxlKpUiW6dOlCv379GDNmDIcOHeLevXsMGjTI2H7t2rW8/fbbDBs2jBMnTtCvXz969uzJ9u3bTcYNCwujU6dOHDt2jBYtWtC1a1d+//133NzcWL16NQAJCQmkpKQQERFh7Ld06VJsbW3Zv38/06dPZ+LEiWzevBmA1atXM2vWLBYuXMjZs2dZt24dfn5+ea7x0KFDDB48mIkTJ5KQkMDGjRtp0KBBrn3Cw8OpWbMmR48eZcCAAfzf//0fCQkJAGRkZNCwYUN++uknvv76a+Li4hg5ciTZ2dkA7Nq1i+7du/P2229z6tQpFi5cSFRUFO+//34+/kUeZm9vT1RUFKdOnSIiIoLFixcza9Yskzbnzp3jyy+/5JtvvmHjxo3GuAHu3r1LmzZtaNiwIceOHWPv3r307dsXg8Hw2PFmZmaSnp5ucomIiIiIiIiIiMjTZbj3x4yx8Ouvv1KsWDGOHz9OiRIlKFWqFNu2bTMm0evWrUuDBg2YNm0ap0+fxsfHh4MHD1KzZk3gfmLVy8uLWbNmmey8fhSDwcB7773HpEmTANi3bx+BgYF88sknvPnmmwCsXLmSnj17cvPmTQCCgoLw9fU12bndqVMnrl+/zvr163Mc9/r169jZ2fHdd9/RvHnzR9ZUb9SoEVlZWezatcv4rHbt2rz44otMmzaNmTNnsnDhQk6cOFGgMihr1qyhZ8+eXLx4EXt7+4fe//mgUg8PD+rXr8+nn34K3N8hX7JkScLCwujfvz+LFi1i+PDhJCUl5Vg6Jjg4mCZNmjBmzBjjs88++4yRI0dy6dKlPOPN66DSGTNmsHLlSg4dOgTc36k+efJkLly4QOnSpYH7/xdEy5Yt+emnn7CwsMDFxYXo6GgaNmz4ROINDQ0lLCzsoeduQ77UQaUiIv9jdFCpiIiIiIjI05eeno6joyNpaWk4ODg8st2/fqf62bNn6dy5M+XLl8fBwQEPDw/g/qGfxYoV46WXXmL58uUAnD9/nr1799K1a1fg/i7vQoUKUb16deN4np6eFClSpEAxVK1a1fhziRIlAEx2f5coUYJbt24ZdyLHx8cTFBRkMkZQUBDx8fGPHNfW1hYHB4d87aL/Yz+4XwblQb+OHTty8+ZNypcvT58+fVi7dm2+SpQ0bdqUsmXLUr58ebp168by5cu5ceNGvuMwGAyULFnSGEdsbCwBAQGPrMUeFxfHxIkTsbOzM159+vQhJSUlz3lz8sUXXxAUFETJkiWxs7PjvffeIzk52aSNu7u7MaEOEBgYSHZ2NgkJCTg7OxMSEkKzZs1o3bo1ERERpKSk/KV4x4wZQ1pamvH68ccfC7wuERERERERERERKZh/fVK9devW/P777yxevJj9+/ezf/9+AG7fvg1A165dWbVqFXfu3GHFihX4+fnlq9xJQfxxx/eDciA5PXtQ2uRxxn0wTn7GyK2fm5sbCQkJzJ8/H2trawYMGECDBg1M6ovnxN7eniNHjvD555/j6urK+PHj8ff35+rVq48Vh7W1da7zZWRkEBYWRmxsrPE6fvw4Z8+excrKKte+f/bgDyktWrTg22+/5ejRo4wdO9b4O5JfkZGR7N27l7p16/LFF1/g7e3Nvn37HjteS0tLHBwcTC4RERERERERERF5uv7VSfXffvuNhIQE3nvvPZo0aYKPjw+pqakmbV599VVu3brFxo0bWbFihXGXOkDFihW5e/cuR48eNT47d+7cQ2M8aT4+PsTExJg8i4mJoXLlyvkew8LCAoCsrKwCz29tbU3r1q2ZM2cO0dHR7N27l+PHj+fZr1ChQgQHBzN9+nSOHTtGUlIS27ZtK/D8cH8Xe2xsLL///nuO76tXr05CQoLxoNE/XmZmBfu137NnD2XLlmXs2LHUrFkTLy8vkwNGH0hOTjYp1bJv3z7MzMyoWLGi8VlAQABjxoxhz549VKlShRUrVjzxeEVEREREREREROTpKfSsA3iWihQpgouLC4sWLcLV1ZXk5GRGjx5t0sbW1pY2bdowbtw44uPj6dy5s/FdpUqVCA4Opm/fvixYsIDChQszbNgwrK2tjbvLn4YRI0bQqVMnAgICCA4O5ptvvmHNmjVs2bIl32OULVsWg8HAt99+S4sWLbC2tsbOzi7PflFRUWRlZVGnTh1sbGz47LPPsLa2pmzZsrn2+/bbb/nhhx9o0KABRYoUYcOGDWRnZ5sknAuic+fOTJkyhTZt2jB16lRcXV05evQopUqVIjAwkPHjx9OqVSvc3d3p0KEDZmZmxMXFceLECSZPnlyguby8vEhOTmblypXUqlWL9evXs3bt2ofaWVlZ0aNHD2bMmEF6ejqDBw+mU6dOlCxZkvPnz7No0SJeeeUVSpUqRUJCAmfPnqV79+4ATzTeE2HNtGtdRERERERERETkKflXb4E1MzNj5cqVHD58mCpVqvDOO+/w4YcfPtSua9euxMXFUb9+fdzd3U3eLVu2jBIlStCgQQPatm1Lnz59sLe3L3CJkYJo06YNERERzJgxA19fXxYuXEhkZCSNGjXK9xilS5cmLCyM0aNHU6JECQYNGpSvfk5OTixevJigoCCqVq3Kli1b+Oabb3Bxccmz35o1a3jxxRfx8fHh448/5vPPP8fX1zffMf+RhYUFmzZtonjx4rRo0QI/Pz+mTZuGubk5AM2aNePbb79l06ZN1KpVixdeeIFZs2blmfzPySuvvMI777zDoEGDqFatGnv27GHcuHEPtfP09KRdu3a0aNGCl156iapVqzJ//nwAbGxsOH36NO3bt8fb25u+ffsycOBA+vXr98TjFRERERERERERkafHcO/evXvPOoj/JRcvXsTNzY0tW7bQpEmTR7Zr1KgR1apVY/bs2Y8915MY45/mz2u6ceMG3bp1Y/PmzVy7do3U1FScnJyeaYx/5OHhwZAhQ7h69Srr1q0jNjb2mcWS39OJRURERERERERE5GH5za/9q8u/PAnbtm0jIyMDPz8/UlJSGDlyJB4eHjRo0CDXfmvWrHnoIE55+LssXbqUXbt2sWfPHooWLYqjo+MziSsqKsqYPP+jgwcPYmtry/Tp059JXDmpMuF7zCxtnnUYIiIi+ZY0reWzDkFERERERCTf/tXlX56EO3fu8O677+Lr60vbtm0pVqwY0dHRFC5cmOXLl2NnZ5fjVb9+fezt7Z91+E/Mrl27HrnW/NRqf8DZ2dnkuyQmJuLj40OVKlUoWbLkE6lVn9u/S0HL0RQrVgwbm0cnsO/cufNXwxUREREREREREZF/ECXV/6JmzZpx4sQJbty4wS+//MLatWuNdbBfeeUVYmNjc7zs7e0ZMmQIAPPnz8fLywsrKytKlChBhw4d8j1/dnY2I0eOxNnZmZIlSxIaGmryPjk5mVdffRU7OzscHBzo1KkTv/zyi/F9SEgIbdq0MekzZMgQk/rsq1atws/PD2tra1xcXAgODub69evG90uWLKF3797cuXOH4sWLM3z4cOM669WrZzL+kCFDMBgMnD59GoDbt29ja2trPGS1UaNGxu/SqFEjwsPD2blzJwaDwRhTZmYmw4cPp3Tp0tja2lKnTh2io6Pz9b2ioqIYMGAA4eHhlCxZkps3b/Ltt99y4MABXnvtNX799deHxoyOjqZnz56kpaVhMBgwGAzG7+zh4cHs2bMJDQ0lNjYWg8HAggULeOWVV7C1teX9998H4KuvvqJ69epYWVlRvnx5wsLCuHv3rjGuq1ev0rt3b4oVK4aDgwMvvvgicXFx+VqTiIiIiIiIiIiI/H1U/uUpsre3f+Ru9AcHmR46dIjBgwfz6aefUrduXX7//Xd27dqV7zmWLl3K0KFD2b9/P3v37iUkJISgoCCaNm1Kdna2MaG+Y8cO7t69y8CBA3nttdfynYROSUmhc+fOTJ8+nbZt23Lt2jV27drFg1L8y5cvZ/z48cybN4+AgACOHj1Knz59KFeuHD169KBly5YsXLjQON6OHTsoWrQo0dHRVKpUiYMHD3Lnzh3q1q370Nxr1qxh9OjRnDhxgjVr1mBhYQHAoEGDOHXqFCtXrqRUqVKsXbuW5s2bc/z4cby8vPJc082bN1m2bBnLli3DxcUFNzc33n77bU6fPs2qVaseGrNu3brMnj2b8ePHk5CQAJDr7vvQ0FCmTZvG7NmzKVSoELt27aJ79+7MmTOH+vXrk5iYSN++fQGYMGECAB07dsTa2prvvvsOR0dHFi5cSJMmTThz5gzOzs45zpOZmUlmZqbxPj09Pc+1i4iIiIiIiIiIyF+jpPozlpycjK2tLa1atcLe3p6yZcsSEBCQ7/5Vq1Y1Jma9vLyYN28eW7dupWnTpmzdupXjx49z/vx53NzcAFi2bBm+vr4cPHiQWrVq5Tl+SkoKd+/epV27dsYd+H5+fsb3EyZMIDw8nHbt2gFQrlw5Tp06xcKFC+nRoweNGjXi7bff5sqVKxQqVIhTp04xbtw4oqOj6d+/P9HR0dSqVSvHEirOzs7Y2NhgYWFByZIljd8rMjKS5ORkSpUqBcDw4cPZuHEjkZGRTJkyJc813blzh/nz5+Pv75/vMR0dHTEYDMY4ctOlSxd69uxpvH/zzTcZPXo0PXr0AKB8+fJMmjSJkSNHMmHCBHbv3s2BAwe4fPkylpaWAMyYMYN169axatUqYwL+z6ZOnUpYWFie8YiIiIiIiIiIiMiTo6T6M9a0aVPKli1L+fLlad68Oc2bN6dt27a51un+o6pVq5rcu7q6cvnyZQDi4+Nxc3MzJtQBKleujJOTE/Hx8flKqvv7+9OkSRP8/Pxo1qwZL730Eh06dKBIkSJcv36dxMREevXqRZ8+fYx97t69azxQtEqVKjg7O7Njxw4sLCwICAigVatWfPTRR8D9net/LDWTl+PHj5OVlYW3t7fJ88zMTFxcXPI1hoWFhcl3exJj/lHNmjVN7uPi4oiJiTGWggHIysri1q1b3Lhxg7i4ODIyMh6a6+bNmyQmJj5ynjFjxjB06FDjfXp6usm/tYiIiIiIiIiIiDx5Sqo/Y/b29hw5coTo6Gg2bdrE+PHjCQ0N5eDBgzg5OeXZv3Dhwib3BoOB7OzsfM9vZmZmLOXywB8P1zQ3N2fz5s3s2bOHTZs2MXfuXMaOHcv+/fuNif/FixdTp04dkzHMzc2N8TRo0IDo6GgsLS1p1KgRVatWJTMzkxMnTrBnzx6GDx+e73gzMjIwNzfn8OHDxjkeyO+BqNbW1iYHnj6JMf/I1tb2oZjDwsKMu/n/yMrKioyMDFxdXXMsyZPb74ClpaVxZ7uIiIiIiIiIiIj8PZRU/wcoVKgQwcHBBAcHM2HCBJycnNi2bVuOSdiC8PHx4cf/r737jo6qWv8//pn0QjIBEhJyCUkgAQKEEprU0EEFBS4GFIEoUkQQpCkoHaVJk6p0vHgRLOAVEWnhYr40kSA1QiQ3qAEUgRBpKef3h4v5OdQJzCRB36+1zjLnnL33efbxYWQ92e45dUqnTp2yrGA+cuSILly4oIoVK0qSAgICdOjQIat+SUlJVsV6k8mk+vXrq379+ho1apRCQ0P16aefatCgQQoODtYPP/ygLl263DGO2NhYLVy4UO7u7nrzzTfl5OSkRo0aaerUqbp27Zrq169v85yqV6+unJwcnT17Vg0bNszL63igMd3c3JSTk3Nf48fExCg5OVkRERF3vH/69Gm5uLgoLCzsvp4BAAAAAAAAIH9QVC9gn3/+uX744Qc1atRIRYsW1RdffKHc3FyVL1/+gcdu3ry5oqOj1aVLF82cOVPZ2dnq27evYmNjLVuUNG3aVFOnTtWKFStUt25d/etf/9KhQ4cs+7rv3r1bW7ZsUcuWLVWiRAnt3r1bv/zyi6KioiRJY8eO1csvvyyz2azWrVvr2rVr+uabb3T+/HnL1iSNGzfWK6+8Ijc3NzVo0MBybciQIapVq9YtK7vvply5curSpYu6deumadOmqXr16vrll1+0ZcsWValSRY8//nie35MtY4aFhSkzM1NbtmxR1apV5eXlZfMWPaNGjVKbNm1UunRpdezYUU5OTjpw4IAOHTqkCRMmqHnz5qpbt67atWunKVOmqFy5cvr555+1fv16tW/f/pbtZAAAAAAAAAAUHIrqBczPz0+ffPKJxowZo6tXryoyMlL//ve/ValSpQce22Qyad26derfv78aNWokJycntW7dWrNnz7a0adWqlUaOHKlhw4bp6tWrev7559WtWzcdPHhQkuTr66v//ve/mjlzpjIyMhQaGqpp06bp0UcflSS98MIL8vLy0tSpUzV06FB5e3srOjpaAwcOtDwjOjpafn5+KleunGU7lcaNGysnJydP+6nfsHTpUk2YMEGDBw/WTz/9JH9/fz3yyCNq06bNfb+re41Zr1499enTR506ddK5c+c0evRojRkzxqaxW7Vqpc8//1zjxo3T5MmT5erqqgoVKuiFF16Q9Me/py+++EKvv/66nnvuOf3yyy8KCgpSo0aNFBgYmOe5HBrbSr6+vnnuBwAAAAAAAODeTMbNG2oDeChlZGTIbDbr4sWLFNUBAAAAAACAPLK1vsZKddyTYRjq3bu3PvroI50/f1779+9XtWrV7DZ+QkKCmjRpovPnz9v05ax3Eh8frwsXLmjt2rU290lMTFSfPn107NgxPf7443nqa6vGjRurWrVqmjlzpt3Hvp3KozfKyd22rWkAAChMUiflfRs3AAAAAMhvFNULqbS0NMuXid7OkSNHVLp06XyJ5csvv9SyZcuUkJCgMmXKyN/f367j16tXT+np6TKbzQ881s6dOy1bzNxsxIgRGjFihNW1QYMGqVq1atqwYcMd+wEAAAAAAADADRTVC6ng4GAlJSXd9X5+SUlJUcmSJVWvXj2HjO/m5qagoCC7jFWtWjXNnTv3tveKFSt2y7WUlBT16dNHpUqVssvzAQAAAAAAAPy1ORV0ALg9FxcXRURE3PFwccmf34fEx8erf//+SktLk8lkUlhY2F3bN27cWP3799fAgQNVtGhRBQYGauHChfr999/13HPPycfHRxEREdqwYYOlT0JCgkwmky5cuCBJWrZsmfz8/LRx40ZFRUWpSJEiat26tdLT0y19cnJyNGjQIPn5+al48eIaNmyYDMOQp6en5R2VKVNGa9asUYsWLRQdHa0mTZroo48+kiSlpqbKZDLp3Llzev7552UymbRs2bK7zu1GnBs3blT16tXl6emppk2b6uzZs9qwYYOioqLk6+urZ555RpcvX7bqm5ubq2HDhqlYsWIKCgq65UtOp0+frujoaHl7eyskJER9+/ZVZmbm3f/lAAAAAAAAAMh3FNVxV7NmzdK4ceNUqlQppaena+/evffss3z5cvn7+2vPnj3q37+/XnzxRT311FOqV6+evv32W7Vs2VJdu3a9pfD8Z5cvX9bbb7+t999/X//973+VlpamIUOGWO5PmzZNy5Yt05IlS/T111/rt99+06effmo1xsSJE7VixQotWLBAhw8f1iuvvKJnn31W27dvV0hIiNLT0+Xr66uZM2cqPT1dnTp1sumdjBkzRnPmzNH//d//6dSpU4qLi9PMmTP1wQcfaP369frqq680e/bsW96Jt7e3du/erSlTpmjcuHHatGmT5b6Tk5PeeecdHT58WMuXL9fWrVs1bNiwu8Zx7do1ZWRkWB0AAAAAAAAAHIuiOu7KbDbLx8dHzs7OCgoKUkBAwD37VK1aVW+88YYiIyM1fPhweXh4yN/fXz179lRkZKRGjRqlc+fO6bvvvrvjGFlZWVqwYIFq1qypmJgY9evXT1u2bLHcnzlzpoYPH64OHTooKipKCxYssNqT/dq1a3rrrbe0ZMkStWrVSmXKlFF8fLyeffZZvfvuu5b5mEwmmc1mBQUFydPT06Z3MmHCBNWvX1/Vq1dXjx49tH37ds2fP1/Vq1dXw4YN1bFjR23bts2qT5UqVTR69GhFRkaqW7duqlmzptV8Bg4cqCZNmigsLExNmzbVhAkTtHr16rvGMXHiRJnNZssREhJiU/wAAAAAAAAA7h97qsPuqlSpYvnZ2dlZxYsXV3R0tOVaYGCgJOns2bN3HMPLy0tly5a1nJcsWdLS/uLFi0pPT1edOnUs911cXFSzZk0ZhiFJOnHihC5fvqwWLVpYjXv9+nVVr179AWZnPb/AwEB5eXmpTJkyVtf27Nlzxz43z0eSNm/erIkTJ+rYsWPKyMhQdna2rl69qsuXL8vLy+u2cQwfPlyDBg2ynGdkZFBYBwAAAAAAAByMojrsztXV1ercZDJZXTOZTJL+2Gc8L2PcKJjb4sZ+5OvXr9c//vEPq3vu7u42j3Ov2G6e241rN8/tbm1SU1PVpk0bvfjii3rzzTdVrFgxff311+rRo4euX79+x6K6u7v7A88FAAAAAAAAQN5QVMdDx2w2q2TJktq9e7caNWokScrOzta+ffsUExMjSapYsaLc3d2Vlpam2NjYggz3nvbt26fc3FxNmzZNTk5/7Mh0r61fAAAAAAAAABQMiup4KA0YMECTJk1SZGSkKlSooOnTp+vChQuW+z4+PhoyZIheeeUV5ebmqkGDBrp48aISExPl6+ur7t27F1zwN4mIiFBWVpZmz56ttm3bKjExUQsWLCjosAAAAAAAAADcBkV1PJQGDx6s9PR0de/eXU5OTnr++efVvn17Xbx40dJm/PjxCggI0MSJE/XDDz/Iz89PMTExGjFiRAFGfquqVatq+vTpmjx5soYPH65GjRpp4sSJ6tat232Nd2hsK/n6+to5SgAAAAAAAACSZDLyslE1gEIrIyNDZrNZFy9epKgOAAAAAAAA5JGt9TVWqj8k4uPjdeHCBa1du7agQ7lFWFiYBg4cqIEDBxZ0KLdlMpn06aefql27dgUdSr7EUnn0Rjm53/7LTQEAAIDCIHXS4wUdAgAAwH1zKugAHmaNGzfOcyH5fvoUFmlpaSpSpMgtR1paml599VWlpaXZ5Tnx8fEFUgDv06fPbedXpEgR9enTJ19iSEhIkMlkstofHgAAAAAAAEDhwUp1SJKuX78uNze3u7YJDg5WUlLSLddjY2MVHx+v4OBgB0WXP8aNG6chQ4bc9h7bqQAAAAAAAACQWKl+3+Lj47V9+3bNmjVLJpNJJpNJqamp2r59u2rXri13d3eVLFlSr732mrKzs+/aJycnRz169FB4eLg8PT1Vvnx5zZo1675ja9y4sfr166d+/frJbDbL399fI0eO1J+3zw8LC9P48ePVrVs3+fr6qlevXpKkjz/+WJUqVZK7u7vCwsI0bdo0Sx8XFxf5+vrqlVdeUXR0tFq0aKHdu3fL1dVVAQEBcnFxUWpqqkwmk1Xx/cKFCzKZTEpISLBcO3z4sNq0aSNfX1/5+PioYcOGSklJ0ZgxY7R8+XKtW7fO8o4SEhJ0/fp19evXTyVLlpSHh4dCQ0M1ceJEm99Jenq6Hn30UXl6eqpMmTL66KOPrO4fPHhQnTt3VnR0tOrUqaMpU6YoKChIERERioiIUFxc3C3/h0G7du0UHx9v9YzHH39cnp6eCg8P1wcffKCwsDDNnDnTqt+vv/6q9u3by8vLS5GRkfrss88kSampqWrSpIkkqWjRojKZTFbjAwAAAAAAACh4FNXv06xZs1S3bl317NlT6enpSk9Pl6urqx577DHVqlVLBw4c0Pz587V48WJNmDDhjn1CQkKUm5urUqVKac2aNTpy5IhGjRqlESNGaPXq1fcd3/Lly+Xi4qI9e/Zo1qxZmj59uhYtWmTV5u2331bVqlW1f/9+jRw5Uvv27VNcXJw6d+6sgwcPasyYMRo5cqSWLVtm6RMfH69Tp05p27Zt+uijjzRv3jydPXs2T7H99NNPatSokdzd3bV161bt27dPzz//vLKzszVkyBDFxcWpdevWlndUr149vfPOO/rss8+0evVqJScna+XKlQoLC7P5mSNHjtQ///lPHThwQF26dFHnzp119OhRSdLvv/+uVq1aqWjRotq7d6/WrFmjzZs3q1+/fnmaV7du3fTzzz8rISFBH3/8sd57773bvpuxY8cqLi5O3333nR577DF16dJFv/32m0JCQvTxxx9LkpKTk5Wenn7XX65cu3ZNGRkZVgcAAAAAAAAAx2L7l/tkNpvl5uYmLy8vBQUFSZJef/11hYSEaM6cOTKZTKpQoYJ+/vlnvfrqqxo1atRt+0iSs7Ozxo4dazkPDw/Xzp07tXr1asXFxd1XfCEhIZoxY4ZMJpPKly+vgwcPasaMGerZs6elTdOmTTV48GDLeZcuXdSsWTONHDlSklSuXDkdOXJEU6dOVXx8vL7//ntt2LBBe/bsUa1atSRJixcvVlRUVJ5imzt3rsxms1atWiVXV1fLs27w9PTUtWvXrN5RWlqaIiMj1aBBA5lMJoWGhubpmU899ZReeOEFSdL48eO1adMmzZ49W/PmzdMHH3ygq1evasWKFfL29pYkzZkzR23bttXkyZMVGBh4z/GPHTumzZs3a+/evapZs6YkadGiRYqMjLylbXx8vJ5++mlJ0ltvvaV33nlHe/bsUevWrVWsWDFJUokSJeTn53fXZ06cONEqbwAAAAAAAAA4HivV7ejo0aOqW7euTCaT5Vr9+vWVmZmpH3/88a59586dqxo1aiggIEBFihTRe++990Bf/PnII49YxVG3bl0dP35cOTk5lms3ir9/jr9+/fpW1+rXr2/pd/ToUbm4uKhGjRqW+xUqVLhn8fdmSUlJatiwoaWgbov4+HglJSWpfPnyevnll/XVV1/l6Zl169a95fzGSvWjR4+qatWqloK69Me8c3NzlZycbNP4ycnJcnFxUUxMjOVaRESEihYtekvbKlWqWH729vaWr69vnlf7S9Lw4cN18eJFy3Hq1Kk8jwEAAAAAAAAgbyiqFwKrVq3SkCFD1KNHD3311VdKSkrSc889p+vXrzv0uX8uItuLk9MfKfXn/duzsrKs2nh6euZ53JiYGJ08eVLjx4/XlStXFBcXp44dOz5YsHng5ORkNSfp1nnZ6uZfJphMJuXm5uZ5HHd3d/n6+lodAAAAAAAAAByLovoDcHNzs1r5HRUVpZ07d1oVXxMTE+Xj46NSpYtOUIQAACTqSURBVErdts+NNvXq1VPfvn1VvXp1RUREKCUl5YFi2717t9X5rl27FBkZKWdn5zv2iYqKUmJi4i2xlStXTs7OzqpQoYKys7O1b98+y/3k5GRduHDBch4QECDpjy/tvOHPX1oq/bFSe8eOHXcsSt/uHUmSr6+vOnXqpIULF+rDDz/Uxx9/rN9+++2O8/mzXbt23XJ+Y9uaqKgoHThwQL///rvVvJ2cnFS+fHnLvP48p5ycHB06dMhyXr58eWVnZ2v//v2WaydOnND58+dtiu8GNzc3y/gAAAAAAAAACh/2VH8AYWFh2r17t1JTU1WkSBH17dtXM2fOVP/+/dWvXz8lJydr9OjRGjRokGUF9819ihUrpsjISK1YsUIbN25UeHi43n//fe3du1fh4eH3HVtaWpoGDRqk3r1769tvv9Xs2bM1bdq0u/YZPHiwatWqpfHjx6tTp07auXOn5syZo3nz5kn6o3DcunVr9e7dW/Pnz5eLi4sGDhxotfLc09NTjzzyiCZNmqTw8HCdPXtWb7zxhtVz+vXrp9mzZ6tz584aPny4zGazdu3apdq1a6t8+fIKCwvTxo0blZycrOLFi8tsNmv27NkqWbKkqlevLicnJ61Zs0ZBQUE2bz2zZs0a1axZUw0aNNDKlSu1Z88eLV68WNIfe8mPHj1a3bt315gxY/TLL7+of//+6tq1q2U/9aZNm2rQoEFav369ypYtq+nTp1v9MqFChQpq3ry5evXqpfnz58vV1VWDBw+Wp6en1TY89xIaGiqTyaTPP/9cjz32mDw9PVWkSBGb+0vSobGtWLUOAAAAAAAAOAgr1R/AkCFD5OzsrIoVKyogIEBZWVn64osvtGfPHlWtWlV9+vRRjx49rIrKN/dJS0tT79691aFDB3Xq1El16tTRuXPn1Ldv3weKrVu3brpy5Ypq166tl156SQMGDFCvXr3u2icmJkarV6/WqlWrVLlyZY0aNUrjxo1TfHy8pc3SpUsVHBys2NhYdejQQb169VKJEiWsxlmyZImys7NVo0YNDRw4UBMmTLC6X7x4cW3dulWZmZmKjY1VjRo1tHDhQsu2KD179lT58uVVs2ZNBQQEWFb7T5kyRTVr1lStWrWUmpqqL774wvLLinsZO3asVq1apSpVqmjFihX697//rYoVK0qSvLy8tHHjRv3222+qVauWOnbsqGbNmmnOnDmW/s8//7y6d++ubt26KTY2VmXKlFGTJk2snrFixQoFBgaqUaNGat++vXr27CkfHx95eHjYFKMk/eMf/9DYsWP12muvKTAwUP369bO5LwAAAAAAAADHMxk3bxSNh17jxo1VrVo1zZw5s6BD+Vv78ccfFRISos2bN6tZs2YOf15GRobMZrMuXrzISnUAAAAAAAAgj2ytr7H9C/5WDMNQ79699dFHH+n8+fPav3+/qlWrZpexb6y+j46OVnp6uoYNG6awsDA1atTIpv7x8fG6cOGC1q5dK+n+fzlSefRGObl75TF6AAAAAKmTHi/oEAAAwEOAovpDJi0tzbJtye0cOXIkH6MpeCtXrlTv3r1vey80NFSHDx+2uvbll19q2bJlSkhIUJkyZeTv72+3WLKysjRixAgdPXpU7u7uatWqlVauXGnZ1uZeZs2aJf7HEQAAAAAAAKBwo6j+kAkODlZSUtJd7yckJORbPAXtiSeeUJ06dW5773bF7JSUFJUsWVL16tXL87OuX78uNze3O95v1aqVWrVqdd8rzM1mc55jAgAAAAAAAJC/KKo/ZFxcXBQREVHQYRQaPj4+8vHxsaltfHy8li9fLkkymUwKDQ1VamrqHds3btxYlStXlouLi/71r38pOjpa27Zt06FDhzR06FDt2LFD3t7eatmypWbMmCF/f3/Fx8dr+/bt2r59u2bNmiVJOnnypEJCQtSrVy9t3bpVp0+fVunSpdW3b18NGDDAKr4/b/9yL9euXdO1a9cs5xkZGTb1AwAAAAAAAHD/nAo6ACC/zJo1S+PGjVOpUqWUnp6uvXv33rPP8uXL5ebmpsTERC1YsEAXLlxQ06ZNVb16dX3zzTf68ssvdebMGcXFxVmeUbduXfXs2VPp6elKT09XSEiIcnNzVapUKa1Zs0ZHjhzRqFGjNGLECK1evfq+5zNx4kSZzWbLERISct9jAQAAAAAAALANK9Xxt2E2m+Xj4yNnZ2cFBQXZ1CcyMlJTpkyxnE+YMEHVq1fXW2+9Zbm2ZMkShYSE6Pvvv1e5cuXk5uYmLy8vq2c4Oztr7NixlvPw8HDt3LlTq1evthTk82r48OEaNGiQ5TwjI4PCOgAAAAAAAOBgFNWBu6hRo4bV+YEDB7Rt2zYVKVLklrYpKSkqV67cHceaO3eulixZorS0NF25ckXXr19XtWrV7js2d3d3ubu733d/AAAAAAAAAHlHUR24C29vb6vzzMxMtW3bVpMnT76lbcmSJe84zqpVqzRkyBBNmzZNdevWlY+Pj6ZOnardu3fbPWYAAAAAAAAAjkNRHciDmJgYffzxxwoLC5OLy+3/+Li5uSknJ8fqWmJiourVq6e+fftarqWkpDg0VgAAAAAAAAD2R1EdyIOXXnpJCxcu1NNPP61hw4apWLFiOnHihFatWqVFixbJ2dlZYWFh2r17t1JTU1WkSBEVK1ZMkZGRWrFihTZu3Kjw8HC9//772rt3r8LDw+0e46GxreTr62v3cQEAAAAAAABITgUdAPAwCQ4OVmJionJyctSyZUtFR0dr4MCB8vPzk5PTH3+chgwZImdnZ1WsWFEBAQFKS0tT79691aFDB3Xq1El16tTRuXPnrFatAwAAAAAAAHg4mAzDMAo6CPy1GYah3r1766OPPtL58+dlNpsVHx+vmTNn5svzU1NTFR4erv379z/QF4NKUnx8vC5cuKC1a9fm+7PvJSMjQ2azWSEDV8vJ3cuhzwIAAAAAAMDfR+qkxws6hHxxo7528eLFu+4EwfYvcLgvv/xSy5YtU0JCgsqUKaOOHTvm6/NDQkKUnp4uf3//fH1uQT8bAAAAAAAAgP1RVIfDpaSkqGTJkqpXr54k3fELPh3F2dlZQUFBVtfS0tJUsWLFO/Y5cuSISpcu7ZBnAwAAAAAAAHh4sac6HCo+Pl79+/dXWlqaTCaTwsLCbmmTnp6uxx9/XJ6engoPD9cHH3ygsLAwm7eHOXbsmBo0aCAPDw9VrFhRmzdvlslksmzRkpqaKpPJpKSkJEuf4OBgJSUl3fZYs2aN+vTpI19fX/n4+Khhw4ZKSUm57bO//PJLNWjQQH5+fipevLjatGlj1fbmZyckJMhkMmnjxo2qXr26PD091bRpU509e1YbNmxQVFSUfH199cwzz+jy5cs2zR8AAAAAAABA/mGlOhxq1qxZKlu2rN577z3t3btXzs7Oeuqpp6zadOvWTb/++qsSEhLk6uqqQYMG6ezZszaNn5OTo3bt2ql06dLavXu3Ll26pMGDB9+zn4uLiyIiIm65/tNPP+nZZ59V48aNtXXrVvn6+ioxMVHZ2dm3Hef333/XoEGDVKVKFWVmZmrUqFFq3769kpKSLF9cejtjxozRnDlz5OXlpbi4OMXFxcnd3V0ffPCBMjMz1b59e82ePVuvvvrqHce4du2arl27ZjnPyMi457wBAAAAAAAAPBiK6nAos9ksHx+fO26DcuzYMW3evFl79+5VzZo1JUmLFi1SZGSkTeNv2rRJKSkpSkhIsIz/5ptvqkWLFvcV79y5c2U2m7Vq1Sq5urpKksqVK3fH9v/85z+tzpcsWaKAgAAdOXJElStXvmO/CRMmqH79+pKkHj16aPjw4UpJSVGZMmUkSR07dtS2bdvuWlSfOHGixo4da/PcAAAAAAAAADw4tn9BgUpOTpaLi4tiYmIs1yIiIlS0aFGb+4eEhFgV7GvXrn3f8SQlJalhw4aWgvq9HD9+XE8//bTKlCkjX19fy/Y2aWlpd+1XpUoVy8+BgYHy8vKyFNRvXLvXav3hw4fr4sWLluPUqVM2xQwAAAAAAADg/rFSHfgTT0/PPLVv27atQkNDtXDhQgUHBys3N1eVK1fW9evX79rvz0V7k8l0SxHfZDIpNzf3rmO4u7vL3d09T/ECAAAAAAAAeDCsVEeBKl++vLKzs7V//37LtRMnTuj8+fM29z916pTOnDljubZ37977jqdKlSrasWOHsrKy7tn23LlzSk5O1htvvKFmzZopKirK5rgBAAAAAAAAPJwoqqNAVahQQc2bN1evXr20Z88e7d+/X7169ZKnp6dMJtM9+7do0UJly5ZV9+7d9d133ykxMVFvvPGGJNnU/2b9+vVTRkaGOnfurG+++UbHjx/X+++/r+Tk5FvaFi1aVMWLF9d7772nEydOaOvWrRo0aFCenwkAAAAAAADg4cH2LyhwK1asUI8ePdSoUSMFBQVp4sSJOnz4sDw8PO7Z19nZWWvXrtULL7ygWrVqqUyZMpo6daratm1rU/+bFS9eXFu3btXQoUMVGxsrZ2dnVatWzfKlon/m5OSkVatW6eWXX1blypVVvnx5vfPOO2rcuHGen2tPh8a2kq+vb4HGAAAAAAAAAPxVmQzDMAo6CODPfvzxR4WEhGjz5s1q1qxZnvsnJiaqQYMGOnHihMqWLeuACAunjIwMmc1mXbx4kaI6AAAAAAAAkEe21tdYqY4Ct3XrVmVmZio6Olrp6ekaNmyYwsLC1KhRI5v6f/rppypSpIgiIyN14sQJDRgwQPXr1/9bFdQBAAAAAAAA5A/2VEeBy8rK0ogRI1SpUiW1b99eAQEBSkhIkKurq1auXKkiRYrc9qhUqZIk6dKlS3rppZdUoUIFxcfHq1atWlq3bt1tn9WnT587jtenT5/8nDYAAAAAAACAhxDbv6BQu3Tpks6cOXPbe66urgoNDc3TeGfPnlVGRsZt7/n6+qpEiRJ5jrGwYPsXAAAAAAAA4P6x/Qv+Enx8fOTj42O38UqUKPFQF84BAAAAAAAAFCy2fwEAAAAAAAAAwEYU1QEAAAAAAAAAsBFFdQAAAAAAAAAAbERRHQAAAAAAAAAAG1FUBwAAAAAAAADARhTVAQAAAAAAAACwEUV1AAAAAAAAAABsRFEdAAAAAAAAAAAbUVQHAAAAAAAAAMBGFNUBAAAAAAAAALARRXUAAAAAAAAAAGxEUR0AAAAAAAAAABtRVAcAAAAAAAAAwEYU1QEAAAAAAAAAsBFFdQAAAAAAAAAAbERRHQAAAAAAAAAAG1FUBwAAAAAAAADARhTVAQAAAAAAAACwEUV1AAAAAAAAAABsRFEdAAAAAAAAAAAbUVQHAAAAAAAAAMBGFNUBAAAAAAAAALARRXUAAAAAAAAAAGxEUR0AAAAAAAAAABtRVAcAAAAAAAAAwEYU1QEAAAAAAAAAsBFFdQAAAAAAAAAAbERRHQAAAAAAAAAAG7kUdAAA7MMwDElSRkZGAUcCAAAAAAAAPHxu1NVu1NnuhKI68Bdx7tw5SVJISEgBRwIAAAAAAAA8vC5duiSz2XzH+xTVgb+IYsWKSZLS0tLu+oceuJeMjAyFhITo1KlT8vX1Lehw8BAjl2Av5BLshVyCvZBLsBdyCfZCLsFe/u65ZBiGLl26pODg4Lu2o6gO/EU4Of3xFQlms/lv+aEH+/P19SWXYBfkEuyFXIK9kEuwF3IJ9kIuwV7IJdjL3zmXbFmsyheVAgAAAAAAAABgI4rqAAAAAAAAAADYiKI68Bfh7u6u0aNHy93dvaBDwUOOXIK9kEuwF3IJ9kIuwV7IJdgLuQR7IZdgL+SSbUyGYRgFHQQAAAAAAAAAAA8DVqoDAAAAAAAAAGAjiuoAAAAAAAAAANiIojoAAAAAAAAAADaiqA4AAAAAAAAAgI0oqgOF1Ny5cxUWFiYPDw/VqVNHe/bsuWv7NWvWqEKFCvLw8FB0dLS++OILq/uGYWjUqFEqWbKkPD091bx5cx0/ftyRU0AhYe9c+uSTT9SyZUsVL15cJpNJSUlJDowehYk9cykrK0uvvvqqoqOj5e3treDgYHXr1k0///yzo6eBQsDen0tjxoxRhQoV5O3traJFi6p58+bavXu3I6eAQsLeufRnffr0kclk0syZM+0cNQoje+dSfHy8TCaT1dG6dWtHTgGFhCM+l44ePaonnnhCZrNZ3t7eqlWrltLS0hw1BRQS9s6lmz+TbhxTp0515DRQCNg7lzIzM9WvXz+VKlVKnp6eqlixohYsWODIKRROBoBCZ9WqVYabm5uxZMkS4/Dhw0bPnj0NPz8/48yZM7dtn5iYaDg7OxtTpkwxjhw5YrzxxhuGq6urcfDgQUubSZMmGWaz2Vi7dq1x4MAB44knnjDCw8ONK1eu5Ne0UAAckUsrVqwwxo4dayxcuNCQZOzfvz+fZoOCZO9cunDhgtG8eXPjww8/NI4dO2bs3LnTqF27tlGjRo38nBYKgCM+l1auXGls2rTJSElJMQ4dOmT06NHD8PX1Nc6ePZtf00IBcEQu3fDJJ58YVatWNYKDg40ZM2Y4eCYoaI7Ipe7duxutW7c20tPTLcdvv/2WX1NCAXFELp04ccIoVqyYMXToUOPbb781Tpw4Yaxbt+6OY+KvwRG59OfPo/T0dGPJkiWGyWQyUlJS8mtaKACOyKWePXsaZcuWNbZt22acPHnSePfddw1nZ2dj3bp1+TWtQoGiOlAI1a5d23jppZcs5zk5OUZwcLAxceLE27aPi4szHn/8catrderUMXr37m0YhmHk5uYaQUFBxtSpUy33L1y4YLi7uxv//ve/HTADFBb2zqU/O3nyJEX1vxFH5tINe/bsMSQZ//vf/+wTNAql/MilixcvGpKMzZs32ydoFEqOyqUff/zR+Mc//mEcOnTICA0Npaj+N+CIXOrevbvx5JNPOiReFF6OyKVOnToZzz77rGMCRqGVH39fevLJJ42mTZvaJ2AUWo7IpUqVKhnjxo2zahMTE2O8/vrrdoy88GP7F6CQuX79uvbt26fmzZtbrjk5Oal58+bauXPnbfvs3LnTqr0ktWrVytL+5MmTOn36tFUbs9msOnXq3HFMPPwckUv4e8qvXLp48aJMJpP8/PzsEjcKn/zIpevXr+u9996T2WxW1apV7Rc8ChVH5VJubq66du2qoUOHqlKlSo4JHoWKIz+XEhISVKJECZUvX14vvviizp07Z/8JoNBwRC7l5uZq/fr1KleunFq1aqUSJUqoTp06Wrt2rcPmgYKXH39fOnPmjNavX68ePXrYL3AUOo7KpXr16umzzz7TTz/9JMMwtG3bNn3//fdq2bKlYyZSSFFUBwqZX3/9VTk5OQoMDLS6HhgYqNOnT9+2z+nTp+/a/sY/8zImHn6OyCX8PeVHLl29elWvvvqqnn76afn6+toncBQ6jsylzz//XEWKFJGHh4dmzJihTZs2yd/f374TQKHhqFyaPHmyXFxc9PLLL9s/aBRKjsql1q1ba8WKFdqyZYsmT56s7du369FHH1VOTo79J4FCwRG5dPbsWWVmZmrSpElq3bq1vvrqK7Vv314dOnTQ9u3bHTMRFLj8+Lv38uXL5ePjow4dOtgnaBRKjsql2bNnq2LFiipVqpTc3NzUunVrzZ07V40aNbL/JAoxl4IOAAAA/L1lZWUpLi5OhmFo/vz5BR0OHlJNmjRRUlKSfv31Vy1cuFBxcXHavXu3SpQoUdCh4SGxb98+zZo1S99++61MJlNBh4OHXOfOnS0/R0dHq0qVKipbtqwSEhLUrFmzAowMD5Pc3FxJ0pNPPqlXXnlFklStWjX93//9nxYsWKDY2NiCDA8PsSVLlqhLly7y8PAo6FDwEJo9e7Z27dqlzz77TKGhofrvf/+rl156ScHBwbescv8rY6U6UMj4+/vL2dlZZ86csbp+5swZBQUF3bZPUFDQXdvf+GdexsTDzxG5hL8nR+bSjYL6//73P23atIlV6n9xjswlb29vRURE6JFHHtHixYvl4uKixYsX23cCKDQckUs7duzQ2bNnVbp0abm4uMjFxUX/+9//NHjwYIWFhTlkHih4+fX3pTJlysjf318nTpx48KBRKDkil/z9/eXi4qKKFStatYmKilJaWpodo0dh4ujPpR07dig5OVkvvPCC/YJGoeSIXLpy5YpGjBih6dOnq23btqpSpYr69eunTp066e2333bMRAopiupAIePm5qYaNWpoy5Ytlmu5ubnasmWL6tate9s+devWtWovSZs2bbK0Dw8PV1BQkFWbjIwM7d69+45j4uHniFzC35OjculGQf348ePavHmzihcv7pgJoNDIz8+l3NxcXbt27cGDRqHkiFzq2rWrvvvuOyUlJVmO4OBgDR06VBs3bnTcZFCg8utz6ccff9S5c+dUsmRJ+wSOQscRueTm5qZatWopOTnZqs3333+v0NBQO88AhYWjP5cWL16sGjVq8N0zfwOOyKWsrCxlZWXJycm6pOzs7Gz5v2v+Ngr6m1IB3GrVqlWGu7u7sWzZMuPIkSNGr169DD8/P+P06dOGYRhG165djddee83SPjEx0XBxcTHefvtt4+jRo8bo0aMNV1dX4+DBg5Y2kyZNMvz8/Ix169YZ3333nfHkk08a4eHhxpUrV/J9fsg/jsilc+fOGfv37zfWr19vSDJWrVpl7N+/30hPT8/3+SH/2DuXrl+/bjzxxBNGqVKljKSkJCM9Pd1yXLt2rUDmiPxh71zKzMw0hg8fbuzcudNITU01vvnmG+O5554z3N3djUOHDhXIHJE/HPHfuJuFhoYaM2bMcPRUUMDsnUuXLl0yhgwZYuzcudM4efKksXnzZiMmJsaIjIw0rl69WiBzRP5wxOfSJ598Yri6uhrvvfeecfz4cWP27NmGs7OzsWPHjnyfH/KPo/4bd/HiRcPLy8uYP39+vs4HBccRuRQbG2tUqlTJ2LZtm/HDDz8YS5cuNTw8PIx58+bl+/wKEkV1oJCaPXu2Ubp0acPNzc2oXbu2sWvXLsu92NhYo3v37lbtV69ebZQrV85wc3MzKlWqZKxfv97qfm5urjFy5EgjMDDQcHd3N5o1a2YkJyfnx1RQwOydS0uXLjUk3XKMHj06H2aDgmTPXDp58uRt80iSsW3btnyaEQqKPXPpypUrRvv27Y3g4GDDzc3NKFmypPHEE08Ye/bsya/poADZ+79xN6Oo/vdhz1y6fPmy0bJlSyMgIMBwdXU1QkNDjZ49e1oKGPhrc8Tn0uLFi42IiAjDw8PDqFq1qrF27VpHTwOFgCNy6d133zU8PT2NCxcuODp8FCL2zqX09HQjPj7eCA4ONjw8PIzy5csb06ZNM3Jzc/NjOoWGyTAMo2DWyAMAAAAAAAAA8HBhT3UAAAAAAAAAAGxEUR0AAAAAAAAAABtRVAcAAAAAAAAAwEYU1QEAAAAAAAAAsBFFdQAAAAAAAAAAbERRHQAAAAAAAAAAG1FUBwAAAAAAAADARhTVAQAAAAAAAACwEUV1AAAAAAAAAABsRFEdAAAAgMPEx8fLZDLdcpw4ccIu4y9btkx+fn52Get+xcfHq127dgUaw92kpqbKZDIpKSmpoEMBAAD4S3Ap6AAAAAAA/LW1bt1aS5cutboWEBBQQNHcWVZWllxdXQs6DLu6fv16QYcAAADwl8NKdQAAAAAO5e7urqCgIKvD2dlZkrRu3TrFxMTIw8NDZcqU0dixY5WdnW3pO336dEVHR8vb21shISHq27evMjMzJUkJCQl67rnndPHiRcsK+DFjxkiSTCaT1q5daxWHn5+fli1bJun/r97+8MMPFRsbKw8PD61cuVKStGjRIkVFRcnDw0MVKlTQvHnz8jTfxo0bq3///ho4cKCKFi2qwMBALVy4UL///ruee+45+fj4KCIiQhs2bLD0SUhIkMlk0vr161WlShV5eHjokUce0aFDh6zG/vjjj1WpUiW5u7srLCxM06ZNs7ofFham8ePHq1u3bvL19VWvXr0UHh4uSapevbpMJpMaN24sSdq7d69atGghf39/mc1mxcbG6ttvv7Uaz2QyadGiRWrfvr28vLwUGRmpzz77zKrN4cOH1aZNG/n6+srHx0cNGzZUSkqK5f6Dvk8AAIDChqI6AAAAgAKxY8cOdevWTQMGDNCRI0f07rvvatmyZXrzzTctbZycnPTOO+/o8OHDWr58ubZu3aphw4ZJkurVq6eZM2fK19dX6enpSk9P15AhQ/IUw2uvvaYBAwbo6NGjatWqlVauXKlRo0bpzTff1NGjR/XWW29p5MiRWr58eZ7GXb58ufz9/bVnzx71799fL774op566inVq1dP3377rVq2bKmuXbvq8uXLVv2GDh2qadOmae/evQoICFDbtm2VlZUlSdq3b5/i4uLUuXNnHTx4UGPGjNHIkSMtvyi44e2331bVqlW1f/9+jRw5Unv27JEkbd68Wenp6frkk08kSZcuXVL37t319ddfa9euXYqMjNRjjz2mS5cuWY03duxYxcXF6bvvvtNjjz2mLl266LfffpMk/fTTT2rUqJHc3d21detW7du3T88//7zlFyP2ep8AAACFigEAAAAADtK9e3fD2dnZ8Pb2thwdO3Y0DMMwmjVrZrz11ltW7d9//32jZMmSdxxvzZo1RvHixS3nS5cuNcxm8y3tJBmffvqp1TWz2WwsXbrUMAzDOHnypCHJmDlzplWbsmXLGh988IHVtfHjxxt169a96xyffPJJy3lsbKzRoEEDy3l2drbh7e1tdO3a1XItPT3dkGTs3LnTMAzD2LZtmyHJWLVqlaXNuXPnDE9PT+PDDz80DMMwnnnmGaNFixZWzx46dKhRsWJFy3loaKjRrl07qzY35rp///47zsEwDCMnJ8fw8fEx/vOf/1iuSTLeeOMNy3lmZqYhydiwYYNhGIYxfPhwIzw83Lh+/fptx7yf9wkAAFDYsac6AAAAAIdq0qSJ5s+fbzn39vaWJB04cECJiYlWK9NzcnJ09epVXb58WV5eXtq8ebMmTpyoY8eOKSMjQ9nZ2Vb3H1TNmjUtP//+++9KSUlRjx491LNnT8v17Oxsmc3mPI1bpUoVy8/Ozs4qXry4oqOjLdcCAwMlSWfPnrXqV7duXcvPxYoVU/ny5XX06FFJ0tGjR/Xkk09ata9fv75mzpypnJwcy5Y6f57T3Zw5c0ZvvPGGEhISdPbsWeXk5Ojy5ctKS0u741y8vb3l6+triTspKUkNGza87V709nyfAAAAhQlFdQAAAAAO5e3trYiIiFuuZ2ZmauzYserQocMt9zw8PJSamqo2bdroxRdf1JtvvqlixYrp66+/Vo8ePXT9+vW7FtVNJpMMw7C6dmMblZtj+3M8krRw4ULVqVPHqt2NgrWtbi4ym0wmq2smk0mSlJubm6dxbfHnOd1N9+7dde7cOc2aNUuhoaFyd3dX3bp1b/ly09vN5Ubcnp6edxzfnu8TAACgMKGoDgAAAKBAxMTEKDk5+bYFd+mPPcRzc3M1bdo0OTn98XVQq1evtmrj5uamnJycW/oGBAQoPT3dcn78+PFb9i+/WWBgoIKDg/XDDz+oS5cueZ2OXezatUulS5eWJJ0/f17ff/+9oqKiJElRUVFKTEy0ap+YmKhy5crdtUjt5uYmSbe8p8TERM2bN0+PPfaYJOnUqVP69ddf8xRvlSpVtHz5cmVlZd1SfC8M7xMAAMARKKoDAAAAKBCjRo1SmzZtVLp0aXXs2FFOTk46cOCADh06pAkTJigiIkJZWVmaPXu22rZtq8TERC1YsMBqjLCwMGVmZmrLli2qWrWqvLy85OXlpaZNm2rOnDmqW7eucnJy9Oqrr952i5KbjR07Vi+//LLMZrNat26ta9eu6ZtvvtH58+c1aNAgR70Ki3Hjxql48eIKDAzU66+/Ln9/f7Vr106SNHjwYNWqVUvjx49Xp06dtHPnTs2ZM0fz5s2765glSpSQp6envvzyS5UqVUoeHh4ym82KjIzU+++/r5o1ayojI0NDhw6968rz2+nXr59mz56tzp07a/jw4TKbzdq1a5dq166t8uXLF/j7BAAAcASngg4AAAAAwN9Tq1at9Pnnn+urr75SrVq19Mgjj2jGjBkKDQ2VJFWtWlXTp0/X5MmTVblyZa1cuVITJ060GqNevXrq06ePOnXqpICAAE2ZMkWSNG3aNIWEhKhhw4Z65plnNGTIEJv2YH/hhRe0aNEiLV26VNHR0YqNjdWyZcsUHh5u/xdwG5MmTdKAAQNUo0YNnT59Wv/5z38sK81jYmK0evVqrVq1SpUrV9aoUaM0btw4xcfH33VMFxcXvfPOO3r33XcVHBxs2Zd98eLFOn/+vGJiYtS1a1e9/PLLKlGiRJ7iLV68uLZu3arMzEzFxsaqRo0aWrhwoeUXGAX9PgEAABzBZNy80SAAAAAAIF8lJCSoSZMmOn/+vPz8/Ao6HAAAANwFK9UBAAAAAAAAALARRXUAAAAAAAAAAGzE9i8AAAAAAAAAANiIleoAAAAAAAAAANiIojoAAAAAAAAAADaiqA4AAAAAAAAAgI0oqgMAAAAAAAAAYCOK6gAAAAAAAAAA2IiiOgAAAAAAAAAANqKoDgAAAAAAAACAjSiqAwAAAAAAAABgo/8HA0x202lYzxAAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABdUAAANXCAYAAADTh7aPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdaViV5fr38e9ilBlRFFQEFEREcdacTTGcp0ozt4qzlZo5pZUK5JRliZlzibY1MytzO09haWU4YOaAiiBWbDVFEN2iwnpe+Lj+rgBdOITV73Mc93Gw7ms6r3vRi04uz9tgNBqNiIiIiIiIiIiIiIjIPVkVdQAiIiIiIiIiIiIiIn8VSqqLiIiIiIiIiIiIiFhISXUREREREREREREREQspqS4iIiIiIiIiIiIiYiEl1UVERERERERERERELKSkuoiIiIiIiIiIiIiIhZRUFxERERERERERERGxkJLqIiIiIiIiIiIiIiIWUlJdRERERERERERERMRCSqqLiIiIiIiIiIiIiFhISXUREREREclXbGwsBoMh32vcuHGPZM3vvvuOyMhILl269EjmfxC3n8fevXuLOpT7NnfuXGJjY4s6DBEREZG/NJuiDkBERERERB5v0dHR+Pv7m92rWrXqI1nru+++IyoqioiICNzd3R/JGv9kc+fOpWTJkkRERBR1KCIiIiJ/WUqqi4iIiIjIXbVp04Y6deoUdRgP5MqVKzg5ORV1GEXm6tWrODo6FnUYIiIiIn8LKv8iIiIiIiIPZOPGjTRp0gQnJydcXFxo164dhw8fNuvz008/ERERQYUKFShWrBheXl7069ePCxcumPpERkYyZswYAPz9/U2lZlJSUkhJScFgMORbusRgMBAZGWk2j8Fg4MiRIzz//PMUL16cxo0bm9r//e9/U7t2bRwcHPDw8OC5557jzJkz97X3iIgInJ2dSU1NpX379jg7O1O2bFk++OADAA4dOkSLFi1wcnLC19eXFStWmI2/XVLmm2++YfDgwZQoUQJXV1d69+5Nenp6nvXmzp1LSEgI9vb2lClThpdeeilPqZzmzZtTtWpV9u3bR9OmTXF0dOS1117Dz8+Pw4cPs3PnTtOzbd68OQAXL15k9OjRVKtWDWdnZ1xdXWnTpg0HDx40mzsuLg6DwcCqVauYMmUK5cqVo1ixYrRs2ZKTJ0/miXfPnj20bduW4sWL4+TkRGhoKDExMWZ9jh07xjPPPIOHhwfFihWjTp06rF271qzPjRs3iIqKIjAwkGLFilGiRAkaN27M1q1bLfqeRERERB4mnVQXEREREZG7ysjI4Pfffze7V7JkSQA+/vhj+vTpQ3h4OG+99RZXr15l3rx5NG7cmAMHDuDn5wfA1q1bOXXqFH379sXLy4vDhw+zcOFCDh8+zA8//IDBYKBr164cP36cTz75hPfee8+0hqenJ+fPny903M8++yyBgYFMnToVo9EIwJQpU5gwYQLdunVjwIABnD9/nvfff5+mTZty4MCB+yo5k5OTQ5s2bWjatCkzZsxg+fLlDB06FCcnJ15//XV69uxJ165dmT9/Pr1796ZBgwZ5yukMHToUd3d3IiMjSUxMZN68eZw+fdqUxIZbfyyIiooiLCyMF154wdQvPj6e3bt3Y2tra5rvwoULtGnThueee45//etflC5dmubNmzNs2DCcnZ15/fXXAShdujQAp06dYs2aNTz77LP4+/tz9uxZFixYQLNmzThy5AhlypQxi3f69OlYWVkxevRoMjIymDFjBj179mTPnj2mPlu3bqV9+/Z4e3vz8ssv4+XlxdGjR1m3bh0vv/wyAIcPH6ZRo0aULVuWcePG4eTkxKpVq+jcuTOff/45Xbp0Me192rRpDBgwgHr16pGZmcnevXvZv38/rVq1KvR3JiIiIvJAjCIiIiIiIvlYsmSJEcj3MhqNxsuXLxvd3d2NAwcONBv33//+1+jm5mZ2/+rVq3nm/+STT4yA8ZtvvjHde/vtt42AMTk52axvcnKyETAuWbIkzzyAcdKkSabPkyZNMgLGHj16mPVLSUkxWltbG6dMmWJ2/9ChQ0YbG5s89wt6HvHx8aZ7ffr0MQLGqVOnmu6lp6cbHRwcjAaDwbhy5UrT/WPHjuWJ9factWvXNl6/ft10f8aMGUbA+NVXXxmNRqPx3LlzRjs7O+NTTz1lzMnJMfWbM2eOETB+9NFHpnvNmjUzAsb58+fn2UNISIixWbNmee5fu3bNbF6j8dYzt7e3N0ZHR5vuff3110bAGBwcbMzOzjbdj4mJMQLGQ4cOGY1Go/HmzZtGf39/o6+vrzE9Pd1s3tzcXNPPLVu2NFarVs147do1s/aGDRsaAwMDTfeqV69ubNeuXZ64RURERIqCyr+IiIiIiMhdffDBB2zdutXsglsnkS9dukSPHj34/fffTZe1tTX169fn66+/Ns3h4OBg+vnatWv8/vvvPPHEEwDs37//kcQ9ZMgQs89ffPEFubm5dOvWzSxeLy8vAgMDzeItrAEDBph+dnd3JygoCCcnJ7p162a6HxQUhLu7O6dOncozftCgQWYnzV944QVsbGzYsGEDANu2beP69euMGDECK6v/+9+4gQMH4urqyvr1683ms7e3p2/fvhbHb29vb5o3JyeHCxcu4OzsTFBQUL7fT9++fbGzszN9btKkCYBpbwcOHCA5OZkRI0bkOf1/++T9xYsX2bFjB926dePy5cum7+PChQuEh4dz4sQJfv31V+DWMz18+DAnTpyweE8iIiIij4rKv4iIiIiIyF3Vq1cv3xeV3k5wtmjRIt9xrq6upp8vXrxIVFQUK1eu5Ny5c2b9MjIyHmK0/+ePJVZOnDiB0WgkMDAw3/53JrULo1ixYnh6eprdc3Nzo1y5cqYE8p3386uV/seYnJ2d8fb2JiUlBYDTp08DtxLzd7Kzs6NChQqm9tvKli1rlvS+l9zcXGJiYpg7dy7Jycnk5OSY2kqUKJGnf/ny5c0+Fy9eHMC0t6SkJACqVq1a4JonT57EaDQyYcIEJkyYkG+fc+fOUbZsWaKjo+nUqROVKlWiatWqtG7dml69ehEaGmrxHkVEREQeFiXVRURERETkvuTm5gK36qp7eXnlabex+b//3ejWrRvfffcdY8aMoUaNGjg7O5Obm0vr1q1N89zNH5PTt92Z/P2jO0/H347XYDCwceNGrK2t8/R3dna+Zxz5yW+uu903/v/67o/SH/d+L1OnTmXChAn069ePN998Ew8PD6ysrBgxYkS+38/D2NvteUePHk14eHi+fQICAgBo2rQpSUlJfPXVV2zZsoXFixfz3nvvMX/+fLN/JSAiIiLyZ1BSXURERERE7kvFihUBKFWqFGFhYQX2S09PZ/v27URFRTFx4kTT/fxKeRSUPL99EvrSpUtm9/94Qvte8RqNRvz9/alUqZLF4/4MJ06c4MknnzR9zsrKIi0tjbZt2wLg6+sLQGJiIhUqVDD1u379OsnJyXd9/ncq6PmuXr2aJ598kg8//NDs/qVLl0wvjC2M278bP//8c4Gx3d6Hra2tRfF7eHjQt29f+vbtS1ZWFk2bNiUyMlJJdREREfnTqaa6iIiIiIjcl/DwcFxdXZk6dSo3btzI037+/Hng/041//EU86xZs/KMcXJyAvImz11dXSlZsiTffPON2f25c+daHG/Xrl2xtrYmKioqTyxGo5ELFy5YPNfDtnDhQrNnOG/ePG7evEmbNm0ACAsLw87OjtmzZ5vF/uGHH5KRkUG7du0sWsfJySnPs4Vb39Efn8lnn31mqmleWLVq1cLf359Zs2blWe/2OqVKlaJ58+YsWLCAtLS0PHPc/v0B8nw3zs7OBAQEkJ2dfV/xiYiIiDwInVQXEREREZH74urqyrx58+jVqxe1atXiueeew9PTk9TUVNavX0+jRo2YM2cOrq6uNG3alBkzZnDjxg3Kli3Lli1bSE5OzjNn7dq1AXj99dd57rnnsLW1pUOHDjg5OTFgwACmT5/OgAEDqFOnDt988w3Hjx+3ON6KFSsyefJkxo8fT0pKCp07d8bFxYXk5GS+/PJLBg0axOjRox/a8ymM69ev07JlS7p160ZiYiJz586lcePGdOzYEQBPT0/Gjx9PVFQUrVu3pmPHjqZ+devW5V//+pdF69SuXZt58+YxefJkAgICKFWqFC1atKB9+/ZER0fTt29fGjZsyKFDh1i+fLnZqfjCsLKyYt68eXTo0IEaNWrQt29fvL29OXbsGIcPH2bz5s3ArZfgNm7cmGrVqjFw4EAqVKjA2bNn+f777/nll184ePAgAFWqVKF58+bUrl0bDw8P9u7dy+rVqxk6dOh9xSciIiLyIJRUFxERERGR+/b8889TpkwZpk+fzttvv012djZly5alSZMm9O3b19RvxYoVDBs2jA8++ACj0chTTz3Fxo0bKVOmjNl8devW5c0332T+/Pls2rSJ3NxckpOTcXJyYuLEiZw/f57Vq1ezatUq2rRpw8aNGylVqpTF8Y4bN45KlSrx3nvvERUVBYCPjw9PPfWUKYFdFObMmcPy5cuZOHEiN27coEePHsyePdusXEtkZCSenp7MmTOHV155BQ8PDwYNGsTUqVMtfsnqxIkTOX36NDNmzODy5cs0a9aMFi1a8Nprr3HlyhVWrFjBp59+Sq1atVi/fj3jxo277z2Fh4fz9ddfExUVxcyZM8nNzaVixYoMHDjQ1KdKlSrs3buXqKgoYmNjuXDhAqVKlaJmzZpmpYKGDx/O2rVr2bJlC9nZ2fj6+jJ58mTGjBlz3/GJiIiI3C+D8c94S46IiIiIiIjkERsbS9++fYmPj6dOnTpFHY6IiIiIWEA11UVERERERERERERELKSkuoiIiIiIiIiIiIiIhZRUFxERERERERERERGxkGqqi4iIiIiIiIiIiIhYSCfVRUREREREREREREQspKS6iIiIiIiIiIiIiIiFbIo6ABF5OHJzc/ntt99wcXHBYDAUdTgiIiIiIiIiIiJ/KUajkcuXL1OmTBmsrAo+j66kusjfxG+//YaPj09RhyEiIiIiIiIiIvKXdubMGcqVK1dgu5LqIn8TLi4uwK3/6F1dXYs4GhERERERERERkb+WzMxMfHx8THm2giipLvI3cbvki6urq5LqIiIiIiIiIiIi9+lepZX1olIREREREREREREREQspqS4iIiIiIiIiIiIiYiEl1UVERERERERERERELKSkuoiIiIiIiIiIiIiIhZRUFxERERERERERERGxkJLqIiIiIiIiIiIiIiIWUlJdRERERERERERERMRCSqqLiIiIiIiIiIiIiFhISXUREREREREREREREQspqS4iIiIiIiIiIiIiYiEl1UVERERERERERERELKSkuoiIiIiIiIiIiIiIhZRUFxERERERERERERGxkJLqIiIiIiIiIiIiIiIWUlJdRERERERERERERMRCSqqLiIiIiIiIiIiIiFhISXUREREREREREREREQspqS4iIiIiIiIiIiIiYiEl1UVERERERERERERELKSkuoiIiIiIiIiIiIiIhZRUFxERERERERERERGxkJLqIiIiIiIiIiIiIiIWUlJdRERERERERERERMRCSqqLiIiIiIiIiIiIiFhISXUREREREREREREREQspqS4iIiIiIiIiIiIiYiEl1UVERERERERERERELKSkuoiIiIiIiIiIiIiIhZRUFxERERERERERERGxkJLqIiIiIiIiIiIiIiIWUlJdRERERERERERERMRCSqqLiIiIiIiIiIiIiFhISXX5SzIajQwaNAgPDw8MBgMJCQkF9m3evDkjRox4oPUiIyOpUaPGXftERETQuXPnB1rnTn5+fsyaNeuhzSciIiIiIiIiIiIPzqaoAxC5H5s2bSI2Npa4uDgqVKhAyZIlizqkhy4+Ph4nJ6eiDkNERERERERERETuoKS6/CUlJSXh7e1Nw4YNizqUR8bT07OoQxAREREREREREZE/UPkX+cuJiIhg2LBhpKamYjAY8PPzu+eY3Nxcxo4di4eHB15eXkRGRpq1p6am0qlTJ5ydnXF1daVbt26cPXu2wPlycnIYOXIk7u7ulChRgrFjx2I0Gi3ew+XLl+nZsydOTk54e3vz3nvv5SlTc6/yL9nZ2WRmZppdIiIiIiIiIiIi8mgpqS5/OTExMURHR1OuXDnS0tKIj4+/55ilS5fi5OTEnj17mDFjBtHR0WzduhW4lXDv1KkTFy9eZOfOnWzdupVTp07RvXv3AuebOXMmsbGxfPTRR+zatYuLFy/y5ZdfWryHkSNHsnv3btauXcvWrVv59ttv2b9/v8XjAaZNm4abm5vp8vHxKdR4ERERERERERERKTyVf5G/HDc3N1xcXLC2tsbLy8uiMaGhoUyaNAmAwMBA5syZw/bt22nVqhXbt2/n0KFDJCcnmxLTy5YtIyQkhPj4eOrWrZtnvlmzZjF+/Hi6du0KwPz589m8ebNFsVy+fJmlS5eyYsUKWrZsCcCSJUsoU6aMReNvGz9+PCNHjjR9zszMVGJdRERERERERETkEdNJdflHCA0NNfvs7e3NuXPnADh69Cg+Pj5mCekqVarg7u7O0aNH88yVkZFBWloa9evXN92zsbGhTp06FsVy6tQpbty4Qb169Uz33NzcCAoKKtSe7O3tcXV1NbtERERERERERETk0VJSXf4RbG1tzT4bDAZyc3OLKBoRERERERERERH5q1JSXf7xgoODOXPmDGfOnDHdO3LkCJcuXaJKlSp5+ru5ueHt7c2ePXtM927evMm+ffssWq9ChQrY2tqa1YLPyMjg+PHjD7ALERERERERERER+TOoprr844WFhVGtWjV69uzJrFmzuHnzJi+++CLNmjUrsKTLyy+/zPTp0wkMDKRy5cq8++67XLp0yaL1XFxc6NOnD2PGjMHDw4NSpUoxadIkrKysMBgMD3FnIiIiIiIiIiIi8rDppLr84xkMBr766iuKFy9O06ZNCQsLo0KFCnz66acFjhk1ahS9evWiT58+NGjQABcXF7p06WLxmu+++y4NGjSgffv2hIWF0ahRI4KDgylWrNjD2JKIiIiIiIiIiIg8Igaj0Wgs6iAkL6PRyODBg1m9ejXp6em4ubkRERHBrFmzHsr8BoOBL7/8ks6dOz+U+R625s2bU6NGjYe23z+Ki4vjySefJD09HXd390eyRmFcuXKFsmXLMnPmTPr3739fc2RmZuLm5kZGRoZeWioiIiIiIiIiIlJIlubXVP7lMbVp0yZiY2OJi4ujQoUKPPPMMw91/rS0NIoXL/5Q53yYvvjiizwvFy0qsbGxjBgxwuLyLpY4cOAAx44do169emRkZBAdHQ1Ap06dHtoaIiIiIiIiIiIi8vApqf6YSkpKwtvbm4YNGwJgY/NwvyovL6+HOt9tN27ceCjJcA8PD4v6paam5vsy0duOHDlC+fLlHziewrAkJoB33nmHxMRE7OzsqF27Nt9++y0lS5b8s8IUERERERERERGR+6Ca6o+hiIgIhg0bRmpqKgaDAT8/vzx90tLSaNeuHQ4ODvj7+7NixQr8/PwsLpdiMBhYs2YNANevX2fo0KF4e3tTrFgxfH19mTZtmsXzzJs3j44dO+Lk5MSUKVMA+Oqrr6hVqxbFihWjQoUKREVFcfPmTQCef/55unfvbjbPjRs3KFmyJMuWLQNulX8ZMWKEqX3u3LkEBgZSrFgxSpcubTq5X6ZMGfbv38+QIUNwd3fnxo0blCtXjmnTppGQkECZMmUA2LBhA5UqVcLBwYEnn3ySlJQUi/YXFxdH3759ycjIwGAwYDAYiIyMBCA7O5vRo0dTtmxZnJycqF+/PnFxcZQpU4aEhAQmTJiAwWBg5syZeHl58b///Y9169bRpEkT1q9fT0hICHDrxaXDhg3Dy8uLTp064ezsTGhoKHv37rUoRhEREREREREREfnzKKn+GIqJiSE6Oppy5cqRlpZGfHx8nj69e/fmt99+Iy4ujs8//5yFCxdy7ty5+1pv9uzZrF27llWrVpGYmMjy5cvzTeQXJDIyki5dunDo0CH69evHt99+S+/evXn55Zc5cuQICxYsIDY21pRw79mzJ//5z3/IysoyzbF582auXr2a78s+9+7dy/Dhw4mOjiYxMZFNmzbRtGlT4NYJ/s8++4z169fz4YcfcvToUcaNG8eYMWP49ddfsbGx4cyZM3Tt2pUOHTqQkJDAgAEDGDdunEV7a9iwIbNmzcLV1ZW0tDTS0tIYPXo0AEOHDuX7779n5cqV/PTTTzz77LO0bt2a5ORkAgICKF26NNnZ2Sxbtoxly5Zx5MgR6tWrh8Fg4L333qNRo0YcOHCAdu3a0atXL3r37s2//vUv9u/fT8WKFenduzd3e+VBdnY2mZmZZpeIiIiIiIiIiIg8Wir/8hhyc3PDxcUFa2vrfMu0HDt2jG3bthEfH0+dOnUAWLx4MYGBgfe1XmpqKoGBgTRu3BiDwYCvr2+hxj///PP07dvX9Llfv36MGzeOPn36AFChQgXefPNNxo4dy6RJkwgPD8fJyYkvv/ySXr16AbBixQo6duyIi4tLvvE5OTnRvn17XFxc8PX1pWbNmsCtxPLUqVPZtm0bDRo0MK23a9cuFixYQLNmzZg3bx4VK1Zk5syZAAQFBXHo0CHeeuute+7Nzs4ONzc3DAaD2XeRmprKkiVLSE1NNZ2GHz16NJs2bWLJkiVMnToVuHUCf+7cuVSvXt1s3rZt2zJ48GAAJk6cyLx586hbty7PPvssAK+++ioNGjTg7NmzBZbqmTZtGlFRUffcg4iIiIiIiIiIiDw8Sqr/BSUmJmJjY0OtWrVM9wICAu77xaMRERG0atWKoKAgWrduTfv27XnqqacsHn87sX/bwYMH2b17t+lkOkBOTg7Xrl3j6tWrODo60q1bN5YvX06vXr24cuUKX331FStXrsx3/latWuHr60uFChVo3bo1rVu3pkuXLjg6OnLy5EmuXr1Kq1atzMZcv37dlHg/evQo9evXN2u/nYC/X4cOHSInJ4dKlSqZ3c/OzqZEiRKmz3Z2doSGhuYZf+e90qVLA1CtWrU8986dO1dgUn38+PGMHDnS9DkzMxMfH5/72I2IiIiIiIiIiIhYSkl1oVatWiQnJ7Nx40a2bdtGt27dCAsLY/Xq1RaNd3JyMvuclZVFVFQUXbt2zdO3WLFiwK0SMM2aNePcuXNs3boVBwcHWrdune/8Li4u7N+/n7i4OLZs2cLEiROJjIwkPj7eVEJm/fr1lC1b1mycvb29RfHfj6ysLKytrdm3bx/W1tZmbc7OzqafHRwcMBgMecbf+TLX2+353cvNzS0wBnt7+0e6RxEREREREREREclLSfW/oKCgIG7evMmBAweoXbs2ACdPniQ9Pf2+53R1daV79+50796dZ555htatW3Px4kU8PDwKPVetWrVITEwkICCgwD4NGzbEx8eHTz/9lI0bN/Lss8+aJZX/yMbGhrCwMMLCwpg0aRLu7u7s2LGDVq1aYW9vT2pqKs2aNct3bHBwMGvXrjW798MPP1i8Hzs7O3Jycszu1axZk5ycHM6dO0eTJk0snktERERERERERET+2pRU/wuqXLkyYWFhDBo0iHnz5mFra8uoUaMKPBV9L++++y7e3t7UrFkTKysrPvvsM7y8vHB3d7+v+CZOnEj79u0pX748zzzzDFZWVhw8eJCff/6ZyZMnm/o9//zzzJ8/n+PHj/P1118XON+6des4deoUTZs2pXjx4mzYsIHc3FyCgoJwcXFh9OjRvPLKK+Tm5tK4cWMyMjLYvXs3rq6u9OnThyFDhjBz5kzGjBnDgAED2LdvH7GxsRbvx8/Pj6ysLLZv30716tVxdHSkUqVK9OzZk969ezNz5kxq1qzJ+fPn2b59O6GhobRr1+6+np2IiIiIiIiIiIg83qyKOgC5P8uWLaN06dI0bdqULl26MHDgQFxcXEzlVQrDxcWFGTNmUKdOHerWrUtKSgobNmzAyur+fj3Cw8NZt24dW7ZsoW7dujzxxBO89957eV6A2rNnT44cOULZsmVp1KhRgfO5u7vzxRdf0KJFC4KDg5k/fz6ffPIJISEhALz55ptMmDCBadOmERwcTOvWrVm/fj3+/v4AlC9fns8//5w1a9ZQvXp15s+fb3qRqCUaNmzIkCFD6N69O56ensyYMQOAJUuW0Lt3b0aNGkVQUBCdO3cmPj6e8uXLF/aRiYiIiIiIiIiIyF+EwWg0Gos6CHlwv/zyCz4+Pmzbto2WLVsWdThSBDIzM3FzcyMjIwNXV9eiDkdEREREREREROQvxdL8mk6q/0Xt2LGDtWvXkpyczO7du6lTpw5WVlaEhYXh7u7OiBEjHtpaBoOBNWvWPLT5CiMyMpIaNWqYPkdERNC5c2fTZ6PRyKBBg/Dw8MBgMJCQkPBI4/nj+veSkpLyp8QlIiIiIiIiIiIifw4l1f+ibty4wWuvvUZISAjt27fn3LlzfPbZZ6SlpVGqVCnmzp2Ls7Nznut2yRRLLF++HGdnZwB69Ohx3/M8TDExMWb10Ddt2kRsbCzr1q0jLS2NqlWrFnrONm3a5PusnJ2dC1UmJj8+Pj73HZeIiIiIiIiIiIg8fvSi0r+o8PBwwsPDAZgzZw5vv/02Xbt2BaBUqVI0bNiQN954I884W1tbi9fo2LEj9evXJzAwkHfffZdWrVrd1zwPk5ubm9nnpKQkvL29adiw4X3PuXjxYv73v//l2+bh4XHf8wJYW1vj5eX1QHOIiIiIiIiIiIjI40Mn1f/iIiIiGDZsGKmpqRgMBvz8/LCxscHd3Z2AgAACAgJwcnLi5Zdfplq1ajRv3pwVK1bg5+fHrFmz7jq3i4sLAQEBwK0k+pgxYwgNDaVNmzYcPHjQ1C8nJ4f+/fvj7++Pg4MDQUFBxMTEmM0VFxdHvXr1cHJywt3dnUaNGnH69On72u/t8iv57R0gNzeXadOmmeKpXr06q1evLnDOsmXLmp5VQEAA2dnZjBgxglq1auHr60uTJk1ISkrKd+ymTZto3Lgx7u7ulChRgvbt25v1/WP5l7i4OAwGA5s3b6ZmzZo4ODjQokULzp07x8aNGwkODsbV1ZXnn3+eq1evFvr5iIiIiIiIiIiIyKOlk+p/cTExMVSsWJGFCxcSHx+PtbU1zz77rFmf3r178/vvvxMXF4etrS0jR47k3LlzhVonKiqKGTNm8Pbbb/P+++/Ts2dPTp8+jYeHB7m5uZQrV47PPvuMEiVK8N133zFo0CC8vb3p1q0bN2/epHPnzgwcOJBPPvmE69ev8+OPP2IwGB763gGmTZvGv//9b+bPn09gYCDffPMN//rXv/D09KRZs2Z3nfPXX3+ladOmNG/enB07duDq6sru3bu5efNmvv2vXLnCyJEjCQ0NJSsri4kTJ9KlSxcSEhKwsir4b1aRkZHMmTMHR0dHunXrRrdu3bC3t2fFihVkZWXRpUsX3n//fV599dUC58jOziY7O9v0OTMz8657ExERERERERERkQenpPpfnJubGy4uLgWWGTl27Bjbtm0jPj6eOnXqALfKnQQGBhZqnYiICHr06AHA1KlTmT17Nj/++COtW7fG1taWqKgoU19/f3++//57Vq1aRbdu3cjMzCQjI4P27dtTsWJFAIKDg+93yyb57T07O5upU6eybds2GjRoAECFChXYtWsXCxYsuGdS/YMPPsDNzY2VK1eaStxUqlSpwP5PP/202eePPvoIT09Pjhw5ctc66pMnT6ZRo0YA9O/fn/Hjx5OUlESFChUAeOaZZ/j666/vmlSfNm2a2XMXERERERERERGRR0/lX/7mEhMTsbGxoVatWqZ7AQEBFC9evFDzhIaGmn52cnLC1dXV7LT7Bx98QO3atfH09MTZ2ZmFCxeSmpoK3KpLHhERQXh4OB06dCAmJoa0tLQH3Fn+Tp48ydWrV2nVqpXZC0eXLVtWYAmXOyUkJNCkSROLa8afOHGCHj16UKFCBVxdXU0laG7vvSB3Ps/SpUvj6OhoSqjfvnevf00wfvx4MjIyTNeZM2csillERERERERERETun06qi0X+mGQ2GAzk5uYCsHLlSkaPHs3MmTNp0KABLi4uvP322+zZs8fUf8mSJQwfPpxNmzbx6aef8sYbb7B161aeeOKJhxpnVlYWAOvXr6ds2bJmbfb29vcc7+DgUKj1OnTogK+vL4sWLaJMmTLk5uZStWpVrl+/ftdxdz5Pg8Fw1+dbEHt7e4v2JCIiIiIiIiIiIg+Pkup/c0FBQdy8eZMDBw5Qu3Zt4NZp7vT09Ie2xu7du2nYsCEvvvii6V5+p8Jr1qxJzZo1GT9+PA0aNGDFihUPPalepUoV7O3tSU1NvWepl/yEhoaydOlSbty4cc/T6hcuXCAxMZFFixbRpEkTAHbt2nVfcYuIiIiIiIiIiMhfg8q//M1VrlyZsLAwBg0axI8//siBAwcYNGgQDg4OD/yi0NsCAwPZu3cvmzdv5vjx40yYMIH4+HhTe3JyMuPHj+f777/n9OnTbNmyhRMnTjyUuup/5OLiwujRo3nllVdYunQpSUlJ7N+/n/fff5+lS5fec/zQoUPJzMzkueeeY+/evZw4cYKPP/6YxMTEPH2LFy9OiRIlWLhwISdPnmTHjh2MHDnyoe9JREREREREREREHh9Kqv8DLFu2jNKlS9O0aVO6dOnCwIEDcXFxoVixYg9l/sGDB9O1a1e6d+9O/fr1uXDhgtmpdUdHR44dO8bTTz9NpUqVGDRoEC+99BKDBw9+KOv/0ZtvvsmECROYNm0awcHBtG7dmvXr1+Pv73/PsSVKlGDHjh1kZWXRrFkzateuzaJFi/I9tW5lZcXKlSvZt28fVatW5ZVXXuHtt99+FFsSERERERERERGRx4TBaDQaizoI+XP98ssv+Pj4sG3bNlq2bFnU4chDkpmZiZubGxkZGbi6uhZ1OCIiIiIiIiIiIn8plubXdFK9iBmNRgYNGoSHhwcGgwF3d3dGjBjx0OY3GAxER0ezdu1akpOT+e6773juuefw8/OjadOmD22dvzqDwcCaNWsemxhSUlIwGAwkJCQUaUwiIiIiIiIiIiJiTkn1IrZp0yZiY2NZt24daWlpVK1a9aHOn5aWRq1atXjttdcICQmhS5cueHp6EhcXh62tLcuXL8fZ2TnfKyQk5IHXv1eyOiQkpMD1ly9f/sDr/9GQIUPyXQtg3rx5D329wkhLS6NNmzZFGoOIiIiIiIiIiIjcnU1RB/BPl5SUhLe3Nw0bNgTAxubhfiVeXl60b9+e9u3b59vesWNH6tevn29bfnXEb7tx48Zd2y21YcMGbty4kW9b6dKlTT9fv34dOzu7B14vOjqa0aNH57kfGBhIjx49Hnj+B+Hl5VWk64uIiIiIiIiIiMi96aR6EYqIiGDYsGGkpqZiMBjw8/PL0yctLY127drh4OCAv78/K1aswM/Pj1mzZlm0xp0nxa9fv87QoUPx9vamWLFi+Pr6MmfOHAICAvK9fH19zeaZN28eHTt2xMnJiSlTpgDw1VdfUatWLYoVK0aFChWIiori5s2bAKb9dOnSxWx/ERERdO7cGQBfX18CAgKYM2cOAwYMMK09YMAAxo8fz4gRIyhZsiTh4eHExcVhMBjYvn07derUwdHRkYYNG5KYmGi257vFVKpUKYxGI/369aNq1ap07NiR5ORkANzd3e/5PG+XZVm1ahVNmjTBwcGBunXrcvz4ceLj46lTpw7Ozs60adOG8+fPm8bFx8fTqlUrSpYsiZubG82aNWP//v0FflciIiIiIiIiIiLyeFJSvQjFxMQQHR1NuXLlSEtLIz4+Pk+f3r1789tvvxEXF8fnn3/OwoULOXfu3H2tN3v2bNauXcuqVatITExk+fLl+SbyCxIZGUmXLl04dOgQ/fr149tvv6V37968/PLLHDlyhAULFhAbG2tKuN/ez5IlSwrc390sXboUOzs7du/ezfz58033X3/9dWbOnMnevXuxsbGhX79+prZ7xZSbm0vXrl2xs7Njz549zJ8/n1dffbVQcQFMmjSJN954g/3792NjY8Pzzz/P2LFjiYmJ4dtvv+XkyZNMnDjR1P/y5cv06dOHXbt28cMPPxAYGEjbtm25fPlyode+LTs7m8zMTLNLREREREREREREHi2VfylCbm5uuLi4YG1tnW/pj2PHjrFt2zbTCWiAxYsXExgYeF/rpaamEhgYSOPGjTEYDGYn0S3x/PPP07dvX9Pnfv36MW7cOPr06QNAhQoVePPNNxk7diyTJk3C09MTuHUC/H5KmwQGBjJjxgzT57S0NACmTJlCs2bNABg3bhzt2rXj2rVrFCtWjKioqLvGtG3bNo4dO8bmzZspU6YMAFOnTi10LfPRo0cTHh4OwMsvv0yPHj3Yvn07jRo1AqB///7Exsaa+rdo0cJs/MKFC3F3d2fnzp0Flua5l2nTphEVFXVfY0VEREREREREROT+6KT6YywxMREbGxtq1apluhcQEEDx4sXva76IiAgSEhIICgpi+PDhbNmypVDjbyf2bzt48CDR0dFmL/wcOHAgaWlpXL169b5ivFPt2rXzvR8aGmr62dvbG8B0ev9eMR09ehQfHx9TQh2gQYMGhY7tzhhu136vVq2a2b07/0XB2bNnGThwIIGBgbi5ueHq6kpWVhapqamFXvu28ePHk5GRYbrOnDlz33OJiIiIiIiIiIiIZXRS/R+kVq1aJCcns3HjRrZt20a3bt0ICwtj9erVFo13cnIy+5yVlUVUVBRdu3bN07dYsWIFzmNlZYXRaDS7l9/LSv+43m13viDVYDAAt8q6PEhMhZVfDH+8dzsmgD59+nDhwgViYmLw9fXF3t6eBg0acP369fuOwd7eHnt7+/seLyIiIiIiIiIiIoWnpPpjLCgoiJs3b3LgwAHTqe2TJ0+Snp5+33O6urrSvXt3unfvzjPPPEPr1q25ePEiHh4ehZ6rVq1aJCYmEhAQUGAfW1tbcnJyzO55enry888/m91LSEgwS0rfr3vFFBwczJkzZ0hLSzOdcv/hhx8eeN172b17N3PnzqVt27YAnDlzht9///2RrysiIiIiIiIiIiIPl5Lqj7HKlSsTFhbGoEGDmDdvHra2towaNQoHBwfT6ejCePfdd/H29qZmzZpYWVnx2Wef4eXlhbu7+33FN3HiRNq3b0/58uV55plnsLKy4uDBg/z8889MnjwZAD8/P1OtcXt7e4oXL06LFi14++23WbZsGQ0aNODf//43P//8MzVr1ryvOAoTU1hYGJUqVaJPnz68/fbbZGZm8vrrrz/wuvcSGBjIxx9/TJ06dcjMzGTMmDE4ODg88nVFRERERERERETk4VJN9cfcsmXLKF26NE2bNqVLly4MHDgQFxeX+ypl4uLiwowZM6hTpw5169YlJSWFDRs2YGV1f78G4eHhrFu3ji1btlC3bl2eeOIJ3nvvPbMXoM6cOZOtW7fi4+NjSpqHh4czYcIExo4dS926dbl8+TK9e/e+rxgKG5OVlRVffvkl//vf/6hXrx4DBgxgypQpD2Xtu/nwww9JT0+nVq1a9OrVi+HDh1OqVKlHvq6IiIiIiIiIiIg8XAbjH4tb/8UZjUYGDx7M6tWrSU9Px83NjYiICGbNmvVQ5jcYDHz55Zd07tw53/a4uDiefPJJ0tPT73oC3M/PjxEjRjBixIhCrf/LL7/g4+NDr169+Omnn0hISHhosf+VHDt2zPTi1cqVKxfqOfxdZWZm4ubmRkZGBq6urkUdjoiIiIiIiIiIyF+Kpfm1v91J9U2bNhEbG8u6detIS0ujatWqRRpPbGzsfZdXAdixYwdr164lOTmZ7777jueeew4/Pz+z0+CWSktLo02bNvcdiyVmzZpFUFAQDg4O+Pj48Morr3Dt2jVT+7x58wgNDcXV1RVXV1caNGjAxo0bzeZISkqiS5cueHp64urqSrdu3Th79qxZn0mTJuHk5ERiYiLbt28H4Pjx43Tq1ImSJUvi6upK48aN+frrrx/pfkVEREREREREROSf5W+XVE9KSsLb25uGDRvi5eWFjc1fu2z8jRs3eO211wgJCTElmuPi4rC2tiY9PR1nZ+d8r5CQkDxzeXl5YW9vn+f+8uXLCzVPQVasWMG4ceOYNGkSR48e5cMPP+TTTz/ltddeM/UpV64c06dPZ9++fezdu5cWLVrQqVMnDh8+DMCVK1d46qmnMBgM7Nixg927d3P9+nU6dOhAbm6uaZ6kpCQaN26Mr68vJUqUAKB9+/bcvHmTHTt2sG/fPqpXr0779u3573//a/Eepk6dWuCzeNR/kMhPTk6O2b5FRERERERERESkaP2tkuoREREMGzaM1NRUDAYDfn5+efqkpaXRrl07HBwc8Pf3Z8WKFfj5+RWqPMzvv/9Oly5dcHR0JDAwkLVr1+bbLy4ujr59+5KRkYHBYMBgMBAZGWlqv3r1Kv369cPFxYXy5cuzcOFCs/G//PILsbGx/PbbbxgMBnx8fBg3bpzplLqrqysJCQkkJCSwbNkyqlevjq2tLQaDAWdnZ/bv3282n8FgYM2aNQCkpKRgMBhYtWoVc+bM4caNG/j7+/Pll1+ybNky/Pz8yM3NxdPTk/Pnz1v0XL777jsaNWrE888/j5+fH0899RQ9evTgxx9/NPXp0KEDbdu2JTAwkEqVKjFlyhScnZ354YcfANi9ezcpKSnExsZSrVo1qlWrxtKlS9m7dy87duww7WPfvn1ER0ebnunvv//OiRMnGDduHKGhoQQGBjJ9+nSuXr3Kzz//DNxKUPfv3x9/f38cHBwICgoiJibGbA9DhgwxPdM/XosXL2bx4sUEBwdTrFgxKleuzNy5c01jGzZsyKuvvmo23/nz57G1teWbb74BIDs7m9GjR1O2bFmcnJyoX78+cXFxpv63/2XD2rVrqVKlCvb29qSmplr0/EVEREREREREROTR+1sl1WNiYoiOjqZcuXKkpaURHx+fp0/v3r357bffiIuL4/PPP2fhwoWcO3euUOtERUXRrVs3fvrpJ9q2bUvPnj25ePFinn4NGzZk1qxZuLq6kpaWRlpaGqNHjza1z5w5kzp16nDgwAFefPFFXnjhBRITEwHIysqiWbNm/Prrr6xdu5aDBw8yduxYs1PL1tbWBAQEEBAQgLu7Oy+88ALff/89P/74I9WqVaNt27Zcvnz5rnuZNGkSkZGRJCQk4OzszPjx43n//fdZsGABu3fv5tdff2XixIkWPZeGDRuyb98+UxL91KlTbNiwgbZt2+bbPycnh5UrV3LlyhUaNGgA3Eo6GwwGsxP1xYoVw8rKil27dgG3/jASEhLCqFGjTM+0RIkSBAUFsWzZMq5cucLNmzdZsGABpUqVonbt2gDk5uZSrlw5PvvsM44cOcLEiRN57bXXWLVqlWktDw8P0zP94xUXF8fEiROZMmUKR48eZerUqUyYMIGlS5cC0LNnT1auXMmdryn49NNPKVOmDE2aNAFg6NChfP/996xcuZKffvqJZ599ltatW3PixAnTmKtXr/LWW2+xePFiDh8+XOALTbOzs8nMzDS7RERERERERERE5BEz/s289957Rl9fX9PnZs2aGV9++WWj0Wg0Hj161AgY4+PjTe0nTpwwAsb33nvPovkB4xtvvGH6nJWVZQSMGzduNBqNRuPXX39tBIzp6elGo9FoXLJkidHNzS3PPL6+vsZ//etfps+5ubnGUqVKGefNm2c0Go3GBQsWGF1cXIwXLlzIN45JkyYZq1evXmCcOTk5RhcXF+N//vMfs9i//PJLo9FoNCYnJxsB4+LFi03tn3zyiREwbt++3XRv2rRpxqCgoALX+aOYmBijra2t0cbGxggYhwwZkqfPTz/9ZHRycjJaW1sb3dzcjOvXrze1nTt3zujq6mp8+eWXjVeuXDFmZWUZhw4dagSMgwYNMvWrXr26cdKkSWbznjlzxli7dm2jwWAwWltbG729vY379++/a7wvvfSS8emnn7ZobxUrVjSuWLHC7N6bb75pbNCggSl2Gxsb4zfffGNqb9CggfHVV181Go1G4+nTp43W1tbGX3/91WyOli1bGsePH280Gm/9vgDGhISEe8YzadIkI5DnysjIsGg/IiIiIiIiIiIi8n8yMjIsyq/9rU6q30tiYiI2NjbUqlXLdC8gIIDixYsXap7Q0FDTz05OTri6uhb6tPsf5zEYDHh5eZnmSUhIoGbNmnh4eFg019mzZxk4cCCBgYG4ubnh6upKVlbWPUuH3BlD6dKlAahWrZrZPUv3FhcXx9SpU5k7dy779+/niy++YP369bz55ptm/YKCgkhISGDPnj288MIL9OnThyNHjgDg6enJZ599xn/+8x+cnZ1xc3Pj0qVL1KpVCyurgn9djUYjL730EqVKleLbb7/lxx9/pHPnznTo0IG0tDRTvw8++IDatWvj6emJs7MzCxcutKi8ypUrV0hKSqJ///5mddYnT55MUlKSKfannnqK5cuXA5CcnMz3339Pz549ATh06BA5OTlUqlTJbI6dO3ea5gCws7Mz+14KMn78eDIyMkzXmTNn7jlGREREREREREREHsxf+y2eRcTW1tbss8FguK+XSd5tHgcHh0LN1adPHy5cuEBMTAy+vr7Y29vToEEDrl+/bnEMBoMh33uW7m3ChAn06tWLAQMGALeS81euXGHQoEG8/vrrpqS4nZ0dAQEBANSuXZv4+HhiYmJYsGABAE899RRJSUn8/vvv2NjY4O7ujpeXFxUqVChw7R07drBu3TrS09NxdXUFYO7cuWzdupWlS5cybtw4Vq5cyejRo5k5cyYNGjTAxcWFt99+mz179txzb1lZWQAsWrSI+vXrm7VZW1ubfu7ZsyfDhw/n/fffZ8WKFaa68LfnsLa2Zt++fWZjAJydnU0/Ozg4mL6Lu7G3t8/3xbMiIiIiIiIiIiLy6PyjkupBQUHcvHmTAwcOmOpsnzx5kvT09Ee2pp2dHTk5OYUeFxoayuLFi7l48aJFp9V3797N3LlzTfXLz5w5w++//17odR/E1atX85wmv508Nt5RZ/yPcnNzyc7OznO/ZMmSwK2E+blz5+jYseNd1wbyrG9lZWX6o8Du3btp2LAhL774oqn9zhPid1O6dGnKlCnDqVOnTCfP89OpUycGDRrEpk2bWLFiBb179za11axZk5ycHM6dO2eqsS4iIiIiIiIiIiJ/Lf+opHrlypUJCwtj0KBBzJs3D1tbW0aNGmXxyeD74efnR1ZWFtu3b6d69eo4Ojri6Oh4z3E9evRg6tSpdO7cmWnTpuHt7c2BAwcoU6aM6aWedwoMDOTjjz+mTp06ZGZmMmbMmEKfdn9QHTp04N1336VmzZrUr1+fkydPMmHCBDp06GBKro8fP542bdpQvnx5Ll++zIoVK4iLi2Pz5s2meZYsWUJwcDCenp58//33vPzyy7zyyisEBQUVuHaDBg0oXrw4ffr0YeLEiTg4OLBo0SKSk5Np164dcOsZLVu2jM2bN+Pv78/HH39MfHw8/v7+Fu0vKiqK4cOH4+bmRuvWrcnOzmbv3r2kp6czcuRI4FY5oM6dOzNhwgSOHj1Kjx49TOMrVapEz5496d27NzNnzqRmzZqcP3+e7du3ExoaaopTREREREREREREHl//qJrqAMuWLaN06dI0bdqULl26MHDgQFxcXChWrNgjWa9hw4YMGTKE7t274+npyYwZMywaZ2dnx5YtWyhVqhRt27alWrVqTJ8+PU/ZkNs+/PBD0tPTqVWrFr169WL48OGUKlXqYW7lnt544w1GjRrFG2+8QZUqVejfvz/h4eGmsi4A586do3fv3gQFBdGyZUvi4+PZvHkzrVq1MvVJTEykc+fOBAcHEx0dzeuvv84777xz17VLlizJpk2byMrKokWLFtSpU4ddu3bx1VdfUb16dQAGDx5M165d6d69O/Xr1+fChQtmp9bvZcCAASxevJglS5ZQrVo1mjVrRmxsbJ6kfM+ePTl48CBNmjShfPnyZm1Lliyhd+/ejBo1iqCgIDp37kx8fHyefiIiIiIiIiIiIvJ4MhjvVpfjH+CXX37Bx8eHbdu20bJly6IOR+S+ZWZm4ubmRkZGhqmuvIiIiIiIiIiIiFjG0vzaP+6k+o4dO1i7di3Jycl89913PPfcc/j5+dG0adOiDu2xYjQaGTRoEB4eHhgMBhISEgrs27x5c0aMGPFA60VGRlKjRo279omIiKBz5873vcbDiNMSluzlTikpKfd8xiIiIiIiIiIiIvJ4+EfVVAe4ceMGr732GqdOncLFxYWGDRuyfPlybG1tWb58OYMHD853nK+vL4cPH/6Toy06mzZtIjY2lri4OCpUqEDJkiVxdnbOt+///vc/PD09/+QIH5zRaGTSpEksWrSIS5cucePGDezt7fOtr79x40a9XFRERERERERERET+eUn18PBwwsPD823r2LEj9evXz7fN1tb2UYb12ElKSsLb25uGDRua7hV0krpnz56ULl36T4rs4ZkxYwazZ89m6dKl+Pv788orr3D8+HE2bdqEvb29Wd+yZcsWUZQiIiIiIiIiIiLyOPnHlX+5GxcXFwICAvK9fH19izq8P01ERATDhg0jNTUVg8GAn58fQIHPxsHBASsrK8aOHYuHhwdeXl5ERkaazZmamkqnTp1wdnbG1dWVbt26cfbs2QJjyMnJYeTIkbi7u1OiRAnGjh1LYcr/X7lyhd69e+Ps7Iy3tzczZ840azcajcyaNYs33niDTp06ERoayhdffMH58+c5dOiQaW+LFi2ibdu2lChRggoVKjBhwgRu3LhhNtf06dMpXbo0Li4u9O/fn2vXruWJZ/HixQQHB1OsWDEqV67M3Llz8/Q5duwYDRs2pFixYlStWpWdO3davF8RERERERERERH5cyipLnnExMQQHR1NuXLlSEtLIz4+/p5jli5dipOTE3v27GHGjBlER0ezdetWAHJzc+nUqRMXL15k586dbN26lVOnTtG9e/cC55s5cyaxsbF89NFH7Nq1i4sXL/Lll19avIcxY8awc+dOvvrqK7Zs2UJcXBz79+83tScnJ/Pf//6XsLAw0z03Nzfq16/P999/b7rn4uJCbGwsR44cISYmhkWLFvHee++Z2letWkVkZCRTp05l7969eHt750mYL1++nIkTJzJlyhSOHj3K1KlTmTBhAkuXLs0T86hRozhw4AANGjSgQ4cOXLhwocA9Zmdnk5mZaXaJiIiIiIiIiIjIo/WPK/8i9+bm5oaLiwvW1tZ4eXlZNCY0NJRJkyYBEBgYyJw5c9i+fTutWrVi+/btHDp0iOTkZHx8fABYtmwZISEhxMfHU7du3TzzzZo1i/Hjx9O1a1cA5s+fz+bNmy2KJSsriw8//JB///vftGzZEriV9C9Xrpypz3//+1+APGVrSpcubWoDeOONN0w/+/n5MXr0aFauXMnYsWNNcfbv35/+/fsDMHnyZLZt22Z2Wn3SpEnMnDnTtBd/f3+OHDnCggUL6NOnj6nf0KFDefrppwGYN28emzZt4sMPPzSt9UfTpk0jKirKomciIiIiIiIiIiIiD4dOqstDERoaavbZ29ubc+fOAXD06FF8fHxMCXWAKlWq4O7uztGjR/PMlZGRQVpamll9exsbG+rUqWNRLElJSVy/ft1svIeHB0FBQYXaE8Cnn35Ko0aN8PLywtnZmTfeeIPU1FRT+9GjR/PU4W/QoIHp5ytXrpCUlET//v1xdnY2XZMnTyYpKanAcbf3m9/zuW38+PFkZGSYrjNnzhR6fyIiIiIiIiIiIlI4OqkuD8UfX+RqMBjIzc0tomju7fYJ/LNnz+Lt7W26f/bsWWrUqAHA999/T8+ePYmKiiI8PBw3NzdWrlyZpz773WRlZQGwaNGiPMl3a2vrB9qDvb19nheqioiIiIiIiIiIyKOlk+ryyAUHB3PmzBmzk9RHjhzh0qVLVKlSJU9/Nzc3vL292bNnj+nezZs32bdvn0XrVaxYEVtbW7Px6enpHD9+3PTZ398fLy8vtm/fbrqXmZnJnj17TCfGv/vuO3x9fXn99depU6cOgYGBnD59Os/e7lwH4IcffjD9XLp0acqUKcOpU6fyvODV39+/wHG39xscHGzRnkVEREREREREROTPoZPq8siFhYVRrVo1evbsyaxZs7h58yYvvvgizZo1K7Cky8svv8z06dMJDAykcuXKvPvuu1y6dMmi9Zydnenfvz9jxoyhRIkSlCpVitdffx0rq//7G5LBYGDEiBFMnjyZwMBA/P39mTBhAmXKlKFz587ArdrwqamprFy5krp167J+/fo8L0t9+eWXiYiIoE6dOjRq1Ijly5dz+PBhKlSoYOoTFRXF8OHDcXNzo3Xr1mRnZ7N3717S09MZOXKkqd8HH3xAYGAgwcHBvPfee6Snp9OvXz8Ln7KIiIiIiIiIiIj8GZRUl0fOYDDw1VdfMWzYMJo2bYqVlRWtW7fm/fffL3DMqFGjSEtLo0+fPlhZWdGvXz+6dOlCRkaGRWu+/fbbZGVl0aFDB1xcXBg1alSesWPHjuXKlSsMGjSIS5cu0bhxYzZt2kSxYsUA6NixI6+88gpDhw4lOzubdu3aMWHCBCIjI01zdO/enaSkJMaOHcu1a9d4+umneeGFF8xeqjpgwAAcHR15++23GTNmDE5OTlSrVo0RI0aYxTN9+nSmT59OQkICAQEBrF27lpIlS1q0XxEREREREREREflzGIxGo7GogxCRB5eZmYmbmxsZGRm4uroWdTgiIiIiIiIiIiJ/KZbm1/5RJ9WNRiODBw9m9erVpKen4+bmRkREBLNmzfrTY4mIiODSpUusWbOmwD5xcXE8+eSTpKen4+7u/qfFVtSaN29OjRo1Hsn38ijnvs2S7/ZRqjppM1b2jkWy9qOUMr1dUYcgIiIiIiIiIiLyz0qqb9q0idjYWOLi4qhQoQLPPPNMkcUSExPDnf9I4M9I9t6P1NTUfF8metuRI0coX778fc19v380eJCYvvjiC2xtbQsbar5SUlLw9/fnwIED1KhRw3T/j9+tiIiIiIiIiIiI/H38o5LqSUlJeHt707BhQwBsbIpu+25ubkW29t1cv34dOzs70+cyZcqQkJBQYP8yZcr8CVHlXbOwMd3el4eHxyOM7JbH9bsVERERERERERGRB2dV1AH8WSIiIhg2bBipqakYDAb8/Pzy9ElLS6Ndu3Y4ODjg7+/PihUr8PPzs+j0+OjRo2nfvr3p86xZszAYDGzatMl0LyAggMWLF5vi6dy5s+nnnTt3EhMTg8FgwGAwkJKSYhq3b98+6tSpg6OjIw0bNiQxMdGiPUdGRlKjRg0WLFiAj48Pjo6OdOvWzeyFnbfjmDJlCmXKlCEoKAiAM2fO0K1bN0qWLEm9evUYNWoUNjY2BAQEEBAQQHp6Oi+88AJeXl64ubnRrFkz9u/fb5o3JSUFg8Fglvy+dOkSBoOBuLg4UlJSePLJJwEoXrw4BoOBiIgIU9/c3FzGjh2Lh4cHXl5eZi8HtbGxwc7OjlGjRlGjRg1q1arFa6+9houLCwEBAdjY2Jj2vnjxYvz9/U0vH23evLnZC0Lnzp1LYGAgxYoVo3Tp0mb/emHTpk00btwYd3d3SpQoQfv27UlKSjK1+/v7A1CzZk0MBgPNmzfP890CZGdnM3z4cEqVKkWxYsVo3Lgx8fHxpva4uDgMBgPbt2+/r+9ZRERERERERERE/jz/mKR6TEwM0dHRlCtXjrS0NLOk5m29e/fmt99+Iy4ujs8//5yFCxdy7tw5i+Zv1qwZu3btIicnB4CdO3dSsmRJ4uLiAPj1119JSkoyJV7/GFuDBg0YOHAgaWlppKWl4ePjY2p//fXXmTlzJnv37sXGxoZ+/fpZvO+TJ0+yatUq/vOf/7Bp0yYOHDjAiy++aNZn+/btJCYmsnXrVtatW8eNGzcIDw/HxcWFb7/9lt27d+Ps7Ezr1q25fv06AJcvX6ZPnz7s2rWLH374gcDAQNq2bcvly5ctisvHx4fPP/8cgMTERNLS0oiJiTG1L126FCcnJ/bs2cOMGTOIjo5m69atwK2Ee6dOnbh48SI7d+5k69atnDp1iu7du+fZ++eff84XX3yR78n2vXv3Mnz4cKKjo0lMTGTTpk00bdrU1H7lyhVGjhzJ3r172b59O1ZWVnTp0oXc3FwAfvzxRwC2bdtGWloaX3zxRb57HTt2LJ9//jlLly5l//79BAQEEB4ezsWLF836FfZ7zs7OJjMz0+wSERERERERERGRR+sfU/7Fzc0NFxcXrK2t8fLyytN+7Ngxtm3bRnx8PHXq1AFg8eLFBAYGWjR/kyZNuHz5MgcOHKB27dp88803jBkzxvSyyri4OMqWLUtAQEC+sdnZ2eHo6JhvbFOmTKFZs2YAjBs3jnbt2nHt2jXT6eu7uXbtGsuWLaNs2bIAvP/++7Rr146ZM2ea1nJycmLx4sWmsi///ve/yc3NZfHixRgMBgCWLFmCu7s7cXFxPPXUU7Ro0cJsnYULF+Lu7s7OnTvNTuwXxNra2lSKpVSpUnlqqoeGhjJp0iQAAgMDmTNnDtu3b6dVq1Zs376dQ4cOkZycbPrjw7JlywgJCSE+Pp66desCt0q+LFu2DE9Pz3xjSE1NxcnJifbt2+Pi4oKvry81a9Y0tT/99NNm/T/66CM8PT05cuQIVatWNc1bokSJfL83uJWYnzdvHrGxsbRp0waARYsWsXXrVj788EPGjBlj6lvY73natGlERUXl2yYiIiIiIiIiIiKPxj/mpPq9JCYmYmNjQ61atUz3AgICKF68uEXj3d3dqV69OnFxcRw6dAg7OzsGDRrEgQMHyMrKYufOnaaEaWGFhoaafvb29gaw+AR9+fLlTQl1gAYNGpCbm2tWWqRatWpmddQPHjzIyZMncXFxwdnZGWdnZzw8PLh27Zqp/MnZs2cZOHAggYGBuLm54erqSlZWFqmpqfe1xz+6c89wa9+393z06FF8fHzMTvNXqVIFd3d3jh49arrn6+tbYEIdoFWrVvj6+lKhQgV69erF8uXLuXr1qqn9xIkT9OjRgwoVKuDq6moqGVSYPSYlJXHjxg0aNWpkumdra0u9evXMYv3jni35nsePH09GRobpOnPmjMVxiYiIiIiIiIiIyP35x5xU/zM0b96cuLg47O3tadasGR4eHgQHB7Nr1y527tzJqFGj7mteW1tb08+3T47fLkHyMDg5OZl9zsrKonbt2ixfvjxP39tJ6j59+nDhwgViYmLw9fXF3t6eBg0amMrDWFnd+nuN0Wg0jb1x44bFMd25Z7i178Lu+Y/7+iMXFxf2799PXFwcW7ZsYeLEiURGRhIfH4+7uzsdOnTA19eXRYsWUaZMGXJzc6latappjw9bYb9ne3t77O3tH0ksIiIiIiIiIiIikj+dVP//goKCuHnzJgcOHDDdO3nyJOnp6RbPcbuu+vbt202105s3b84nn3zC8ePH862nfpudnZ2pHvvDlJqaym+//Wb6/MMPP2BlZWV6IWl+atWqxYkTJyhVqpTpxaS3Lzc3NwB2797N8OHDadu2LSEhIdjb2/P777+b5ridfE9LSzPd+2Nd89un4wu77+DgYM6cOWN2MvvIkSNcunSJKlWqFGouGxsbwsLCmDFjBj/99BMpKSns2LGDCxcukJiYyBtvvEHLli0JDg7O87tgSfwVK1bEzs6O3bt3m+7duHGD+Pj4QscqIiIiIiIiIiIiRU8n1f+/ypUrExYWxqBBg5g3bx62traMGjUKBwcH06nhe2natCmXL19m3bp1TJ8+HbiVVH/mmWfw9vamUqVKBY718/Njz549pKSkmMqtPAzFihWjT58+vPPOO2RmZjJ8+HC6detWYA1wgJ49e/L222/TqVMn08tdT58+zRdffMHYsWMpV64cgYGBfPzxx9SpU4fMzEzGjBmDg4ODaQ4HBweeeOIJpk+fjr+/P+fOneONN94wW8fX1xeDwcC6deto27YtDg4OODs733NPYWFhVKtWjZ49ezJr1ixu3rzJiy++SLNmzUz18C2xbt06Tp06RdOmTSlevDgbNmwgNzeXoKAgihcvTokSJVi4cCHe3t6kpqYybtw4s/GlSpXCwcGBTZs2Ua5cOYoVK2b6o8NtTk5OvPDCC4wZMwYPDw/Kly/PjBkzuHr1Kv3797c41sL4OSocV1fXRzK3iIiIiIiIiIjIP51Oqt9h2bJllC5dmqZNm9KlSxcGDhyIi4uLRS8EBShevDjVqlXD09OTypUrA7cS7bm5ufespz569Gisra2pUqUKnp6eD602eUBAAF27dqVt27Y89dRThIaGMnfu3LuOcXR05JtvvqF8+fJ07dqV4OBg+vfvz7Vr10zJ2g8//JD09HRq1apFr169GD58OKVKlTKb56OPPuLmzZvUrl2bESNGMHnyZLP2smXLEhUVxbhx4yhdujRDhw61aE8Gg4GvvvqK4sWL07RpU8LCwqhQoQKffvppIZ7MrTr4X3zxBS1atCA4OJj58+fzySefEBISgpWVFStXrmTfvn1UrVqVV155hbfffttsvI2NDbNnz2bBggWUKVOGTp065bvO9OnTefrpp+nVqxe1atXi5MmTbN682eJ6/SIiIiIiIiIiIvL4MBjvLHotZn755Rd8fHzYtm0bLVu2LOpwCi0yMpI1a9bkKbsif0+ZmZm4ubmRkZGhk+oiIiIiIiIiIiKFZGl+TeVf7rBjxw6ysrKoVq0aaWlpjB07Fj8/P5o2bVrUof1tNG/enBo1ajBr1qx82w0GA19++SWdO3d+qOumpKTg7+/PgQMHqFGjxkOd+3FTddJmrOwdizoMeUhSprcr6hBEREREREREROQOKv9yhxs3bvDaa68REhJCly5d8PT0JC4uDltbW5YvX46zs3O+V0hISJHEGxISUmBMy5cvL5KYHlc+Pj6kpaVRtWrVog7lnpo3b86IESOKOgwRERERERERERHJh06q3yE8PJzw8PB82zp27Ej9+vXzbbO1tX2UYRVow4YN3LhxI9+20qVL4+LiQmRk5J8b1GPK2tr6ri9nFREREREREREREbGETqpbyMXFhYCAgHwvX1/fIonJ19e3wJhcXFyKJCZL5ObmMnbsWDw8PPDy8sqT+P/999/p0qULjo6OBAYGsnbtWovmTU9Pp2fPnnh6euLg4EBgYCBLliwBbpV/MRgMpvryERERGAyGPFdcXBwA2dnZjB49mrJly+Lk5ET9+vVNbZbYtWsXTZo0wcHBAR8fH4YPH86VK1dM7XPnziUwMJBixYpRunRpnnnmGVNcO3fuJCYmxhRTSkpKvmtkZ2eTmZlpdomIiIiIiIiIiMijpaS6/OmWLl2Kk5MTe/bsYcaMGURHR7N161ZTe1RUFN26deOnn36ibdu29OzZk4sXL95z3gkTJnDkyBE2btzI0aNHmTdvHiVLlsy3b0xMDGlpaabr5ZdfplSpUlSuXBmAoUOH8v3337Ny5Up++uknnn32WVq3bs2JEyfuGUdSUhKtW7fm6aef5qeffuLTTz9l165dDB06FIC9e/cyfPhwoqOjSUxMZNOmTaa6/TExMTRo0ICBAweaYvPx8cl3nWnTpuHm5ma6CuonIiIiIiIiIiIiD4/BaDQaizoI+edo3rw5OTk5fPvtt6Z79erVo0WLFkyfPh2DwcAbb7zBm2++CcCVK1dwdnZm48aNtG7d+q5zd+zYkZIlS/LRRx/labvbi0q/+OILevbsybZt22jUqBGpqalUqFCB1NRUypQpY+oXFhZGvXr1mDp16l3jGDBgANbW1ixYsMB0b9euXTRr1owrV66wYcMG+vbtyy+//JLvvyi418tcb8vOziY7O9v0OTMzEx8fH3xGrNKLSv9G9KJSEREREREREZE/R2ZmJm5ubmRkZODq6lpgP9VUlz9daGio2Wdvb2/OnTuXb7uTkxOurq5m7QV54YUXePrpp9m/fz9PPfUUnTt3pmHDhncdc+DAAXr16sWcOXNo1KgRAIcOHSInJ4dKlSqZ9c3OzqZEiRL3jOPgwYP89NNPZi+LNRqN5ObmkpycTKtWrfD19aVChQq0bt2a1q1bm8rdFIa9vT329vaFGiMiIiIiIiIiIiIPRkl1+dP98cWuBoOB3Nxci9sL0qZNG06fPs2GDRvYunUrLVu25KWXXuKdd97Jt/9///tfOnbsyIABA+jfv7/pflZWFtbW1uzbtw9ra2uzMc7OzveMIysri8GDBzN8+PA8beXLl8fOzo79+/cTFxfHli1bmDhxIpGRkcTHx+Pu7n7P+UVERERERERERKToKKkufyuenp706dOHPn360KRJE8aMGZNvUv3atWt06tSJypUr8+6775q11axZk5ycHM6dO0eTJk0KHUOtWrU4cuQIAQEBBfaxsbEhLCyMsLAwJk2ahLu7Ozt27KBr167Y2dmRk5NT6HVFRERERERERETk0VNSXf42Jk6cSO3atQkJCSE7O5t169YRHBycb9/Bgwdz5swZtm/fzvnz5033PTw8qFSpEj179qR3797MnDmTmjVrcv78ebZv305oaCjt2t29xvWrr77KE088wdChQxkwYABOTk4cOXKErVu3MmfOHNatW8epU6do2rQpxYsXZ8OGDeTm5hIUFASAn58fe/bsISUlBWdnZzw8PLCysvydwj9Hhd+15pOIiIiIiIiIiIjcP8szdSKPOTs7O8aPH09oaChNmzbF2tqalStX5tt3586dpKWlUaVKFby9vU3Xd999B8CSJUvo3bs3o0aNIigoiM6dOxMfH0/58uXvGUdoaCg7d+7k+PHjNGnShJo1azJx4kTTS0/d3d354osvaNGiBcHBwcyfP59PPvmEkJAQAEaPHo21tTVVqlTB09OT1NTUh/SERERERERERERE5EEZjEajsaiDkEfPaDQyePBgVq9eTXp6Om5ubkRERDBr1qyHMr/BYODLL7+kc+fOD2W+x0VKSgr+/v4cOHCAGjVq3LP/7t27GTJkCMeOHaNdu3aMGDGCJ598kvT09EdeL/3224l9RqzCyr5wLz2Vv56U6Xf/FxMiIiIiIiIiIlI4t/NrGRkZd60EoZPq/xCbNm0iNjaWdevWkZaWRtWqVR/q/GlpabRp0+ahzvkwxcXFYTAYuHTp0iNdZ+TIkdSoUYPk5GRiY2Pva47mzZszYsSIhxqXiIiIiIiIiIiIPBxKqv9DJCUl4e3tTcOGDfHy8sLG5uGW0/fy8sLe3v6hzglw48YN089DhgzB2dk532vIkCEPfe2CtGnTpsA4Dh06RIsWLShXrtwjP5kuIiIiIiIiIiIifz4l1f8BIiIiGDZsGKmpqRgMBvz8/PL0SUtLo127djg4OODv78+KFSvw8/OzuDyMwWBgzZo1AFy/fp2hQ4fi7e1NsWLF8PX1Zdq0aRbPM2/ePDp27IiTkxNTpkwB4KuvvmL37t3cuHGD4sWL069fP/bu3UtCQgIJCQksWLCAxYsX06VLFxwdHQkMDGTt2rXArRIuTz75JADFixfHYDAQEREB3DrB37hxY9zd3SlRogTt27cnKSnprjEuXrzYtO7ta926dVy5coX//e9/9OvXD4PBkO9J9QsXLtCjRw/Kli2Lo6Mj1apV45NPPjG1R0REsHPnTmJiYjAYDBgMBlJSUix6diIiIiIiIiIiIvLoPdzjyvJYiomJoWLFiixcuJD4+Hisra159tlnzfr07t2b33//nbi4OGxtbRk5ciTnzp27r/Vmz57N2rVrWbVqFeXLl+fMmTOcOXPG4vGRkZFMnz6dWbNmYWNjw7fffkvv3r2ZPXs2TZo0ISkpiUGDBlGiRAkmTZpkGhcVFcWMGTN4++23ef/99+nZsyenT5/Gx8eHzz//nKeffprExERcXV1xcHAA4MqVK4wcOZLQ0FCysrKYOHEiXbp0ISEhASur/P/mVLZs2Tz3/P39SUtLIygoiOjoaLp3746bmxt79uwx63ft2jVq167Nq6++iqurK+vXr6dXr15UrFiRevXqERMTw/Hjx6latSrR0dEAeHp65htHdnY22dnZps+ZmZkWP2MRERERERERERG5P0qq/wO4ubnh4uKCtbU1Xl5eedqPHTvGtm3biI+Pp06dOsCt09iBgYH3tV5qaiqBgYE0btwYg8GAr69vocY///zz9O3b1/S5X79+jBs3jj59+gBQoUIF3nzzTcaOHWuWVI+IiKBHjx4ATJ06ldmzZ/Pjjz/SunVrPDw8AChVqpRZWZann37abO2PPvoIT09Pjhw5Uqi687efrcFgwM3NLd/nDLcS8qNHjzZ9HjZsGJs3b2bVqlXUq1cPNzc37OzscHR0LHCO26ZNm0ZUVJTFMYqIiIiIiIiIiMiDU/kXITExERsbG2rVqmW6FxAQQPHixe9rvoiICBISEggKCmL48OFs2bKlUONvJ/ZvO3jwINHR0Wa1ywcOHEhaWhpXr1419QsNDTX97OTkhKur6z1P2584cYIePXpQoUIFXF1dTaVxUlNTCxWzpXJycnjzzTepVq0aHh4eODs7s3nz5vtab/z48WRkZJiuwvxrABEREREREREREbk/OqkuD12tWrVITk5m48aNbNu2jW7duhEWFsbq1astGu/k5GT2OSsri6ioKLp27Zqnb7FixUw/29ramrUZDAZyc3PvulaHDh3w9fVl0aJFlClThtzcXKpWrcr169ctirWw3n77bWJiYpg1axbVqlXDycmJESNG3Nd69vb2j+TlsCIiIiIiIiIiIlIwJdWFoKAgbt68yYEDB6hduzYAJ0+eJD09/b7ndHV1pXv37nTv3p1nnnmG1q1bc/HiRVMZlsKoVasWiYmJBAQE3Hc8dnZ2wK2T4rdduHCBxMREFi1aRJMmTQDYtWvXfa9hid27d9OpUyf+9a9/AZCbm8vx48epUqWKWax3xikiIiIiIiIiIiKPDyXVhcqVKxMWFsagQYOYN28etra2jBo1CgcHBwwGQ6Hne/fdd/H29qZmzZpYWVnx2Wef4eXlZVbLvDAmTpxI+/btKV++PM888wxWVlYcPHiQn3/+mcmTJ1s0h6+vLwaDgXXr1tG2bVscHBwoXrw4JUqUYOHChXh7e5Oamsq4cePuK0ZLBQYGsnr1ar777juKFy/Ou+++y9mzZ82S6n5+fuzZs4eUlBScnZ3x8PAo8KWpIiIiIiIiIiIi8udSUl0AWLZsGf3796dp06Z4eXkxbdo0Dh8+bFZexVIuLi7MmDGDEydOYG1tTd26ddmwYcN9J4bDw8NZt24d0dHRvPXWW9ja2lK5cmUGDBhg8Rxly5YlKiqKcePG0bdvX3r37k1sbCwrV65k+PDhVK1alaCgIGbPnk3z5s3vK05LvPHGG5w6dYrw8HAcHR0ZNGgQnTt3JiMjw9Rn9OjR9OnThypVqvC///2P5ORkU613S/wcFY6rq+sjiF5EREREREREREQMRqPRWNRByOPnl19+wcfHh23bttGyZcuiDkcskJmZiZubGxkZGUqqi4iIiIiIiIiIFJKl+TWdVP+TGQwGvvzySzp37pxve1xcHE8++STp6el3LZfi5+fHiBEjGDFixH3FERkZyZo1a0hISABgx44dZGVlUa1aNdLS0hg7dix+fn40bdrU4tjl8VB10mas7B2LOgwRi6RMb1fUIYiIiIiIiIiIFIoKNT/mYmNj77sWeWHcuHGD1157jZCQELp06YKnpydxcXHY2tqyfPlynJ2dcXR05F//+hfOzs6mKyQkxOI1bs+T31WYeYrKkCFDCox/yJAhRR2eiIiIiIiIiIiI/Akeq5Pq169fx87OrqjD+EcKDw8nPDw837aOHTtSv379fNtsbW0tXuNhzVNUoqOjGT16dL5tKrciIiIiIiIiIiLyz1CkJ9WbN2/O0KFDGTFiBCVLliQ8PJyff/6ZNm3a4OzsTOnSpenVqxe///67aUxubi4zZswgICAAe3t7ypcvz5QpU0ztZ86coVu3bri7u+Ph4UGnTp1ISUkxtUdERNC5c2feeecdvL29KVGiBC+99BI3btww9cnOzubVV1/Fx8cHe3t7AgIC+PDDDzEajQQEBPDOO++Y7SMhIQGDwcDJkyct2vfvv/9Oly5dcHR0JDAwkLVr1+bbLy4ujr59+5KRkYHBYMBgMBAZGWlqv3r1Kv369cPFxYXy5cuzcOFCs/G//PILPXr0wMPDAycnJ+rUqcOePXvyXSs+Pp5WrVpRsmRJ3NzcaNasGfv37wduvXg0ICCAwMBAfv75ZwICArCxsSEwMJA9e/bQpEkTHBwcqFu3LsePHyc+Pp46derg7OxMmzZtOH/+vNk8+V2+vr40b948Tzmbzp07ExERYfrs5+fH1KlTC9z39evXGTp0KN7e3hQrVgxfX1+mTZsGQEpKCgaDwVTyBuDSpUsYDAbi4uJM9w4fPkz79u1xdXXFxcWFJk2akJSURKlSpQgICOCbb76hU6dOhISE0KRJE2bNmkWpUqVM8w0YMABPT09cXV1p0aIFBw8eNM198OBBnnzySVxcXHB1daV27drs3bsXgNOnT9OhQweKFy+Ok5MTISEhbNiwId/vS0RERERERERERIpGkZd/Wbp0KXZ2duzevZvp06fTokULatasyd69e9m0aRNnz56lW7dupv7jx49n+vTpTJgwgSNHjrBixQpKly4N3CphEh4ejouLC99++y27d+/G2dmZ1q1bc/36ddMcX3/9NUlJSXz99dcsXbqU2NhYYmNjTe29e/fmk08+Yfbs2Rw9epQFCxbg7OyMwWCgX79+LFmyxGwPS5YsoWnTpgQEBFi056ioKLp168ZPP/1E27Zt6dmzJxcvXszTr2HDhsyaNQtXV1fS0tJIS0szOyk9c+ZM6tSpw4EDB3jxxRd54YUXSExMBCArK4tmzZrx66+/snbtWg4ePMjYsWPJzc3NN6bLly/Tp08fdu3axQ8//EBgYCBt27bl8uXLd93LpEmTeOONN9i/fz82NjY8//zzjB07lpiYGL799ltOnjzJxIkTLXoulrrbvmfPns3atWtZtWoViYmJLF++HD8/P4vn/vXXX2natCn29vbs2LGDffv20a9fP27evAnAvHnzeOmllxg0aBCHDh1i7dq1Zt/7s88+y7lz59i4cSP79u2jVq1atGzZ0vT99uzZk3LlyhEfH8++ffsYN26c6ZT+Sy+9RHZ2Nt988w2HDh3irbfewtnZucBYs7OzyczMNLtERERERERERETk0Sry8i+BgYHMmDEDgMmTJ1OzZk2mTp1qav/oo4/w8fHh+PHjeHt7ExMTw5w5c+jTpw8AFStWpHHjxgB8+umn5ObmsnjxYgwGA3Ar4e3u7k5cXBxPPfUUAMWLF2fOnDlYW1tTuXJl2rVrx/bt2xk4cCDHjx9n1apVbN26lbCwMAAqVKhgiiciIoKJEyfy448/Uq9ePW7cuMGKFSvynF6/m4iICHr06AHA1KlTmT17Nj/++COtW7c262dnZ4ebmxsGgwEvL68887Rt25YXX3wRgFdffZX33nuPr7/+mqCgIFasWMH58+eJj4/Hw8MD4K5J/xYtWph9XrhwIe7u7uzcuZP27dsXOG706NGmsjEvv/wyPXr0YPv27TRq1AiA/v37m/3B4mG4275TU1MJDAykcePGGAwGfH19CzX3Bx98gJubGytXrjQluytVqmRqnzx5MqNGjeLll1823atbty4Au3bt4scff+TcuXPY29sD8M4777BmzRpWr17NoEGDSE1NZcyYMVSuXBm49ft/W2pqKk8//TTVqlUDzH/v8jNt2jSioqIKtT8RERERERERERF5MEV+Ur127dqmnw8ePMjXX39t9gLI28nHpKQkjh49SnZ2Ni1btsx3roMHD3Ly5ElcXFxM4z08PLh27RpJSUmmfiEhIVhbW5s+e3t7c+7cOeBWKRdra2uaNWuW7xplypShXbt2fPTRRwD85z//ITs7m2effdbiPYeGhpp+dnJywtXV1bR+Ydw5z+3E+537qFmzpimhfi9nz55l4MCBBAYG4ubmhqurK1lZWaSmplocw+1/MXA7KXz73v3szdI1/7jviIgIEhISCAoKYvjw4WzZsqVQcyckJNCkSZN8a7yfO3eO33777a6/f1lZWZQoUcLsdzg5Odn0+zdy5EgGDBhAWFgY06dPN/u9HD58OJMnT6ZRo0ZMmjSJn3766a6xjh8/noyMDNN15syZQu1VRERERERERERECq/IT6o7OTmZfs7KyqJDhw689dZbefp5e3tz6tSpu86VlZVF7dq1Wb58eZ42T09P089/TJgaDAZTWRQHB4d7xjxgwAB69erFe++9x5IlS+jevTuOjo73HGfJ+oXxoPu4U58+fbhw4QIxMTH4+vpib29PgwYNzMrm3CuG2/864I/3LN2blZUVRqPR7N6dte7zW/OPa9SqVYvk5GQ2btzItm3b6NatG2FhYaxevRorq1t/Q7pzjT/Of7fndq9nmpWVhbe3t1l99tvc3d0BiIyM5Pnnn2f9+vVs3LiRSZMmsXLlSrp06cKAAQMIDw9n/fr1bNmyhWnTpjFz5kyGDRuW73r29vamE/EiIiIiIiIiIiLy5yjyk+p3qlWrFocPH8bPzy/PiyydnJwIDAzEwcGB7du3Fzj+xIkTphdK3nm5ublZFEO1atXIzc1l586dBfZp27YtTk5OzJs3j02bNtGvX7/72q8l7OzsyMnJKfS40NBQEhIS8q3Vnp/du3czfPhw2rZtS0hICPb29mYviP0zeHp6kpaWZvqck5PDzz//XOh5XF1d6d69O4sWLeLTTz/l888/5+LFi6Y/rNy5xp0vLYVbz+3bb7/NN5nv4uKCn5/fXX///vvf/2JjY5Pn969kyZKmfpUqVeKVV15hy5YtdO3a1axGv4+PD0OGDOGLL75g1KhRLFq0qND7FxERERERERERkUenyE+q3+mll15i0aJF9OjRg7Fjx+Lh4cHJkydZuXIlixcvplixYrz66quMHTsWOzs7GjVqxPnz5zl8+DD9+/enZ8+evP3223Tq1Ino6GjKlSvH6dOn+eKLLxg7dizlypW7Zwx+fn706dOHfv36MXv2bKpXr87p06c5d+6c6YWp1tbWREREMH78eAIDA2nQoMEjeyZ+fn5kZWWxfft2qlevjqOjo0Wn4nv06MHUqVPp3Lkz06ZNw9vbmwMHDlCmTJl84w0MDOTjjz+mTp06ZGZmMmbMmEKfdn9QLVq0YOTIkaxfv56KFSvy7rvvcunSpULN8e677+Lt7U3NmjWxsrLis88+w8vLC3d3d6ysrHjiiSeYPn06/v7+nDt3jjfeeMNs/NChQ3n//fd57rnnGD9+PG5ubvzwww/Uq1ePoKAgIiMjGTJkCKVKlaJNmzZcvnyZ3bt3M2zYMMLCwmjQoAGdO3dmxowZVKpUid9++43169fTpUsXQkJCGDNmDM888wz+/v788ssvxMfH8/TTTwMwYsQI2rRpQ6VKlUhPT+frr78mODi40M/x56hwXF1dCz1ORERERERERERE7u2xOqlepkwZdu/eTU5ODk899RTVqlVjxIgRpoQowIQJExg1ahQTJ04kODiY7t27m+ppOzo68s0331C+fHm6du1KcHAw/fv359q1a4VKMs6bN49nnnmGF198kcqVKzNw4ECuXLli1qd///5cv36dvn37PrwHkI+GDRsyZMgQunfvjqenp+mlrvdiZ2fHli1bKFWqFG3btqVatWpMnz7drJb8nT788EPS09OpVasWvXr1Yvjw4ZQqVephbuWe+vXrR58+fejduzfNmjWjQoUKPPnkk4Waw8XFhRkzZlCnTh3q1q1LSkoKGzZsMP3+fPTRR9y8eZPatWszYsQIJk+ebDa+RIkS7Nixg6ysLJo1a0bt2rVZtGiRqeRMnz59mDVrFnPnziUkJIT27dtz4sQJ4FYZmg0bNtC0aVP69u1LpUqVeO655zh9+jSlS5fG2tqaCxcu0Lt3bypVqkS3bt1o06aN6WWjOTk5vPTSSwQHB9O6dWsqVarE3LlzH/SxioiIiIiIiIiIyENkMP6xiLVY5Ntvv6Vly5acOXPG9IJOkaKUmZmJm5sbGRkZOqkuIiIiIiIiIiJSSJbm1x6r8i9/BdnZ2Zw/f57IyEieffbZQiXUjUYjgwcPZvXq1aSnp+Pm5kZERASzZs16KLEZDAa+/PJLOnfu/FDmK4zIyEjWrFmTp0b5wxYREcGlS5dYs2ZNgX3i4uJ48sknSU9PN70g9GHy8/NjxIgRjBgxwqL+sbGxjBgxotClbO5X1UmbsbK3/MW5IpJXyvR2RR2CiIiIiIiIiDymHqvyL38Fn3zyCb6+vly6dClPKZbly5fj7Oyc7xUSEsKmTZuIjY1l3bp1pKWlUbVq1SLaRdEo6Nk4Ozvz7bff3teczZs3tzi5XVS6d+/O8ePHizoMEREREREREREReQh0Ur2QIiIiiIiIyLetY8eO1K9fP982W1tb/vOf/+Dt7U3Dhg0BsLH5Zz3+u51iL1u27J8XyJ/MwcHhT3/pq4iIiIiIiIiIiDwaOqn+ELm4uBAQEJDvNWnSJIYNG0ZqaioGgwE/P78849PS0mjXrh0ODg74+/uzYsUK/Pz8ClUe5vfff6dLly44OjoSGBjI2rVrTW05OTn0798ff39/HBwcCAoKIiYmxmx8XFwc9erVw8nJCXd3dxo1asTp06ctXv/jjz/Gz88PNzc3nnvuOS5fvmxqq1ChAp999hmtWrWiWrVqPP300yQkJBAQEICDg4NF8d0pIiKCnTt3EhMTg8FgwGAwkJKSYmrft28fderUwdHRkYYNG5KYmGjxPv7zn/9Qt25dihUrRsmSJenSpUuBfd99912qVauGk5MTPj4+vPjii2RlZZnaY2NjzcrQREZGUqNGDT766CPKly+Ps7MzL774Ijk5OcyYMQMvLy9KlSrFlClT7hpjdnY2mZmZZpeIiIiIiIiIiIg8Wkqq/0liYmKIjo6mXLlypKWlER8fn6dP7969+e2334iLi+Pzzz9n4cKFnDt3rlDrREVF0a1bN3766Sfatm1Lz549uXjxIgC5ubmUK1eOzz77jCNHjjBx4kRee+01Vq1aBcDNmzfp3LkzzZo146effuL7779n0KBBGAwGi9ZOSkpizZo1rFu3jnXr1rFz506mT59uap82bRrLli1j/vz5HD58mFdeeYV//etf7Ny506L48numDRo0YODAgaSlpZGWloaPj4+p/fXXX2fmzJns3bsXGxsb+vXrZ9E+1q9fT5cuXWjbti0HDhxg+/bt1KtXr8D+VlZWzJ49m8OHD7N06VJ27NjB2LFj7/msNm7cyKZNm/jkk0/48MMPadeuHb/88gs7d+7krbfe4o033mDPnj0FzjFt2jTc3NxM1517FxERERERERERkUfjn1V/pAi5ubnh4uKCtbU1Xl5eedqPHTvGtm3biI+Pp06dOgAsXryYwMDAQq0TERFBjx49AJg6dSqzZ8/mxx9/pHXr1tja2hIVFWXq6+/vz/fff8+qVavo1q0bmZmZZGRk0L59eypWrAhAcHCwxWvn5uYSGxuLi4sLAL169WL79u1MmTKF7Oxspk6dyrZt22jQoAFw6+T6rl27WLBgAc2aNbtnfH/k5uaGnZ0djo6O+T7TKVOm0KxZMwDGjRtHu3btuHbtGsWKFbvrPqZMmcJzzz1nFkv16tUL7H9nTXc/Pz8mT57MkCFDmDt3boFjcnNz+eijj3BxcaFKlSo8+eSTJCYmsmHDBqysrAgKCuKtt97i66+/LrCk0Pjx4xk5cqTpc2ZmphLrIiIiIiIiIiIij5iS6o+JxMREbGxsqFWrluleQEAAxYsXL9Q8oaGhpp+dnJxwdXU1O+3+wQcf8NFHH5Gamsr//vc/rl+/To0aNQDw8PAgIiKC8PBwWrVqRVhYGN26dcPb29uitf38/EwJdQBvb2/T2idPnuTq1au0atXKbMz169epWbOmRfEV1p3P4vYezp07R/ny5e86LiEhgYEDB1q8zrZt25g2bRrHjh0jMzOTmzdvcu3aNa5evYqjo2O+Y/74rEqXLo21tTVWVlZm9+72LxXs7e2xt7e3OE4RERERERERERF5cCr/8jdja2tr9tlgMJCbmwvAypUrGT16NP3792fLli0kJCTQt29frl+/buq/ZMkSvv/+exo2bMinn35KpUqV+OGHHx547ds1xtevX09CQoLpOnLkCKtXr7Y4vvt9FrdL2NyO524K81LRlJQU2rdvT2hoKJ9//jn79u3jgw8+ALhr3Pk9q7s9PxEREREREREREXk86KT6YyIoKIibN29y4MABateuDdw63Z2env7Q1ti9ezcNGzbkxRdfNN1LSkrK069mzZrUrFmT8ePH06BBA1asWMETTzzxQGtXqVIFe3t7UlNTTSVZ7je+O9nZ2ZGTk/NAsf1RaGgo27dvp2/fvvfsu2/fPnJzc5k5c6bplHlBNeBFRERERERERETkr09J9cdE5cqVCQsLY9CgQcybNw9bW1tGjRqFg4ODxS8KvZfAwECWLVvG5s2b8ff35+OPPyY+Ph5/f38AkpOTWbhwIR07dqRMmTIkJiZy4sQJevfu/cBru7i4MHr0aF555RVyc3Np3LgxGRkZ7N69G1dXV/r06XPP+PLj5+fHnj17SElJwdnZGQ8PjweOddKkSbRs2ZKKFSvy3HPPcfPmTTZs2MCrr76ap29AQAA3btzg/fffp0OHDuzevZv58+c/cAwP4ueocFxdXYs0BhERERERERERkb8rlX95jCxbtozSpUvTtGlTunTpwsCBA3FxcbnnizUtNXjwYLp27Ur37t2pX78+Fy5cMDsV7ujoyLFjx3j66aepVKkSgwYN4qWXXmLw4MEPZf0333yTCRMmMG3aNIKDg2ndujXr1683Jc3vFV9+Ro8ejbW1NVWqVMHT05PU1NQHjrN58+Z89tlnrF27lho1atCiRQt+/PHHfPtWr16dd999l7feeouqVauyfPlypk2b9sAxiIiIiIiIiIiIyOPJYDQajUUdhOTvl19+wcfHh23bttGyZcuiDucvoXnz5tSoUYNZs2YVdSh/uszMTNzc3PAZsQor+/xfkCoiD0/K9HZFHYKIiIiIiIiIPES382sZGRl3rQSh8i+PkR07dpCVlUW1atVIS0tj7Nix+Pn50bRp06IO7S/jiy++yPPCTxEREREREREREZGHReVfHiM3btzgtddeIyQkhC5duuDp6UlcXBy2trYsX74cZ2fnfK+QkJBHHltISEiB6y9fvvyRr28pDw8PXFxc7trnr7KX265fv17UIYiIiIiIiIiIiMj/p/IvfxGXL1/m7Nmz+bbZ2tri6+v7SNc/ffo0N27cyLetdOnS90xk/1nuLP8yd+5c3nvvPc6cOYObmxtNmjRh9erV99zL5s2biYqK4uTJkzg6OlKzZk2++uornJycuHnzJiNHjmTZsmVYW1szYMAA/vvf/5KRkcGaNWssiq9q1aoAfPzxx9ja2vLCCy8QHR1teiGtn58f/fv358SJE6xZs4auXbsSGxt7z7lV/kXkz6XyLyIiIiIiIiJ/Lyr/8jfj4uJSpInrR520f9j27t3L8OHD+fjjj2nYsCEXL17k22+/Be6+l7S0NHr06MGMGTPo0qULly9f5ttvv+X2357eeustli9fzpIlSwgODiYmJoY1a9bw5JNPWhzb0qVL6d+/Pz/++CN79+5l0KBBlC9fnoEDB5r6vPPOO0ycOJFJkyYVOE92djbZ2dmmz5mZmRbHICIiIiIiIiIiIvdHSXX5W0pNTcXJyYn27dvj4uKCr68vNWvWvOe4tLQ0bt68SdeuXU3J92rVqpna33//fcaPH0+XLl0AmDNnDhs2bChUbD4+Prz33nsYDAaCgoI4dOgQ7733nllSvUWLFowaNequ80ybNo2oqKhCrS0iIiIiIiIiIiIPRjXV5W+pVatW+Pr6UqFCBXr16sXy5cu5evXqPcdVr16dli1bUq1aNZ599lkWLVpEeno6ABkZGZw9e5Z69eqZ+ltbW1O7du1CxfbEE0+YSr0ANGjQgBMnTpCTk2O6V6dOnXvOM378eDIyMkzXmTNnChWHiIiIiIiIiIiIFJ6S6vK35OLiwv79+/nkk0/w9vZm4sSJVK9enUuXLt11nLW1NVu3bmXjxo1UqVKF999/n6CgIJKTk/+cwP8/Jyene/axt7fH1dXV7BIREREREREREZFHS0l1+duysbEhLCyMGTNm8NNPP5GSksKOHTvuOc5gMNCoUSOioqI4cOAAdnZ2fPnll7i5uVG6dGni4+NNfXNycti/f3+h4tqzZ4/Z5x9++IHAwECsra0LNY+IiIiIiIiIiIj8+VRTXf6W1q1bx6lTp2jatCnFixdnw4YN5ObmEhQUdNdxe/bsYfv27Tz11FOUKlWKPXv2cP78eYKDgwEYNmwY06ZNIyAggMqVK/P++++Tnp5uVs7lXlJTUxk5ciSDBw9m//79vP/++8ycOfOB9isiIiIiIiIiIiJ/DiXV5W/J3d2dL774gsjISK5du0ZgYCCffPIJISEhdx3n6urKN998w6xZs8jMzMTX15eZM2fSpk0bAF599VX++9//0rt3b6ytrRk0aBDh4eGFOmXeu3dv/ve//1GvXj2sra15+eWXGTRo0APt904/R4WrFIyIiIiIiIiIiMgjYjAajcaiDkLkryo3N5fg4GC6devGm2++ec/+zZs3p0aNGsyaNeuhx5KZmYmbmxsZGRlKqouIiIiIiIiIiBSSpfk1nVSXAhmNRgYPHszq1atJT0/nwIED1KhRI9++DyNZHBkZyZo1a0hISCiwT0REBJcuXWLNmjX3vY6lYmNjGTFihNnLTU+fPs2WLVto1qwZ2dnZzJkzh+TkZJ5//nlTH0v28ShVnbQZK3vHIllbRCyTMr1dUYcgIiIiIiIiIvdJLyqVAm3atInY2FjWrVtHWloaVatWLeqQHlhqairOzs55LmtrawwGAxs3brzreCsrK2JjY6lbty6NGjXi0KFDbNu2jeDgYNPcU6dO5dChQ3nWSE1NLXDe5s2bYzAYzK4hQ4Y87O2LiIiIiIiIiIjIA9JJdSlQUlIS3t7eNGzYsKhDeWjKlCmT5wT5m2++SUpKCt988w2enp53He/j48Pu3bvvOvfs2bPZunUr//nPf/K0x8XFFTj3wIEDiY6ONn12dNRpcxERERERERERkceNTqpLviIiIhg2bBipqakYDAb8/PzuOSY3N5exY8fi4eGBl5cXkZGRZu2pqal06tQJZ2dnXF1d6datG2fPni1wvpycHEaOHIm7uzslSpRg7NixFOYVALm5ucyYMYOAgADs7e0pX748b731FgEBAabrxIkT/Pjjj8ybNw8AG5u8f2das2YNgYGBFCtWjPDwcM6cOWPWPn36dEqXLk3x4sWZNm0ajo6O2Nvbm9ZIT0/nhRdewMvLCzc3N5o1a8b+/fvzrOPo6IiXl5fpUl10ERERERERERGRx4+S6pKvmJgYoqOjKVeuHGlpacTHx99zzNKlS3FycmLPnj3MmDGD6Ohotm7dCtxKcHfq1ImLFy+yc+dOtm7dyqlTp+jevXuB882cOZPY2Fg++ugjdu3axcWLF/nyyy8t3sP48eOZPn06EyZM4MiRI6xYsYLSpUub2s+ePcvAgQP5+OOPCzwVfvXqVaZMmcKyZcvYvXs3ly5d4rnnnjO1r1q1isjISKZOncrevXvx9vZm7ty5ZnNcvnyZPn36sGvXLn744QcCAwNp27Ytly9fNuu3fPlySpYsSdWqVRk/fjxXr1696/6ys7PJzMw0u0REREREREREROTRUvkXyZebmxsuLi5YW1vj5eVl0ZjQ0FAmTZoEQGBgIHPmzGH79u20atWK7du3c+jQIZKTk/Hx8QFg2bJlhISEEB8fT926dfPMN2vWLMaPH0/Xrl0BmD9/Pps3b7YolsuXLxMTE8OcOXPo06cPABUrVqRx48bArZewRkREMGTIEOrUqUNKSkq+89y4cYM5c+ZQv3594NYfDoKDg/nxxx+pV68es2bNon///vTv3x+AyZMns23bNq5du2aao0WLFmZz/j/27j2+5/r///jtbWx2njltGMM2Gzbm2KwQagwhoRGbs+iwtLbWJ2zOkcPkk5zaCEmJRB9imTRyyuSw0KKpllO2GTVs+/3h6/3zzo5sdLhfL5fX5bL363l6PF/e/fN4P3u8Fi1ahIODAzt27KBbt24A9O/fnzp16lCjRg2+/fZbIiIiOH78OB9//HGBe5w2bRrR0dHFeh4iIiIiIiIiIiJSOnRSXUqNj4+PyWdnZ2fOnTsHQHJyMi4uLsaEOkDDhg1xcHAgOTn5jrkyMjJIS0szJrPhZmmWFi1aFCuW5ORksrOz6dixY77tb731FpcvXyYyMrLQecqXL2+S8Pf09DSJOTk52SRGAD8/P5PPt07Eu7u7Y29vj52dHVlZWSYvLh0xYgQBAQF4e3szYMAAli9fzrp160hJSSkwtsjISDIyMozXn8vSiIiIiIiIiIiISOnTSXUpNRUqVDD5bDAYyM3NfSCxWFpaFtr+xRdfsHv3biwsLEzut2jRggEDBrBs2bJSiyU4OJiLFy8SExNDnTp1sLCwwM/Pj2vXrhU45lai/vvvv6d+/fr59rGwsLgjfhERERERERERESlbOqku94WXlxdnzpwxOU197Ngx0tPTadiw4R397e3tcXZ2Zs+ePcZ7N27c4MCBA8Vaz93dHUtLS+Lj4/NtnzdvHocOHSIpKYmkpCQ+++wzAD744AOmTJlisub+/fuNn48fP056ejpeXl7Gfd0eI8DXX39t8jkxMZEXXniBwMBAGjVqhIWFBRcuXCg0/qSkJODmaX8RERERERERERH569BJdbkvOnXqZCxtMnfuXG7cuMHo0aNp165dgSVdXnzxRaZPn467uzuenp7Mnj2b9PT0Yq1XsWJFIiIiCA8Px9zcHH9/f86fP8/Ro0cZOnQotWvXNulvY2MD3Ky7XqtWLeP9ChUq8PzzzzNv3jzKly/Pc889x0MPPUSrVq2MMYaEhNCiRQv8/f1ZuXIlR48epV69esY53N3dee+992jRogWZmZm88sorJifpU1JSWLVqFYGBgVSuXJlvv/2Wl156ibZt295RUkdEREREREREREQeLCXV5b4wGAx88sknPP/887Rt25Zy5crRuXNn3nrrrQLHvPzyy6SlpREcHEy5cuUYMmQIvXr1IiMjo1hrjhs3jvLlyzN+/Hh++eUXnJ2dGTVqVInitrKyIiIigv79+/Pzzz/zyCOPsHTpUmN7v379SElJITw8nD/++IPevXvz7LPPmrxQdenSpYwYMYJmzZrh4uLC1KlTCQsLM7abm5uzbds25s6dy5UrV3BxcaF37968/vrrJYr1liPRAdjZ2d3VWBERERERERERESmcIS8vL+9BByEi9y4zMxN7e3syMjKUVBcRERERERERESmh4ubXdFL9H+b06dPUrVuXgwcP0rRp0wcdTpkJCQkhPT2d9evXl2rf4kpISODRRx/l0qVLODg4lNq8paHxhC2Us7B60GGISDGdnt71QYcgIiIiIiIiIiWgpLoUKTU1Nd+Xid5y7NixO2qUl7WwsDAeeughYy30wmKKiYnh9v8ho3379jRt2pS5c+fej1BFRERERERERETkH0RJdSlSjRo1SEpKKrT9fvP09Cx2TPb29vchIhEREREREREREfk3KPegA5C7k5uby4wZM3Bzc8PCwoLatWszZcqUO/olJCRgMBjYsmULvr6+WFpa0qFDB86dO8f//vc/vLy8sLOzo3///ly9ejXf+a2trenQoQMffPABbm5uuLm58fvvvzNixAi8vb2pXr06I0aMICsryzg+JCSEnj178uabb+Ls7EzlypUZM2YM169fL3Jvr732Gq1bt77jfpMmTZg4cSIAw4YNIywszBhPUlISvXr1wtvbm9atW9O5c2euXLliEsutv3fs2EFMTAwGgwGDwcDp06eLjOmzzz7Dw8MDS0tLHn300TvGXLx4kaCgIGrWrImVlRXe3t68//77xvbly5dTuXJlsrOzTcb17NmTgQMHAnDo0CEeffRRbG1tsbOzo3nz5uzfv7/I2EREREREREREROT+UVL9byoyMpLp06czbtw4jh07xqpVq6hevXqB/aOiopg/fz67du3izJkz9O3bl7lz57Jq1So2bdrE559/zltvvVWs+a9cuUJAQACVKlVi3759fPjhh2zbto3nnnvOZM3t27eTkpLC9u3bWbZsGXFxccTFxRW5twEDBrB3715SUlKM944ePcq3335L//797+iflpZGUFAQQ4YMITk5mYSEBJ588knyewdvTEwMfn5+DB8+nLS0NNLS0nBxcSk0njNnzvDkk0/SvXt3kpKSGDZsGK+++qpJnz/++IPmzZuzadMmjhw5wogRIxg4cCB79+4FoE+fPuTk5LBhwwbjmHPnzrFp0yaGDBli3HetWrXYt28fBw4c4NVXX6VChQoFxpWdnU1mZqbJJSIiIiIiIiIiImVL5V/+hi5fvkxMTAzz588nODgYgPr16/Pwww8XeOp68uTJ+Pv7AzB06FAiIyNJSUmhXr16ADz11FNs376diIiIQucHWLVqFX/88QfLly/H2toagPnz59O9e3feeOMNY/K9UqVKzJ8/HzMzMzw9PenatSvx8fEMHz680P01atSIJk2asGrVKsaNGwfAypUrad26NW5ubnf0T0tL48aNGzz55JPUqVMHAG9v73zntre3x9zcHCsrK5ycnAqN45YFCxZQv359Zs2aBUCDBg04fPgwb7zxhrFPzZo1CQsLM35+/vnn2bJlC2vWrKFVq1ZYWlrSv39/YmNj6dOnDwArVqygdu3atG/fHrhZu/6VV17B09MTAHd390LjmjZtGtHR0cXag4iIiIiIiIiIiJQOnVT/G0pOTiY7O5uOHTsWe4yPj4/x7+rVq2NlZWVMqN+6d+7cuWLNn5ycTJMmTYwJdQB/f39yc3M5fvy48V6jRo0wMzMzfnZ2djauUZQBAwawatUqAPLy8nj//fcZMGBAvn2bNGlCx44d8fb2pk+fPixevJhLly4Va53iSE5OvqMcjZ+fn8nnnJwcJk2ahLe3N46OjtjY2LBlyxZSU1ONfYYPH87nn3/Ozz//DEBcXBwhISEYDAYAxo4dy7Bhw+jUqRPTp083Oamfn8jISDIyMozXmTNnSmO7IiIiIiIiIiIiUggl1f+GLC0tSzzm9jIiBoPhjrIiBoOB3Nzcu56/qDX/vEZRgoKCOH78ON98842xZE2/fv3y7WtmZsbWrVv53//+R8OGDXnrrbdo0KABp06duuc9FNfMmTOJiYkhIiKC7du3k5SUREBAANeuXTP28fX1pUmTJixfvpwDBw5w9OhRQkJCjO1RUVEcPXqUrl278sUXX9CwYUPWrVtX4JoWFhbY2dmZXCIiIiIiIiIiIlK2lFT/G3J3d8fS0pL4+PgHMr+XlxeHDh0yvggUIDExkXLlytGgQYNSiaFWrVq0a9eOlStXsnLlSh577DGqVatWYH+DwYC/vz/R0dEcPHgQc3PzAhPS5ubm5OTkFDsWLy8vY230W77++muTz4mJifTo0YNnnnmGJk2aUK9ePU6cOHHHXMOGDSMuLo7Y2Fg6dep0Rz13Dw8PXnrpJT7//HOefPJJYmNjix2niIiIiIiIiIiIlD3VVP8bqlixIhEREYSHh2Nubo6/vz/nz5/n6NGjJSoJczfzDx06lAEDBjBhwgSCg4OJiori/PnzPP/88wwcOLDQl6WW1K11rl27xpw5cwrst2fPHuLj43n88cepVq0ae/bs4fz583h5eeXb39XVlT179nD69GlsbGxwdHSkXLmCf18aNWoUs2bN4pVXXmHYsGEcOHDgjheuuru789FHH7Fr1y4qVarE7NmzOXv2LA0bNjTp179/f8LCwli8eDHLly833v/999955ZVXeOqpp6hbty4//fQT+/bto3fv3sV4UqaORAfo1LqIiIiIiIiIiEgZ0Un1v6lx48bx8ssvM378eLy8vOjXr1+x65Xf6/xWVlZs2bKF3377jZYtW/LUU0/RsWNH5s+fX2rrw82Xp168eJGrV6/Ss2fPAvvZ2dnx5ZdfEhgYiIeHB6+//jqzZs2iS5cu+fYPCwvDzMyMhg0bUrVqVZO65/mpXbs2a9euZf369TRp0oR33nmHqVOnmvR5/fXXadasGQEBAbRv3x4nJ6d8Y7a3t6d3797Y2NiYtJuZmXHx4kUGDRqEh4cHffv2pUuXLnoRqYiIiIiIiIiIyF+MIS8vL+9BByHyb9KxY0caNWrEvHnzSnXezMxM7O3tycjI0El1ERERERERERGREipufu1fX/6lffv2NG3alLlz5+bbbjAYWLduXaEnpUNCQkhPT2f9+vV3FUNCQgKPPvooly5dwsHBoVhjiopb/nouXbpEQkICCQkJvP3222W2TuMJWyhnYVVm84vI38fp6V0fdAgiIiIiIiIi/zgq/1ICp0+fxmAwkJSU9KBD4eOPP2bSpEkPOoxCGQyGfH9o2LlzJzY2NgVe99uoUaMKjGXUqFGlto6vry8hISG88cYbpfZCVxEREREREREREbm//vUn1f+uHB0dH3QId61FixZ/iR8mbpk4cSJhYWH5tpVmGZXTp0+X2lwiIiIiIiIiIiLyYOikOpCbm0t4eDiOjo44OTkRFRWVb7+6desCN08cGwwG2rdvb9L+5ptv4uzsTOXKlRkzZgzXr183tmVnZxMREYGLiwsWFha4ubmxdOnSfNe5ePEiQUFB1KxZEysrK7y9vXn//fdN+rRv357Q0FDjZ1dXVyZPnsygQYOwsbGhTp06bNiwgfPnz9OjRw9sbGzw8fFh//79xX4uiYmJtG/fHisrKypVqkRAQACXLl0yrv/CCy8U+NxcXV0B6NWrFwaDwfgZwNLSEjc3tzuuyZMn35HcDg0NNXnORa2bl5dHVFQUtWvXxsLCgho1avDCCy8Y2/M7Pe/h4cFXX31ljKNixYqMGzeOVq1aUbduXVq0aMGePXuM/T/99FNatmxJxYoVqVKlCr169TK2ZWdnExYWRs2aNbG2tqZ169YkJCQY23/88Ue6d+9OpUqVsLa2plGjRnz22WfAzfIwAwYMoGrVqlhaWuLu7k5sbGyB/z7Z2dlkZmaaXCIiIiIiIiIiIlK2lFQHli1bhrW1NXv27GHGjBlMnDiRrVu33tFv7969AGzbto20tDQ+/vhjY9v27dtJSUlh+/btLFu2jLi4OOLi4oztgwYN4v3332fevHkkJyezcOHCAkud/PHHHzRv3pxNmzZx5MgRRowYwcCBA43rF2TOnDn4+/tz8OBBunbtysCBAxk0aBDPPPMM33zzDfXr12fQoEEU5920SUlJdOzYkYYNG7J7926++uorunfvTk5OTrGe2759+wCIjY0lLS3N+Lk0FLbu2rVrmTNnDgsXLuTkyZOsX78eb2/vYs+dlZVFu3bt+Pnnn9mwYQOHDh0iPDyc3NxcADZt2kSvXr0IDAzk4MGDxMfH06pVK+P45557jt27d7N69Wq+/fZb+vTpQ+fOnTl58iQAY8aMITs7my+//JLDhw/zxhtvGL8H48aN49ixY/zvf/8jOTmZBQsWUKVKlQJjnTZtGvb29sbLxcWlxM9SRERERERERERESkblXwAfHx8mTJgAgLu7O/Pnzyc+Pp7HHnvMpF/VqlUBqFy5Mk5OTiZtlSpVYv78+ZiZmeHp6UnXrl2Jj49n+PDhnDhxgjVr1rB161Y6deoEQL169QqMp2bNmiYntp9//nm2bNnCmjVrTBK4fxYYGMjIkSMBGD9+PAsWLKBly5b06dMHgIiICPz8/Dh79uwd8f/ZjBkzaNGihckLNRs1amTSp7DndutZOTg4FLlWSRW2bmpqKk5OTnTq1IkKFSpQu3btQp/Zn61atYrz58+zb98+Y4kdNzc3Y/uUKVN4+umniY6ONt5r0qQJAKmpqcTGxpKamkqNGjUACAsLY/PmzcTGxjJ16lRSU1Pp3bu3MdF/+/cgNTUVX19fWrRoAWByuj8/kZGRjB071vg5MzNTiXUREREREREREZEyppPq3EzS3s7Z2Zlz586VaI5GjRphZmaW7xxJSUmYmZnRrl27Ys2Vk5PDpEmT8Pb2xtHRERsbG7Zs2UJqamqx91G9enUAk1Pat+4VZ2+3TqoXdz24u+d2Nwpbt0+fPvz+++/Uq1eP4cOHs27dOm7cuFHsuZOSkvD19S2wZn1hz+Xw4cPk5OTg4eFh8rLTHTt2kJKSAsALL7zA5MmT8ff3Z8KECXz77bfG8c8++yyrV6+madOmhIeHs2vXrkJjtbCwwM7OzuQSERERERERERGRsqWkOlChQgWTzwaDwVjuozTmsLS0LNFcM2fOJCYmhoiICLZv305SUhIBAQFcu3at2DEYDIYC7xVnb8WJuTSe2+3KlSt3R2ma2+vSF2ddFxcXjh8/zttvv42lpSWjR4+mbdu2xnkMBkOhaxS178Las7KyMDMz48CBAyQlJRmv5ORkYmJiABg2bBg//PADAwcO5PDhw7Ro0YK33noLgC5duvDjjz/y0ksv8csvv9CxY8cCX6AqIiIiIiIiIiIiD4aS6iVgbm4OYFJXvDi8vb3Jzc1lx44dxeqfmJhIjx49eOaZZ2jSpAn16tXjxIkTJY73Xvj4+BAfH39Pc1SoUKFEz6pq1aqkpaWZ3EtKSirxupaWlnTv3p158+aRkJDA7t27OXz4cL5rnDx5kqtXrxo/+/j4kJSUxG+//Zbv3IU9F19fX3Jycjh37twdL2G9vQSOi4sLo0aN4uOPP+bll19m8eLFJs8gODiYFStWMHfuXBYtWlTi/YuIiIiIiIiIiEjZUU31EqhWrRqWlpZs3ryZWrVqUbFiRezt7Ysc5+rqSnBwMEOGDGHevHk0adKEH3/8kXPnztG3b987+ru7u/PRRx+xa9cuKlWqxOzZszl79iwNGzYsi23lKzIyEm9vb0aPHs2oUaMwNzdn+/bt9OnTp9CXZ97O1dWV+Ph4/P39sbCwoFKlSoX279ChAzNnzmT58uX4+fmxYsUKjhw5gq+vb7HjjouLIycnh9atW2NlZcWKFSuwtLSkTp06xjXmz5+Pn58fOTk5REREmJx8DwoKYurUqfTs2ZNp06bh7OzMwYMHqVGjBn5+fkyYMIGOHTtSv359nn76aW7cuMFnn31GREQEHh4eDBgwgEGDBjFr1ix8fX05f/488fHx+Pj40LVrV0JDQ+nSpQseHh5cunSJ7du34+XlBdysg9+8eXMaNWpEdnY2GzduNLaVxJHoAJWCERERERERERERKSM6qV4C5cuXZ968eSxcuJAaNWrQo0ePYo9dsGABTz31FKNHj8bT05Phw4dz5cqVfPu+/vrrNGvWjICAANq3b4+TkxM9e/YspV0Uj4eHB59//jmHDh2iVatW+Pn58cknn1C+fPF/h5k1axZbt27FxcWlWInxgIAAxo0bR3h4OC1btuTy5csMGjSoRHE7ODiwePFi/P398fHxYdu2bXz66adUrlzZGJOLiwuPPPII/fv3JywsDCsrK+N4c3NzPv/8c6pVq0ZgYCDe3t5Mnz7dWC+/ffv2fPjhh2zYsIGmTZvSoUMH9u7daxwfGxvLoEGDePnll2nQoAE9e/Zk37591K5dG7j5fzmMGTMGLy8vOnfujIeHh/FlsObm5kRGRuLj40Pbtm0xMzNj9erVJdq/iIiIiIiIiIiIlC1D3p8LTIv8n7y8PEaOHMlHH33EpUuXOHjwIE2bNs23b/v27WnatClz58696/WioqJYv359oSVfQkJCSE9PZ/369Xe9zj9VZmYm9vb2uISuoZyFVdEDRETKyOnpXR90CCIiIiIiIiIldiu/lpGRUWglCJ1UlwJt3ryZuLg4Nm7cSFpaGo0bN37QIZVIVFQUBoPB5PL09DTp88cffzBmzBgqV66MjY0NvXv35uzZs8b2uLi4O+a4dZ07d67YcXh6emJtbU2lSpXo1KkTe/bsMbYnJCQUuMa+fftK52GIiIiIiIiIiIhIqVBS/V+qS5cu2NjY5HtNnToVgJSUFJydnWnTpg1OTk4lKv2Sn0aNGhW45sqVK0tjW/mumZaWZry++uork/aXXnqJTz/9lA8//JAdO3bwyy+/8OSTTxrb+/XrZzI+LS2NgIAA2rVrR7Vq1YoVg4eHB/Pnz+fw4cN89dVXuLq68vjjj3P+/HkA2rRpc8caw4YNo27durRo0aL0HoaIiIiIiIiIiIjcMyXV/6WWLFlCUlJSvteoUaMICQnh+eefJzU1FYPBgKura5Fz5ubmEh4ejqOjI05OTkRFRZm0L168mNatW5ObmwtA27Zt2bZtG0lJSTzxxBN3zJeTk8PYsWNxcHCgcuXKhIeHU9JqReXLl8fJycl43f6S1YyMDJYuXcrs2bPp0KEDzZs3JzY2ll27dvH1118DYGlpaTLezMyML774gqFDh5qs8+mnn9KyZUsqVqxIlSpV6NWrl7Gtf//+dOrUiXr16tGoUSNmz55NZmYm3377LXCzlvrta1SuXJlPPvmEwYMHYzAYSrRfERERERERERERKVtKqv9L1axZEzc3t3wvR0dHYmJimDhxIrVq1SItLa1YZUiWLVuGtbU1e/bsYcaMGUycOJGtW7cCNxPuY8aM4dq1a+zcuZP4+HjOnTvHq6++ipubG7a2tnfMN2vWLOLi4nj33Xf56quv+O2331i3bl2J9nny5Elq1KhBvXr1GDBgAKmpqca2AwcOcP36dTp16mS85+npSe3atdm9e3e+8y1fvhwrKyueeuop471NmzbRq1cvAgMDOXjwIPHx8bRq1Srf8deuXWPRokXY29vTpEmTfPts2LCBixcvMnjw4EL3lp2dTWZmpsklIiIiIiIiIiIiZeve6nnIP5a9vT22traYmZnh5ORUrDE+Pj5MmDABAHd3d+bPn098fDyPPfYY8fHxHD58mFOnTuHi4gLcTFA3atSIffv20bJlyzvmmzt3LpGRkcZyLO+88w5btmwp9h5at25NXFwcDRo0IC0tjejoaB555BGOHDmCra0tv/76K+bm5jg4OJiMq169Or/++mu+cy5dupT+/ftjaWlpvDdlyhSefvppoqOjjff+nDDfuHEjTz/9NFevXsXZ2ZmtW7eanJr/8xoBAQHUqlWr0P1NmzbNZE0REREREREREREpezqpLqXGx8fH5LOzs7PxZZ7Jycm4uLgYE+oADRs2xMHBgeTk5DvmysjIIC0tjdatWxvvlS9fvkQ1xrt06UKfPn3w8fEhICCAzz77jPT0dNasWVPSrQGwe/dukpOT7yj9kpSURMeOHQsd++ijj5KUlMSuXbvo3Lkzffv2zfdFpz/99BNbtmy5Y438REZGkpGRYbzOnDlTsg2JiIiIiIiIiIhIiSmpLqWmQoUKJp8NBoOxfvpfgYODAx4eHnz//fcAODk5ce3aNdLT0036nT17Nt/T+UuWLKFp06Y0b97c5P7tp9YLYm1tjZubGw899BBLly6lfPnyLF269I5+sbGxVK5cOd8a839mYWGBnZ2dySUiIiIiIiIiIiJlS0l1uS+8vLw4c+aMyWnqY8eOkZ6eTsOGDe/ob29vj7OzM3v27DHeu3HjBgcOHLjrGLKyskhJScHZ2RmA5s2bU6FCBeLj4419jh8/TmpqKn5+fneMXbNmTb4nyH18fEzmKI7c3Fyys7NN7uXl5REbG8ugQYPu+IFCRERERERERERE/hpUU13ui06dOuHt7c2AAQOYO3cuN27cYPTo0bRr167Aki4vvvgi06dPx93dHU9PT2bPnn3HqfLChIWF0b17d+rUqcMvv/zChAkTMDMzIygoCLiZuB86dChjx47F0dEROzs7nn/+efz8/HjooYdM5vrggw+4ceMGzzzzzB3rTJgwgY4dO1K/fn2efvppbty4wWeffUZERARXrlxhypQpPPHEEzg7O3PhwgX++9//8vPPP9OnTx+Teb744gtOnTrFsGHDir1HERERERERERERub+UVJf7wmAw8Mknn/D888/Ttm1bypUrR+fOnXnrrbcKHPPyyy+TlpZGcHAw5cqVY8iQIfTq1YuMjIxirfnTTz8RFBTExYsXqVq1Kg8//DBff/01VatWNfaZM2cO5cqVo3fv3mRnZxMQEMDbb799x1xLly7lySefvOOlpgDt27fnww8/ZNKkSUyfPh07Ozvatm0LgJmZGd999x3Lli3jwoULVK5cmZYtW7Jz504aNWp0xxpt2rTB09OzWPsryJHoAJWCERERERERERERKSOGvLy8vAcdhIjcu8zMTOzt7cnIyFBSXUREREREREREpISKm1/TSXX5R2vfvj1NmzZl7ty5+bYbDAbWrVtHz549S3Xd06dPU7duXQ4ePEjTpk1Lde6iNJ6whXIWVvd1TRGRkjg9veuDDkFERERERETkrimpLkVKTU3N92Witxw7dozatWvfx4j+mjHdzsXFhbS0NKpUqfLAYhAREREREREREZHSp6S6FKlGjRokJSUV2n6//RVjup2ZmRlOTk4PNAYREREREREREREpfeUedADy11e+fHnc3NwKvMqXv/+/zZQkptzcXMLDw3F0dMTJyYmoqCiTuS5cuECvXr2wsrLC3d2dDRs2FCuGS5cuMWDAAKpWrYqlpSXu7u7ExsYCN8u/GAwGY+I/JCQEg8Fwx5WQkABAdnY2YWFh1KxZE2tra1q3bm1sExERERERERERkb8OJdXlH2/ZsmVYW1uzZ88eZsyYwcSJE9m6dauxPTo6mr59+/Ltt98SGBjIgAED+O2334qcd9y4cRw7doz//e9/JCcns2DBggLLvcTExJCWlma8XnzxRapVq4anpycAzz33HLt372b16tV8++239OnTh86dO3Py5MkC18/OziYzM9PkEhERERERERERkbKlpLr84/n4+DBhwgTc3d0ZNGgQLVq0ID4+3tgeEhJCUFAQbm5uTJ06laysLPbu3VvkvKmpqfj6+tKiRQtcXV3p1KkT3bt3z7evvb09Tk5OODk5sWvXLhYuXMjHH3+Mk5MTqampxMbG8uGHH/LII49Qv359wsLCePjhh40n3/Mzbdo07O3tjZeLi0vJH46IiIiIiIiIiIiUiJLq8o/n4+Nj8tnZ2Zlz587l225tbY2dnZ1Je0GeffZZVq9eTdOmTQkPD2fXrl1Fjjl48CADBw5k/vz5+Pv7A3D48GFycnLw8PDAxsbGeO3YsYOUlJQC54qMjCQjI8N4nTlzpsj1RURERERERERE5N7oRaXyj1ehQgWTzwaDgdzc3GK3F6RLly78+OOPfPbZZ2zdupWOHTsyZswY3nzzzXz7//rrrzzxxBMMGzaMoUOHGu9nZWVhZmbGgQMHMDMzMxljY2NT4PoWFhZYWFgUGaeIiIiIiIiIiIiUHiXVRe5B1apVCQ4OJjg4mEceeYRXXnkl36T6H3/8QY8ePfD09GT27Nkmbb6+vuTk5HDu3DkeeeSR+xW6iIiIiIiIiIiI3AUl1UXu0vjx42nevDmNGjUiOzubjRs34uXllW/fkSNHcubMGeLj4zl//rzxvqOjIx4eHgwYMIBBgwYxa9YsfH19OX/+PPHx8fj4+NC1a9cSxXUkOgA7O7t72puIiIiIiIiIiIjkT0l1kbtkbm5OZGQkp0+fxtLSkkceeYTVq1fn23fHjh2kpaXRsGFDk/vbt2+nffv2xMbGMnnyZF5++WV+/vlnqlSpwkMPPUS3bt3ux1ZERERERERERESkmAx5eXl5DzoIEbl3mZmZ2Nvbk5GRoZPqIiIiIiIiIiIiJVTc/JpOqv8NGQwG1q1bR8+ePfNtT0hI4NFHH+XSpUs4ODgUOI+rqyuhoaGEhobeVRxRUVGsX7+epKSkYo8pKna5d40nbKGchdWDDkNE5J6dnl6y8lciIiIiIiIi90O5Bx2AlL24uLhCk+v3U1paGl26dHnQYRTLqFGjsLGxyfcaNWrUgw5PREREREREREREHoB/3En1a9euYW5u/qDDkAI4OTk96BCKbeLEiYSFheXbpvIqIiIiIiIiIiIi/05/+5Pq7du357nnniM0NJQqVaoQEBDAkSNH6NKlCzY2NlSvXp2BAwdy4cIF45jc3FxmzJiBm5sbFhYW1K5dmylTphjbz5w5Q9++fXFwcMDR0ZEePXpw+vRpY3tISAg9e/bkzTffxNnZmcqVKzNmzBiuX79u7JOdnU1ERAQuLi5YWFjg5ubG0qVLycvLw83NjTfffNNkH0lJSRgMBr7//vti7fvChQv06tULKysr3N3d2bBhQ779EhISGDx4MBkZGRgMBgwGA1FRUcb2q1evMmTIEGxtbalduzaLFi0yGf/TTz8RFBSEo6Mj1tbWtGjRgj179uS71r59+3jssceoUqUK9vb2tGvXjm+++cakj8FgYP369QCcPn0ag8HAmjVreOSRR7C0tKRly5acOHGCffv20aJFC2xsbOjSpQvnz58v1nNJSEigVatWWFtb4+DggL+/Pz/++CPw///dbhcaGkr79u2Nn2//bri4uNChQwc++OAD3NzccHNzo2LFiowbNw5PT898n8cnn3xCs2bNqFixIvXq1SM6OpobN24AkJeXR1RUFLVr18bCwoIaNWrwwgsvGMe+/fbbuLu7U7FiRapXr85TTz1V6F6zs7PJzMw0uURERERERERERKRs/e2T6gDLli3D3NycxMREpk+fTocOHfD19WX//v1s3ryZs2fP0rdvX2P/yMhIpk+fzrhx4zh27BirVq2ievXqAFy/fp2AgABsbW3ZuXMniYmJ2NjY0LlzZ65du2acY/v27aSkpLB9+3aWLVtGXFwccXFxxvZBgwbx/vvvM2/ePJKTk1m4cCE2NjYYDAaGDBlCbGysyR5iY2Np27Ytbm5uxdpzdHQ0ffv25dtvvyUwMJABAwbw22+/3dGvTZs2zJ07Fzs7O9LS0khLSzM5fT1r1ixatGjBwYMHGT16NM8++yzHjx8HICsri3bt2vHzzz+zYcMGDh06RHh4OLm5ufnGdPnyZYKDg/nqq6/4+uuvcXd3JzAwkMuXLxe6lwkTJvD666/zzTffUL58efr37094eDgxMTHs3LmT77//nvHjxxf5TG7cuEHPnj1p164d3377Lbt372bEiBEYDIYix95S2HejqOexc+dOBg0axIsvvsixY8dYuHAhcXFxxh9s1q5dy5w5c1i4cCEnT55k/fr1eHt7A7B//35eeOEFJk6cyPHjx9m8eTNt27YtNNZp06Zhb29vvFxcXIq9TxEREREREREREbk7/4jyL+7u7syYMQOAyZMn4+vry9SpU43t7777Li4uLpw4cQJnZ2diYmKYP38+wcHBANSvX5+HH34YgA8++IDc3FyWLFliTMbGxsbi4OBAQkICjz/+OACVKlVi/vz5mJmZ4enpSdeuXYmPj2f48OGcOHGCNWvWsHXrVjp16gRAvXr1jPGEhIQwfvx49u7dS6tWrbh+/TqrVq264/R6YUJCQggKCgJg6tSpzJs3j71799K5c2eTfubm5tjb22MwGPItvRIYGMjo0aMBiIiIYM6cOWzfvp0GDRqwatUqzp8/z759+3B0dAQoNOnfoUMHk8+LFi3CwcGBHTt20K1btwLHhYWFERAQAMCLL75IUFAQ8fHx+Pv7AzB06FCTHywKkpmZSUZGBt26daN+/foAeHl5FTnulsuXLxf63SjqeURHR/Pqq68ax9arV49JkyYRHh7OhAkTSE1NxcnJiU6dOlGhQgVq165Nq1atAEhNTcXa2ppu3bpha2tLnTp18PX1LTTeyMhIxo4da7J/JdZFRERERERERETK1j/ipHrz5s2Nfx86dIjt27ebvFTS09MTgJSUFJKTk8nOzqZjx475znXo0CG+//57bG1tjeMdHR35448/SElJMfZr1KgRZmZmxs/Ozs6cO3cOuFnKxczMjHbt2uW7Ro0aNejatSvvvvsuAJ9++inZ2dn06dOn2Hv28fEx/m1tbY2dnZ1x/ZK4fZ5biffb9+Hr62tMIBfl7NmzDB8+HHd3d+zt7bGzsyMrK4vU1NRix3DrVPitE9y37hVnb46OjoSEhBAQEED37t2JiYkhLS2tWLEDRX43inoehw4dYuLEiSbfveHDh5OWlsbVq1fp06cPv//+O/Xq1WP48OGsW7fOWBrmscceo06dOtSrV4+BAweycuVKrl69Wmi8FhYW2NnZmVwiIiIiIiIiIiJStv4RSXVra2vj31lZWXTv3p2kpCST6+TJk7Rt2xZLS8tC58rKyqJ58+Z3jD9x4gT9+/c39qtQoYLJOIPBYCwDUtQaAMOGDWP16tX8/vvvxMbG0q9fP6ysrIq958LWL4l73cftgoODSUpKIiYmhl27dpGUlETlypVNyuYUFcOt/zvgz/eKu7fY2Fh2795NmzZt+OCDD/Dw8ODrr78GoFy5cuTl5Zn0v70OflH7Lc53Jzo62uR7c/jwYU6ePEnFihVxcXHh+PHjvP3221haWjJ69Gjatm3L9evXsbW15ZtvvuH999/H2dmZ8ePH06RJE9LT04u1bxEREREREREREbk//hFJ9ds1a9aMo0eP4urqany55K3L2toad3d3LC0tiY+PL3D8yZMnqVat2h3j7e3tixWDt7c3ubm57Nixo8A+gYGBWFtbs2DBAjZv3syQIUPuar/FYW5uTk5OTonH+fj4kJSUlG+t9vwkJibywgsvEBgYSKNGjbCwsDB5Qez94uvrS2RkJLt27aJx48asWrUKgKpVq95xcj0pKcn4d1HfjaKeR7NmzTh+/Pgd3xs3NzfKlbv5n5qlpSXdu3dn3rx5JCQksHv3bg4fPgxA+fLl6dSpEzNmzODbb7/l9OnTfPHFF/f6OERERERERERERKQU/SNqqt9uzJgxLF68mKCgIMLDw3F0dOT7779n9erVLFmyhIoVKxIREUF4eDjm5ub4+/tz/vx5jh49ytChQxkwYAAzZ86kR48eTJw4kVq1avHjjz/y8ccfEx4eTq1atYqMwdXVleDgYIYMGcK8efNo0qQJP/74I+fOnTO+MNXMzIyQkBAiIyNxd3fHz8+vzJ6Jq6srWVlZxMfH06RJE6ysrIp1Kj4oKIipU6fSs2dPpk2bhrOzMwcPHqRGjRr5xuvu7s57771HixYtyMzM5JVXXinxafd7cerUKRYtWsQTTzxBjRo1OH78OCdPnmTQoEHAzZrvM2fOZPny5fj5+bFixQqOHDlirF1e1HejqOcxfvx4unXrRu3atXnqqacoV64chw4d4siRI0yePJm4uDhycnJo3bo1VlZWrFixAktLS+rUqcPGjRv54YcfaNu2LZUqVeKzzz4jNzeXBg0alPg5HIkOUCkYERERERERERGRMvKPO6leo0YNEhMTycnJ4fHHH8fb25vQ0FAcHByMp4XHjRvHyy+/zPjx4/Hy8qJfv37Gmt1WVlZ8+eWX1K5dmyeffBIvLy+GDh3KH3/8UaJE5YIFC3jqqacYPXo0np6eDB8+nCtXrpj0GTp0KNeuXWPw4MGl9wDy0aZNG0aNGkW/fv2oWrWq8aWuRTE3N+fzzz+nWrVqBAYG4u3tzfTp001qyd9u6dKlXLp0iWbNmjFw4EBeeOEFqlWrVppbKZSVlRXfffcdvXv3xsPDgxEjRjBmzBhGjhwJQEBAAOPGjSM8PJyWLVty+fJlY8L9lsK+G0U9j4CAADZu3Mjnn39Oy5Yteeihh5gzZw516tQBwMHBgcWLF+Pv74+Pjw/btm3j008/pXLlyjg4OPDxxx/ToUMHvLy8eOedd3j//fdp1KjRfXt+IiIiIiIiIiIiUjRD3p+LTMt9s3PnTjp27MiZM2eML+gsKYPBwLp16+jZs2e+7QkJCTz66KNcunQJBweHAudxdXUlNDSU0NDQu4ojKiqK9evXm5RTKUpRsf8dxMXFERoa+peofZ6ZmYm9vT0uoWsoZ1H8+vwiIn9lp6d3fdAhiIiIiIiIyL/ErfxaRkZGoQes/3En1f8OsrOz+emnn4iKiqJPnz53nVC/G3FxcYUm1++ntLQ0unTpUmbzHz16lN69e+Pq6orBYGDu3LmF9p8+fToGg+Guf1goyFdffYW/vz+VK1fG0tIST09P5syZY9LnVox/vsaMGVOqsYiIiIiIiIiIiMi9+Ucn1a9du/agQ8jX+++/T506dUhPT7+jFMvKlSuxsbHJ9/qnlQJxcnLCwsKiRGMKejY2Njbs3LnTpO/Vq1epV68e06dPx8nJqdB59+3bx8KFC/Hx8SnxPopibW3Nc889x5dffklycjKvv/46r7/+OosWLTJZPy0tzXht3boVgD59+pR6PCIiIiIiIiIiInL3/lFJ9fbt2/Pcc88RGhpKlSpVCAgI4MiRI3Tp0gUbGxuqV6/OwIEDuXDhgnFMbm4uM2bMwM3NDQsLC2rXrs2UKVOM7WfOnKFv3744ODjg6OhIjx49OH36tLE9JCSEnj178uabb+Ls7EzlypUZM2YM169fN/bJzs4mIiICFxcXLCwsmDx5MosWLWL//v20a9eON99809j3iSeeYNWqVVy5coVPPvmEpKQk4/XZZ5/lu+8LFy7Qq1cvrKyscHd3Z8OGDfn2S0hIYPDgwWRkZBhPQkdFRRnbr169ypAhQ7C1taV27domSV+An376iaCgIBwdHbG2tqZFixbs2bMn37X27dvHY489RpUqVbC3t6ddu3Z88803Jn0MBgPr168H4PTp0xgMBtasWcMjjzyCpaUlLVu25MSJE+zbt48WLVpgY2NDs2bNiI+PN3kut64WLVqYzN+yZUtmzpzJ008/XWjyPisriwEDBrB48WIqVap0R3t6ejojR46kevXqVKxYkcaNG7Nx40aTPuvXr8fd3Z2KFSsSEBDAmTNnjG2+vr4EBQXRqFEjXF1deeaZZwgICDD5EaBq1ao4OTkZr40bN1K/fn3atWtXYNwiIiIiIiIiIiJy//2jkuoAy5Ytw9zcnMTERKZPn06HDh3w9fVl//79bN68mbNnz9K3b19j/8jISKZPn864ceM4duwYq1atMpZjuX79OgEBAdja2rJz504SExOxsbGhc+fOJqfgt2/fTkpKCtu3b2fZsmXExcURFxdnbB80aBDvv/8+8+bNIzk5mYULF2JjY4PBYGDIkCHExsYa+9ra2hIfH0/btm3p2LEjbm5uxuvWCy//LDo6mr59+/Ltt98SGBjIgAED+O233+7o16ZNG+bOnYudnZ3xRHRYWJixfdasWbRo0YKDBw8yevRonn32WY4fPw7cTDy3a9eOn3/+mQ0bNnDo0CHCw8PJzc3NN6bLly8THBzMV199xddff427uzuBgYFcvny50H+/CRMm8Prrr/PNN99Qvnx5+vfvT3h4ODExMezcuZO0tDTi4uJMnsuty9LSstC5CzJmzBi6du1Kp06d7mjLzc2lS5cuJCYmsmLFCo4dO3bHy1qvXr3KlClTWL58OYmJiaSnp/P0008XuN7BgwfZtWtXgQnza9eusWLFCoYMGYLBYChwnuzsbDIzM00uERERERERERERKVvlH3QApc3d3d1YUmXy5Mn4+voydepUY/u7776Li4sLJ06cwNnZmZiYGObPn09wcDAA9evX5+GHHwbggw8+IDc3lyVLlhiTm7GxsTg4OJCQkMDjjz8OQKVKlZg/fz5mZmZ4enrStWtX4uPjGT58OCdOnGDNmjVs3brVmLStV6+eMZ6QkBDGjx/P3r17adWqFdevX2fVqlUmp9eLEhISQlBQEABTp05l3rx57N27l86dO5v0Mzc3x97eHoPBkG85lMDAQEaPHg1AREQEc+bMYfv27TRo0IBVq1Zx/vx59u3bh6OjIwBubm4FxtShQweTz4sWLcLBwYEdO3bQrVu3AseFhYUREBAAwIsvvkhQUBDx8fH4+/sDMHToUJMfLO7V6tWr+eabb9i3b1++7du2bWPv3r0kJyfj4eEBmP77wc0fX+bPn0/r1q2Bmz/seHl5Gf9Nb6lVqxbnz5/nxo0bREVFMWzYsHzXXL9+Penp6YSEhBQa+7Rp04iOji7uVkVERERERERERKQU/ONOqjdv3tz496FDh9i+fbtJ3W1PT08AUlJSSE5OJjs7m44dO+Y716FDh/j++++xtbU1jnd0dOSPP/4gJSXF2K9Ro0YmJ5ednZ05d+4cAElJSZiZmRV4KrlGjRp07dqVd999F4BPP/2U7OzsEtXSvr0OuLW1NXZ2dsb1S+L2eW4l3m/fh6+vrzGhXpSzZ88yfPhw3N3dsbe3x87OjqysLFJTU4sdw63/Y8Db29vk3t3sLT9nzpzhxRdfZOXKlVSsWDHfPklJSdSqVcuYUM9P+fLladmypfGzp6cnDg4OJCcnm/TbuXMn+/fv55133mHu3Lm8//77+c63dOlSunTpQo0aNQqNPzIykoyMDON1e8kZERERERERERERKRv/uJPq1tbWxr+zsrLo3r07b7zxxh39nJ2d+eGHHwqdKysri+bNm7Ny5co72qpWrWr8u0KFCiZtBoPBWBalOCVJhg0bxsCBA5kzZw6xsbH069cPKyurIscVZ/2SuNd93C44OJiLFy8SExNDnTp1sLCwwM/Pr8iXx94ew63/O+DP9+5mb/k5cOAA586do1mzZsZ7OTk5fPnll8yfP5/s7Oy7LimTn7p16wI3fyQ4e/YsUVFRxv/D4JYff/yRbdu28fHHHxc5n4WFRYlf9CoiIiIiIiIiIiL35h+XVL9ds2bNWLt2La6urpQvf+dW3d3dsbS0JD4+Pt9SHM2aNeODDz6gWrVq2NnZ3VUM3t7e5ObmsmPHjnxrdsPNsivW1tYsWLCAzZs38+WXX97VWsVhbm5OTk5Oicf5+PiwZMkSfvvtt2KdVk9MTOTtt98mMDAQuHkq/PYXxP4VdOzYkcOHD5vcGzx4MJ6enkRERGBmZoaPjw8//fQTJ06cKPC0+o0bN9i/f7+x1Mvx48dJT0/Hy8urwLVzc3PJzs6+435sbCzVqlWja9eu97AzERERERERERERKSv/uPIvtxszZgy//fYbQUFB7Nu3j5SUFLZs2cLgwYPJycmhYsWKREREEB4ezvLly0lJSeHrr79m6dKlAAwYMIAqVarQo0cPdu7cyalTp0hISOCFF17gp59+KlYMrq6uBAcHM2TIENavX2+cY82aNcY+ZmZmhISEEBkZibu7O35+fmXyPG7Fk5WVRXx8PBcuXODq1avFGhcUFISTkxM9e/YkMTGRH374gbVr17J79+58+7u7u/Pee++RnJzMnj17GDBgQKme+i6Oa9eukZSURFJSEteuXePnn38mKSmJ77//Hrj5UtjGjRubXNbW1lSuXJnGjRsD0K5dO9q2bUvv3r3ZunUrp06d4n//+x+bN282rlOhQgWef/559uzZw4EDBwgJCeGhhx4yJtn/+9//8umnn3Ly5ElOnjzJ0qVLefPNN3nmmWdM4s3NzSU2Npbg4OB8fwQSERERERERERGRB+8fnbmrUaMGiYmJRERE8Pjjj5OdnU2dOnXo3Lkz5crd/D1h3LhxlC9fnvHjx/PLL7/g7OzMqFGjALCysuLLL78kIiKCJ598ksuXL1OzZk06duxYopPrCxYs4LXXXmP06NFcvHiR2rVr89prr5n0GTp0KFOnTmXw4MGl9wDy0aZNG0aNGkW/fv24ePEiEyZMICoqqshx5ubmfP7557z88ssEBgZy48YNGjZsyH//+998+y9dupQRI0bQrFkzXFxcmDp1KmFhYaW8m8L98ssv+Pr6Gj+/+eabvPnmm7Rr146EhIRiz7N27VrCwsIICgriypUruLm5MX36dGO7lZUVERER9O/fn59//plHHnnE+MMM3EyWR0ZGcurUKcqXL0/9+vV54403GDlypMk627ZtIzU1lSFDhtz9poEj0QF3/X9WiIiIiIiIiIiISOEMeXl5eQ86CLn5EsuOHTty5swZ4ws6RUoiMzMTe3t7MjIylFQXEREREREREREpoeLm1/7RJ9X/DrKzszl//jxRUVH06dNHCfW/sLy8PEaOHMlHH33EpUuXOHjwIE2bNr2ruRISEnj00Ue5dOkSDg4OpRpn4wlbKGdR/Bfdioj8XZ2ervdPiIiIiIiIyP33j66p/nfw/vvvU6dOHdLT05kxY4ZJ28qVK7Gxscn3atSo0QOK+K+joGdjY2PDzp07S329zZs3ExcXx8aNG0lLSzPWXRcREREREREREZF/D51Uf8BCQkIICQnJt+2JJ56gdevW+bZVqFChDKP6e0hKSiqwrWbNmqW+XkpKCs7OzrRp06bU5xYREREREREREZG/ByXV/8JsbW2xtbV90GH8Zbm5ud23tUJCQli2bBkABoOBOnXqcPr06QL75+bm8sYbb7Bo0SJ+/fVXPDw8GDduHE899VS+/YcMGcL+/fvZt28fFhYWXLt2jdatW+Pt7c3y5cvLYksiIiIiIiIiIiJyF1T+RaQYYmJimDhxIrVq1SItLY19+/YV2n/atGksX76cd955h6NHj/LSSy/xzDPPsGPHjnz7z5s3jytXrvDqq68C8J///If09HTmz59f4BrZ2dlkZmaaXCIiIiIiIiIiIlK2dFJdpBjs7e2xtbXFzMwMJyenQvtmZ2czdepUtm3bhp+fHwD16tXjq6++YuHChbRr1+6OMTY2NqxYsYJ27dpha2vL3Llz2b59e6FvGZ42bRrR0dH3tjEREREREREREREpESXVRUrZ999/z9WrV3nsscdM7l+7dg1fX98Cx/n5+REWFsakSZOIiIjg4YcfLnSdyMhIxo4da/ycmZmJi4vLvQUvIiIiIiIiIiIihVJSXaSUZWVlAbBp06Y7XphqYWFR4Ljc3FwSExMxMzPj+++/L3IdCwuLQucTERERERERERGR0qekukgpa9iwIRYWFqSmpuZb6qUgM2fO5LvvvmPHjh0EBAQQGxvL4MGDyzBSERERERERERERKSkl1UVKma2tLWFhYbz00kvk5uby8MMPk5GRQWJiInZ2dgQHB98x5uDBg4wfP56PPvoIf39/Zs+ezYsvvki7du2oV69eidY/Eh1QaC12ERERERERERERuXtKqouUgUmTJlG1alWmTZvGDz/8gIODA82aNeO11167o+8ff/zBM888Q0hICN27dwdgxIgRbNq0iYEDB/Lll19iZmZ2v7cgIiIiIiIiIiIi+TDk5eXlPeggROTeZWZmYm9vT0ZGhk6qi4iIiIiIiIiIlFBx82s6qS7/eu3bt6dp06bMnTs333aDwcC6devo2bPnfY3rbjWesIVyFlYPOgwRkfvi9PSuDzoEERERERER+Zcp96ADEPm7SU1NxcbGpsArNTXV2PfQoUMEBQXh4uKCpaUlXl5exMTE3DFnQkICzZo1w8LCAjc3N+Li4u7jjkRERERERERERKS4dFJdpIRq1KhBUlJSoe23HDhwgGrVqrFixQpcXFzYtWsXI0aMwMzMjOeeew6AU6dO0bVrV0aNGsXKlSuJj49n2LBhODs7ExAQUNbbERERERERERERkRJQUl0EyM3NJTw8nCVLlmBubs6oUaOIiooytl+4cIFevXqxZcsWatasyaxZs3jiiSeKnHfIkCEmn+vVq8fu3bv5+OOPjUn1d955h7p16zJr1iwAvLy8+Oqrr5gzZ46S6iIiIiIiIiIiIn8xKv8iAixbtgxra2v27NnDjBkzmDhxIlu3bjW2R0dH07dvX7799lsCAwMZMGAAv/32212tlZGRgaOjo/Hz7t276dSpk0mfgIAAdu/eXeg82dnZZGZmmlwiIiIiIiIiIiJStpRUFwF8fHyYMGEC7u7uDBo0iBYtWhAfH29sDwkJISgoCDc3N6ZOnUpWVhZ79+4t8Tq7du3igw8+YMSIEcZ7v/76K9WrVzfpV716dTIzM/n9998LnGvatGnY29sbLxcXlxLHIyIiIiIiIiIiIiWjpLoIN5Pqt3N2dubcuXP5tltbW2NnZ2fSXhxHjhyhR48eTJgwgccff/zeAgYiIyPJyMgwXmfOnLnnOUVERERERERERKRwqqkuAlSoUMHks8FgIDc3t9jtRTl27BgdO3ZkxIgRvP766yZtTk5OnD171uTe2bNnsbOzw9LSssA5LSwssLCwKHYMIiIiIiIiIiIicu90Ul2kjB09epRHH32U4OBgpkyZcke7n5+fSakZgK1bt+Ln53e/QhQREREREREREZFi0kl1kTJ05MgROnToQEBAAGPHjuXXX38FwMzMjKpVqwIwatQo5s+fT3h4OEOGDOGLL75gzZo1bNq06e7WjA7Azs6u1PYgIiIiIiIiIiIi/59OqouUoY8++ojz58+zYsUKnJ2djVfLli2NferWrcumTZvYunUrTZo0YdasWSxZsoSAgIAHGLmIiIiIiIiIiIjkx5CXl5f3oIMQ+Ss4ffo0devW5eDBgzRt2vS+rOnq6kpoaCihoaH3PFdmZib29vZkZGTopLqIiIiIiIiIiEgJFTe/pvIvQvv27WnatClz584t0zFyfzSesIVyFlYPOgwRkfvm9PSuDzoEERERERER+RdR+ReRezBq1ChsbGzyvUaNGvWgwxMREREREREREZFSpqT6v1xISAg7duwgJiYGg8GAwWDg9OnT7Nixg1atWmFhYYGzszOvvvoqN27cKHRMUY4ePUq3bt2ws7PD1taWRx55hJSUFAD27dvHY489RpUqVbC3t6ddu3Z88803JuMNBgNLliyhV69eWFlZ4e7uzoYNG4q9BsCSJUvw8vKiYsWKeHp68vbbb9/Vc0tISMBgMPDII49Qs2ZNrl+/jpubG2vWrCEpKYmkpCQmTpzI2rVradSoERYWFri6ujJr1qwC58zLyyMqKoratWtjYWFBjRo1eOGFF+4qPhERERERERERESkbSqr/y8XExODn58fw4cNJS0sjLS2NChUqEBgYSMuWLTl06BALFixg6dKlTJ48ucAxLi4uha7z888/07ZtWywsLPjiiy84cOAAQ4YMMSbqL1++THBwMF999RVff/017u7uBAYGcvnyZZN5oqOj6du3L99++y2BgYEMGDCA3377rVhrrFy5kvHjxzNlyhSSk5OZOnUq48aNY9myZXf9/KZMmcL8+fPZv38/Li4ujBkzhjp16uDm5saZM2fo27cvTz/9NIcPHyYqKopx48YRFxeX71xr165lzpw5LFy4kJMnT7J+/Xq8vb0LXDs7O5vMzEyTS0RERERERERERMqWaqr/y9nb22Nubo6VlRVOTk4A/Oc//8HFxYX58+djMBjw9PTkl19+ISIigvHjx+c7pij//e9/sbe3Z/Xq1VSoUAEADw8PY3uHDh1M+i9atAgHBwd27NhBt27djPdDQkIICgoCYOrUqcybN4+9e/fSuXPnIteYMGECs2bN4sknnwSgbt26HDt2jIULFxIcHFzSR2ec87HHHgNg2bJl1KpVi3Xr1tG3b19mz55Nx44dGTdunDGWY8eOMXPmTEJCQu6YKzU1FScnJzp16kSFChWoXbs2rVq1KnDtadOmER0dfVdxi4iIiIiIiIiIyN3RSXW5Q3JyMn5+fhgMBuM9f39/srKy+Omnn+5qzqSkJB555BFjsvvPzp49y/Dhw3F3d8fe3h47OzuysrJITU016efj42P829raGjs7O86dO1fkGleuXCElJYWhQ4ea1D2fPHmySXmYkvLz8zP+7ejoSIMGDUhOTgZuPkd/f3+T/v7+/pw8eZKcnJw75urTpw+///479erVY/jw4axbt854yj4/kZGRZGRkGK8zZ87c9T5ERERERERERESkeHRSXe4LS0vLQtuDg4O5ePEiMTEx1KlTBwsLC/z8/Lh27ZpJvz8nzA0GA7m5uUWukZWVBcDixYtp3bq1SZuZmVmx91GWXFxcOH78ONu2bWPr1q2MHj2amTNnsmPHjnx/KLCwsMDCwuIBRCoiIiIiIiIiIvLvpZPqgrm5ucnJaS8vL3bv3k1eXp7xXmJiIra2ttSqVSvfMUXx8fFh586dXL9+Pd/2xMREXnjhBQIDA40v9rxw4UKJ9lHYGtWrV6dGjRr88MMPuLm5mVx169Yt0Tq3+/rrr41/X7p0iRMnTuDl5QXcfI6JiYkm/RMTE/Hw8CgwkW9paUn37t2ZN28eCQkJ7N69m8OHD991fCIiIiIiIiIiIlK6lFQXXF1d2bNnD6dPn+bChQuMHj2aM2fO8Pzzz/Pdd9/xySefMGHCBMaOHUu5cuXyHXPrtHhBnnvuOTIzM3n66afZv38/J0+e5L333uP48eMAuLu7895775GcnMyePXsYMGBAkafbS7pGdHQ006ZNY968eZw4cYLDhw8TGxvL7Nmz7+Kp3TRx4kTi4+M5cuQIISEhVKlShZ49ewLw8ssvEx8fz6RJkzhx4gTLli1j/vz5hIWF5TtXXFwcS5cu5ciRI/zwww+sWLECS0tL6tSpc9fxiYiIiIiIiIiISOlS+RchLCyM4OBgGjZsyO+//86pU6f47LPPeOWVV2jSpAmOjo4MHTqU119/vdAxrq6uBa5RuXJlvvjiC1555RXatWuHmZkZTZs2NdYcX7p0KSNGjKBZs2a4uLgwderUApPPd7vGsGHDsLKyYubMmbzyyitYW1vj7e1NaGhoiZ/ZLdOnT+fFF1/k5MmTNG3alE8//RRzc3MAmjVrxpo1axg/fjyTJk3C2dmZiRMn5vuSUgAHBwemT5/O2LFjycnJwdvbm08//ZTKlSuXKKYj0QHY2dnd9Z5ERERERERERESkYIa822t8iEixJCQk8Oijj3Lp0iUcHBwedDgAZGZmYm9vT0ZGhpLqIiIiIiIiIiIiJVTc/JpOqkuZiYuLIzQ0lPT09Acdyl9SWSXmG0/YQjkLq1KbT0Tk7+j09K4POgQRERERERH5h1JNdSkVo0aNwsbGxuQaNWoUGRkZjBo16kGHV2L57ef2fZWGNm3akJaWhr29fanMJyIiIiIiIiIiImVP5V/K0LVr14z1tf/pzp07R2Zmpsm9tWvXMnnyZFJSUqhWrdoDiuzu5LefWywtLalZs+Z9jqhot/73FJfQNTqpLiL/ejqpLiIiIiIiIiVV3PIvOqleitq3b89zzz1HaGgoVapUISAggCNHjtClSxdsbGyoXr06AwcO5MKFC8Yxubm5zJgxAzc3NywsLKhduzZTpkwxtp85c4a+ffvi4OCAo6MjPXr04PTp08b2kJAQevbsyZtvvomzszOVK1dmzJgxXL9+3dgnOzubiIgIXFxcsLCwwM3NjaVLl5KXl4ebmxtvvvmmyT6SkpIwGAx8//33Re45PT2dkSNH4u3tTePGjenZsyffffcdbm5uVK9eHTMzM2NCPSoqiqZNm/Luu+9Su3ZtbGxsGD16NDk5OcyYMQMnJyeqVatmsv/b16hevToVK1akcePGbNy40di+du1aGjVqhIWFBa6ursyaNctkvKurK1OnTmXIkCHY2tpSu3ZtFi1aVOi+qlWrhpubG+XLl8fd3Z0DBw4wdOhQGjduzNatWwFYsmQJXl5eVKxYEU9PT95++22TOXbt2kXTpk2pWLEiLVq0YP369RgMBpKSkoCb5V8MBoOxPM6PP/5I9+7dqVSpEtbW1jRq1IjPPvusyH8DERERERERERERuX9UU72ULVu2jGeffZbExETS09Pp0KEDw4YNY86cOfz+++9ERETQt29fvvjiCwAiIyNZvHgxc+bM4eGHHyYtLY3vvvsOgOvXrxMQEICfnx87d+6kfPnyTJ48mc6dO/Ptt98aT8Fv374dZ2dntm/fzvfff0+/fv1o2rQpw4cPB2DQoEHs3r2befPm0aRJE06dOsWFCxcwGAwMGTKE2NhYwsLCjHuIjY2lbdu2uLm5FbrX3NxcunTpwuXLl1mxYgX169fn2LFjmJmZFTgmJSWF//3vf2zevJmUlBSeeuopfvjhBzw8PNixYwe7du1iyJAhdOrUidatWxe5xoEDB+jbty9RUVH069ePXbt2MXr0aCpXrkxISIhx3VmzZjFp0iRee+01PvroI5599lnatWtHgwYNivXv+uqrrzJr1ix8fX2pWLEiK1euZPz48cyfPx9fX18OHjzI8OHDsba2Jjg4mMzMTLp3705gYCCrVq3ixx9/JDQ0tNA1xowZw7Vr1/jyyy+xtrbm2LFj2NjYFNg/Ozub7Oxs4+eCTtaLiIiIiIiIiIhI6VFSvZS5u7szY8YMACZPnoyvry9Tp041tr/77ru4uLhw4sQJnJ2diYmJYf78+QQHBwNQv359Hn74YQA++OADcnNzWbJkCQaDAbiZ8HZwcCAhIYHHH38cgEqVKjF//nzMzMzw9PSka9euxMfHM3z4cE6cOMGaNWvYunUrnTp1AqBevXrGeEJCQhg/fjx79+6lVatWXL9+nVWrVt1xej0/27ZtY+/evSQnJ+Ph4XHH3PnJzc3l3XffxdbWloYNG/Loo49y/PhxPvvsM8qVK0eDBg1444032L59O61bty5yjdmzZ9OxY0fGjRsHgIeHB8eOHWPmzJkmSfXAwEBGjx4NQEREBHPmzGH79u3FTqqHhoby5JNPGj9PmDCBWbNmGe/VrVuXY8eOsXDhQoKDg1m1ahUGg4HFixdTsWJFGjZsyM8//2z8oSM/qamp9O7dG29v72I9y2nTphEdHV2s+EVERERERERERKR0qPxLKWvevLnx70OHDrF9+3aTl1x6enoCN09sJycnk52dTceOHfOd69ChQ3z//ffY2toaxzs6OvLHH3+QkpJi7NeoUSOT0+HOzs6cO3cOuFnKxczMjHbt2uW7Ro0aNejatSvvvvsuAJ9++inZ2dn06dOnyL0mJSVRq1YtY7K7OFxdXbG1tTV+rl69Og0bNqRcuXIm926Pv7A1kpOT8ff3N7nn7+/PyZMnycnJMd7z8fEx/m0wGHBycjKuURwtWrQw/n3lyhVSUlIYOnSoyb/trfrxAMePH8fHx4eKFSsax7Vq1arQNV544QUmT56Mv78/EyZM4Ntvvy20f2RkJBkZGcbrzJkzxd6PiIiIiIiIiIiI3B2dVC9l1tbWxr+zsrLo3r07b7zxxh39nJ2d+eGHHwqdKysri+bNm7Ny5co72qpWrWr8u0KFCiZtBoOB3Nxc4OZLNYsybNgwBg4cyJw5c4iNjaVfv35YWRX9osvizP1n+cV6r/Hf7bq31iiOP/+7AixevJjWrVub9Cus9E1Rhg0bRkBAAJs2beLzzz9n2rRpzJo1i+effz7f/hYWFlhYWNz1eiIiIiIiIiIiIlJyOqlehpo1a8bRo0dxdXXFzc3N5LK2tsbd3R1LS0vi4+MLHH/y5EnjSzNvv+zt7YsVg7e3N7m5uezYsaPAPoGBgVhbW7NgwQI2b97MkCFDijW3j48PP/30EydOnChW/7tR1BpeXl4kJiaa3EtMTMTDw+OeEtyFqV69OjVq1OCHH36449+lbt26ADRo0IDDhw+b1Dzft29fkXO7uLgwatQoPv74Y15++WUWL15cJnsQERERERERERGRu6OkehkaM2YMv/32G0FBQezbt4+UlBS2bNnC4MGDycnJoWLFikRERBAeHs7y5ctJSUnh66+/ZunSpQAMGDCAKlWq0KNHD3bu3MmpU6dISEjghRde4KeffipWDK6urgQHBzNkyBDWr19vnGPNmjXGPmZmZoSEhBAZGYm7uzt+fn7Fmrtdu3a0bduW3r17s3XrVk6dOmV8CWlpKWqNl19+mfj4eCZNmsSJEydYtmwZ8+fPN3nxalmIjo5m2rRpzJs3jxMnTnD48GFiY2OZPXs2AP379yc3N5cRI0aQnJzMli1bjHXqb9XH/7PQ0FC2bNnCqVOn+Oabb9i+fTteXl5lug8REREREREREREpGZV/KUM1atQgMTGRiIgIHn/8cbKzs6lTpw6dO3c21hAfN24c5cuXZ/z48fzyyy84OzszatQoAKysrPjyyy+JiIjgySef5PLly9SsWZOOHTtiZ2dX7DgWLFjAa6+9xujRo7l48SK1a9fmtddeM+kzdOhQpk6dyuDBg0u0x7Vr1xIWFkZQUBBXrlzBzc2N6dOnl2iOe1mjWbNmrFmzhvHjxzNp0iScnZ2ZOHGiyUtKy8KwYcOwsrJi5syZvPLKK1hbW+Pt7U1oaCgAdnZ2fPrppzz77LM0bdoUb29vxo8fT//+/U3qrN8uJyeHMWPG8NNPP2FnZ0fnzp2ZM2dOiWM7Eh1Qou+HiIiIiIiIiIiIFJ8hLy8v70EHIQ/ezp076dixI2fOnKF69eoPOpx/pJUrVzJ48GAyMjJKrVb87TIzM7G3tycjI0NJdRERERERERERkRIqbn5NJ9X/5bKzszl//jxRUVH06dPnvibUXV1dCQ0NNZ7uLkxcXByhoaGkp6eXyfxlYfny5dSrV4+aNWty6NAhIiIi6Nu3b5kk1G/XeMIWylkU/aJZEZF/stPTuz7oEEREREREROQfSjXV/+Xef/996tSpQ3p6OjNmzDBpW7lyJTY2NvlejRo1uue19+3bx4gRI+55nnuZf+rUqQXusUuXLve0/q+//sozzzyDl5cXL730En369GHRokVFjouLi8PBweGe1hYREREREREREZGyoZPq/3IhISEF1h9/4oknaN26db5tFSpUuOe1q1ates9z3Ov8o0aNom/fvvm23euJ8vDwcMLDw+9pDhEREREREREREflr0Ul1KZCtrS1ubm75XnXq1Cly/OXLlxkwYADW1tY4OzszZ84c2rdvbyzH4urqyty5c43909PTGTlyJNWrV6dixYo0btyYjRs35jt3SkoKPXr0oHr16tjY2NCyZUu2bdtm0ufP8xsMBhYuXEi3bt2wsrLCy8uL48ePAzdfPNqkSRMGDRqEwWDAzc2NmjVrFrq/4sYwefJkBg0ahI2NDXXq1GHDhg2cP3+eHj16YGNjg4+PD/v37wcgISHBWHfdYDBgMBiIiooq8lmLiIiIiIiIiIjI/aGkupSZsWPHkpiYyIYNG9i6dSs7d+7km2++ybdvbm4uXbp0ITExkRUrVnDs2DGmT5+OmZlZvv2zsrIIDAwkPj6egwcP0rlzZ7p3705qamqhMU2aNIlBgwaRlJSEp6cn/fv3Z+TIkURGRrJ//37y8vJ47rnnirW/4sYwZ84c/P39OXjwIF27dmXgwIEMGjSIZ555hm+++Yb69eszaNAg8vLyaNOmDXPnzsXOzo60tDTS0tIICwvLd/3s7GwyMzNNLhERERERERERESlbKv8iZeLy5cssW7aMVatW0bFjRwBiY2OpUaNGvv23bdvG3r17SU5OxsPDA4B69eoVOH+TJk1o0qSJ8fOkSZNYt24dGzZsKDQpPnjwYGO5l4iICPz8/Bg3bhwBAQEAvPjiiwwePLhYeyxuDIGBgYwcORKA8ePHs2DBAlq2bEmfPn1M4jh79ixOTk7Y29tjMBhwcnIqdP1p06YRHR1drFhFRERERERERESkdOikupSJH374gevXr9OqVSvjPXt7exo0aJBv/6SkJGrVqmVMqBclKyuLsLAwvLy8cHBwwMbGhuTk5CJPqvv4+Bj/rl69OgDe3t4m9/74449infoubgzFWRPg3LlzRa55u8jISDIyMozXmTNnSjReRERERERERERESk4n1eUvoaQvBQ0LC2Pr1q28+eabuLm5YWlpyVNPPcW1a9cKHXf7C1YNBkOB93Jzc0sthtJc83YWFhZYWFiUaIyIiIiIiIiIiIjcG51UlzJRr149KlSowL59+4z3MjIyOHHiRL79fXx8+Omnnwps/7PExERCQkLo1asX3t7eODk5cfr06dIIvdjKKgZzc3NycnLuPUAREREREREREREpdTqpLmXC1taW4OBgXnnlFRwdHalWrRoTJkygXLlyxpPZt2vXrh1t27ald+/ezJ49Gzc3N7777jsMBgOdO3e+o7+7uzsff/wx3bt3x2AwMG7cuBKf9L5XZRWDq6srWVlZxMfH06RJE6ysrLCysir2+CPRAdjZ2d1zHCIiIiIiIiIiInInnVSXMjN79mz8/Pzo1q0bnTp1wt/fHy8vLypWrJhv/7Vr19KyZUuCgoJo2LAh4eHhBZ7Ynj17NpUqVaJNmzZ0796dgIAAmjVrVpbbuW8xtGnThlGjRtGvXz+qVq3KjBkzSiFaERERERERERERKQ2GvLy8vAcdhPw7XLlyhZo1azJr1iyGDh36oMP5x8nMzMTe3p6MjAydVBcRERERERERESmh4ubXVP5F8pWXl8fIkSP56KOPuHTpEgcPHqRp06b59m3fvj1NmzZl7ty5JvcPHjzId999R6tWrcjIyGDixIkA9OjR4445oqKiWL9+PUlJSQXGFBISQnp6OuvXr7/LXf07NJ6whXIWxS8XIyLyT3R6etcHHYKIiIiIiIj8Q6n8i+Rr8+bNxMXFsXHjRtLS0mjcuPFdzfPmm2/SpEkTOnXqxJUrV9i5cydVqlQp5WhL7tChQwQFBeHi4oKlpSVeXl7ExMSY9HFxcaF8+fIYDAYMBgNmZmZYWlpiY2PDypUrS7Tepk2baN26NZaWllSqVImePXuW4m5ERERERERERETkftFJdclXSkoKzs7OtGnT5q7n8PX15cCBA6UYVek5cOAA1apVY8WKFbi4uLBr1y5GjBiBmZkZzz33HACPPfYYVapU4aGHHsLOzo6PPvqIpUuXsnr1ajp06FDstdauXcvw4cOZOnUqHTp04MaNGxw5cqSstiYiIiIiIiIiIiJlSCfV5Q4hISE8//zzpKamYjAYcHV1LXJMbm4u4eHhODo64uTkRFRUlEl7amoqPXr0wMbGBjs7O/r27cvZs2cLnC8nJ4exY8fi4OBA5cqVCQ8PpyTl/3Nzc5k2bRp169bF0tKSJk2a8NFHHxnbhwwZQkxMDO3ataNevXo888wzDB48mI8//tjY591332XGjBk8+eSTdOrUiXfeeQcPDw8OHTqEra0tcPNE/8MPP2yMs1u3bqSkpBjnuHHjBi+++CIzZ85k1KhReHh40LBhQ/r27Wuy16FDhxpjbdCgwR2n5vOTnZ1NZmamySUiIiIiIiIiIiJlS0l1uUNMTAwTJ06kVq1apKWlsW/fviLHLFu2DGtra/bs2cOMGTOYOHEiW7duBW4muHv06MFvv/3Gjh072Lp1Kz/88AP9+vUrcL5Zs2YRFxfHu+++y1dffcVvv/3GunXrir2HadOmsXz5ct555x2OHj3KSy+9xDPPPMOOHTsKHJORkYGjo2OB7bm5uVy+fNmkz5UrVxg7diz79+8nPj6ecuXK0atXL3JzcwH45ptv+PnnnylXrhy+vr44OzvTpUsXk5Pqubm51KpViw8//JBjx44xfvx4XnvtNdasWVPkHu3t7Y2Xi4tLcR+PiIiIiIiIiIiI3CVDXkmO/8q/xty5c5k7dy6nT58usm/79u3Jyclh586dxnutWrWiQ4cOTJ8+na1bt9KlSxdOnTplTPweO3aMRo0asXfvXlq2bHnHi0pr1KjBSy+9xCuvvALcPPFdt25dmjdvXuSLSrOzs3F0dGTbtm34+fkZ7w8bNoyrV6+yatWqO8bs2rWLdu3asWnTJh5//PF8550xYwbTp0/nu+++o1q1avn2uXDhAlWrVuXw4cM0btyY1atXExQURO3atZk9ezaurq7MmjWLzz//nBMnThSYxH/uuef49ddfTU7X57fP7Oxs4+fMzExcXFxwCV2jF5WKyL+eXlQqIiIiIiIiJZWZmYm9vT0ZGRnY2dkV2E8n1aVU+Pj4mHx2dnbm3LlzACQnJ99M9t52krphw4Y4ODiQnJx8x1wZGRmkpaXRunVr473y5cvTokWLYsXy/fffc/XqVR577DFsbGyM1/Lly01Ks9xy5MgRevTowYQJEwpMqK9atYro6GjWrFljklA/efIkQUFB1KtXDzs7O2OpnNTUVADjifX//Oc/9O7dm+bNmxMbG4vBYODDDz80zvPf//6X5s2bU7VqVWxsbFi0aJFxjoJYWFhgZ2dncomIiIiIiIiIiEjZ0otKpVRUqFDB5LPBYDAmlO+3rKwsADZt2kTNmjVN2iwsLEw+Hzt2jI4dOzJixAhef/31fOdbvXo1w4YN48MPP6RTp04mbd27d6dOnTosXryYGjVqkJubS+PGjbl27Rpw88cFuPkjwu0x1KtXz5g0X716NWFhYcyaNQs/Pz9sbW2ZOXMme/bsuYenICIiIiIiIiIiImVBSXUpc15eXpw5c4YzZ86YlH9JT083STbfYm9vj7OzM3v27KFt27bAzfIvBw4coFmzZkWu17BhQywsLEhNTaVdu3YF9jt69CgdOnQgODiYKVOm5Nvn/fffZ8iQIaxevZquXU1LCVy8eJHjx4+zePFiHnnkEQC++uorkz7NmzfHwsKC48eP8/DDDwNw/fp1Tp8+TZ06dQBITEykTZs2jB492jguvxP1IiIiIiIiIiIi8uApqS5lrlOnTnh7ezNgwADmzp3LjRs3GD16NO3atSuwpMuLL77I9OnTcXd3x9PTk9mzZ5Oenl6s9WxtbQkLC+Oll14iNzeXhx9+mIyMDBITE7GzsyM4OJgjR47QoUMHAgICGDt2LL/++isAZmZmVK1aFbhZ8iU4OJiYmBhat25t7GNpaYm9vT2VKlWicuXKLFq0CGdnZ1JTU3n11VdNYrGzs2PUqFFMmDABFxcX6tSpw8yZMwHo06cPAO7u7ixfvpwtW7ZQt25d3nvvPfbt20fdunVL/KwBjkQHqBSMiIiIiIiIiIhIGVFNdSlzBoOBTz75hEqVKtG2bVs6depEvXr1+OCDDwoc8/LLLzNw4ECCg4ONJVF69epV7DUnTZrEuHHjmDZtGl5eXnTu3JlNmzYZE9UfffQR58+fZ8WKFTg7Oxuvli1bGudYtGgRN27cYMyYMSZ9XnzxRQDKlSvH6tWrOXDgAI0bN+all14yJsxvN3PmTJ5++mkGDhxIy5Yt+fHHH/niiy+oVKkSACNHjuTJJ5+kX79+tG7dmosXL5qcWhcREREREREREZG/DkNeXl7egw5CRO7drbcTu4SuoZyF1YMOR0TkgTs9vWvRnURERERERET+z638WkZGRqGVIHRSXURERERERERERESkmJRUl0KlpqZiY2NT4JWamqqYRERERERERERE5F9DSXUpVI0aNUhKSirwqlGjhmICNm/ezMMPP4yDgwOVK1emW7dupKSkGNt37dpF06ZNqVixIi1atGD9+vUYDAaSkpKMfY4cOUKXLl2wsbGhevXqDBw4kAsXLtz3vYiIiIiIiIiIiEjByj/oAOSvrXz58ri5uT3oMEz8FWO6cuUKY8eOxcfHh6ysLMaPH0+vXr1ISkoiKyuL7t27ExgYyKpVq/jxxx8JDQ01GZ+enk6HDh0YNmwYc+bM4ffffyciIoK+ffvyxRdf5LtmdnY22dnZxs+ZmZlluUURERERERERERFBSXWRUtG7d2+Tz++++y5Vq1bl2LFjfPXVVxgMBhYvXkzFihVp2LAhP//8M8OHDzf2nz9/Pr6+vkydOtVkDhcXF06cOIGHh8cda06bNo3o6Oiy25SIiIiIiIiIiIjcQeVfRErByZMnCQoKol69etjZ2eHq6grcrP9+/PhxfHx8qFixorF/q1atTMYfOnSI7du3m9SG9/T0BDApI3O7yMhIMjIyjNeZM2fKZnMiIiIiIiIiIiJipJPqIqWge/fu1KlTh8WLF1OjRg1yc3Np3Lgx165dK9b4WyVi3njjjTvanJ2d8x1jYWGBhYXFPcUtIiIiIiIiIiIiJaOkusg9unjxIsePH2fx4sU88sgjAHz11VfG9gYNGrBixQqys7ONSfB9+/aZzNGsWTPWrl2Lq6sr5cvrP0sREREREREREZG/KpV/EblHlSpVonLlyixatIjvv/+eL774grFjxxrb+/fvT25uLiNGjCA5OZktW7bw5ptvAmAwGAAYM2YMv/32G0FBQezbt4+UlBS2bNnC4MGDycnJeSD7EhERERERERERkTvpSKzIPSpXrhyrV6/mhRdeoHHjxjRo0IB58+bRvn17AOzs7Pj000959tlnadq0Kd7e3owfP57+/fsb66zXqFGDxMREIiIiePzxx8nOzqZOnTp07tyZcuVK9tvXkegA7OzsSnubIiIiIiIiIiIiAhjy8vLyHnQQIv82K1euZPDgwWRkZGBpaVkqc2ZmZmJvb09GRoaS6iIiIiIiIiIiIiVU3PyaTqrfB3FxcYSGhpKenv6gQzGKiopiwYIFnDt3jnXr1rF+/XrS09NZv379fYvhr/hcSkNCQgKPPvooly5dwsHBAYDly5dTr149atasyaFDh4iIiKBv376lllC/XeMJWyhnYVXq84qI/B2dnt71QYcgIiIiIiIi/zA6qX4f/P7771y+fJlq1ao96FAASE5OpmHDhqxbt46HHnqISpUq8ccff5CXl2dMAt8NV1dXQkNDCQ0NLVb/u3ku7du3p2nTpsydO/fugixl+cVz7do1fvvtN6pXr26smT5jxgzefvttfv31V5ydnenZsydTpkzByqr0kt+3fklzCV2jpLqIyP9RUl1ERERERESKSyfVSygnJweDwVDi+tXFYWlpWSYnku9WSkoKAD169DAmfS0sLAodc+3aNczNzUs1jgf5XMpiP7eYm5vj5ORkci88PJzw8PAyWU9ERERERERERETun9LPIJeC5cuXU7lyZbKzs03u9+zZk4EDBwLwySef0KxZMypWrEi9evWIjo7mxo0bxr6zZ8/G29sba2trXFxcGD16NFlZWcb2uLg4HBwc2LBhAw0bNsTCwoLU1FQSEhJo1aoV1tbWODg44O/vz48//lhkzIcOHeLRRx/F1tYWOzs7mjdvzv79+03WuiUqKoqmTZvy3nvv4erqir29PU8//TSXL1829snNzWXGjBm4ublhYWFB7dq1mTJlirH9zJkz9O3bFwcHBxwdHenRowenT58uMs6oqCi6d+8O3HzB5q2kekhICD179jT2a9++Pc899xyhoaFUqVKFgIAA8vLyiIqKonbt2lhYWFCjRg1eeOEFY/8ff/yRl156CYPBYJy3MCV9LiEhIezYsYOYmBjjGrf2fOTIEbp06YKNjQ3Vq1dn4MCBXLhwodD9QNHfE4DExETat2+PlZUVlSpVIiAggEuXLhUYT0JCAgaDwaSszdq1a2nUqBEWFha4uroya9YskzVcXV2ZOnUqQ4YMwdbWltq1a7No0aIin6GIiIiIiIiIiIjcX3/JpHqfPn3Iyclhw4YNxnvnzp1j06ZNDBkyhJ07dzJo0CBefPFFjh07xsKFC4mLizNJOpcrV4558+Zx9OhRli1bxhdffHHHSeGrV6/yxhtvsGTJEo4ePYqjoyM9e/akXbt2fPvtt+zevZsRI0YUK0E8YMAAatWqxb59+zhw4ACvvvoqFSpUKLB/SkoK69evZ+PGjWzcuJEdO3Ywffp0Y3tkZCTTp09n3LhxHDt2jFWrVlG9enUArl+/TkBAALa2tuzcuZPExERsbGzo3Lkz165dKzTOsLAwYmNjAUhLSyMtLa3AvsuWLcPc3JzExETeeecd1q5dy5w5c1i4cCEnT55k/fr1eHt7A/Dxxx9Tq1YtJk6cWOS8hSnsucTExODn58fw4cONa7i4uJCenk6HDh3w9fVl//79bN68mbNnz9K3b99C9wNFf0+SkpLo2LEjDRs2ZPfu3Xz11Vd0796dnJycAuP5swMHDtC3b1+efvppDh8+TFRUFOPGjSMuLs6k36xZs2jRogUHDx5k9OjRPPvssxw/frzAZ5WdnU1mZqbJJSIiIiIiIiIiImXrL1n+xdLSkv79+xMbG0ufPn0AWLFiBbVr16Z9+/Y89thjvPrqqwQHBwNQr149Jk2aRHh4OBMmTAAwqevt6urK5MmTGTVqFG+//bbx/vXr13n77bdp0qQJAL/99hsZGRl069aN+vXrA+Dl5VWsmFNTU3nllVfw9PQEwN3dvdD+ubm5xMXFYWtrC8DAgQOJj49nypQpXL58mZiYGObPn2/cY/369Xn44YcB+OCDD8jNzWXJkiXGhH9sbCwODg4kJCTw+OOPF7iujY2N8XT4n0uU/Jm7uzszZswwft60aRNOTk506tSJChUqULt2bVq1agWAo6MjZmZm2NraFjlvYQp7Lvb29pibm2NlZWWyxvz58/H19WXq1KnGe++++y4uLi6cOHECDw+PfPcDRX9PZsyYQYsWLUy+N40aNTL+nV88fzZ79mw6duzIuHHjAPDw8ODYsWPMnDmTkJAQY7/AwEBGjx4NQEREBHPmzGH79u00aNAg33mnTZtGdHR0geuKiIiIiIiIiIhI6ftLnlQHGD58OJ9//jk///wzcLNUSEhICAaDgUOHDjFx4kRsbGyM163TwlevXgVg27ZtdOzYkZo1a2Jra8vAgQO5ePGisR1uJkR9fHyMnx0dHQkJCSEgIIDu3bsTExNT7BPXY8eOZdiwYXTq1Inp06cb65YXxNXV1Zg4BnB2dubcuXPAzReJZmdn07Fjx3zHHjp0iO+//x5bW1vj/h0dHfnjjz+KXLckmjdvbvK5T58+/P7779SrV4/hw4ezbt06k5I7paGw51KQQ4cOsX37dpPvw60fN25/Hn/eDxT9Pbl1Uv1eJCcn4+/vb3LP39+fkydPkpOTY7x3+3fRYDDg5ORU6N4jIyPJyMgwXmfOnLmnOEVERERERERERKRof9mkuq+vL02aNGH58uUcOHCAo0ePGk/1ZmVlER0dTVJSkvE6fPgwJ0+epGLFipw+fZpu3brh4+PD2rVrOXDgAP/9738BTMqjWFpa3lHaJTY2lt27d9OmTRs++OADPDw8+Prrr4uMNyoqiqNHj9K1a1e++OILGjZsyLp16wrs/+fSMAaDgdzcXGNchcnKyqJ58+Ym+09KSuLEiRP079+/yFiLy9ra2uSzi4sLx48f5+2338bS0pLRo0fTtm1brl+/XmprFvZcCpKVlUX37t3veB4nT56kbdu2Be6nON+T+/ki1ZLu3cLCAjs7O5NLREREREREREREytZfsvzLLcOGDWPu3Ln8/PPPdOrUyVivulmzZhw/fhw3N7d8xx04cIDc3FxmzZpFuXI3fzdYs2ZNsdf19fXF19eXyMhI/Pz8WLVqFQ899FCR4zw8PPDw8OCll14iKCiI2NhYevXqVex1b3F3d8fS0pL4+HiGDRt2R3uzZs344IMPqFat2n1PpFpaWtK9e3e6d+/OmDFj8PT05PDhwzRr1gxzc3OTk9dlIb81mjVrxtq1a3F1daV8+eJ/pYvzPfHx8SE+Pr7AMivF2bOXlxeJiYkm9xITE/Hw8MDMzKzY8YqIiIiIiIiIiMiD95dOqvfv35+wsDAWL17M8uXLjffHjx9Pt27dqF27Nk899RTlypXj0KFDHDlyhMmTJ+Pm5sb169d566236N69u8mLKQtz6tQpFi1axBNPPEGNGjU4fvw4J0+eZNCgQYWO+/3333nllVd46qmnqFu3Lj/99BP79u2jd+/ed7XvihUrEhERQXh4OObm5vj7+3P+/HmOHj3K0KFDGTBgADNnzqRHjx5MnDiRWrVq8eOPP/Lxxx8THh5OrVq17mrdosTFxZGTk0Pr1q2xsrJixYoVWFpaUqdOHeBm6ZYvv/ySp59+GgsLC6pUqVLqMbi6urJnzx5Onz5tLHszZswYFi9eTFBQEOHh4Tg6OvL999+zevVqlixZUmDiujjfk8jISLy9vRk9ejSjRo3C3Nyc7du306dPH6pUqZJvPH/28ssv07JlSyZNmkS/fv3YvXs38+fPN6nTXpqORAfo1LqIiIiIiIiIiEgZ+cuWfwGwt7end+/e2NjY0LNnT+P9gIAANm7cyOeff07Lli156KGHmDNnjjG526RJE2bPns0bb7xB48aNWblyJdOmTStyPSsrK7777jt69+6Nh4cHI0aMYMyYMYwcObLQcWZmZly8eJFBgwbh4eFB37596dKlyz29RHLcuHG8/PLLjB8/Hi8vL/r162esr21lZcWXX35J7dq1efLJJ/Hy8mLo0KH88ccfZZpMdXBwYPHixfj7++Pj48O2bdv49NNPqVy5MgATJ07k9OnT1K9fn6pVq5ZJDGFhYZiZmdGwYUOqVq1KamoqNWrUIDExkZycHB5//HG8vb0JDQ3FwcHBeAI9P8X5nnh4ePD5559z6NAhWrVqhZ+fH5988onxRHx+8fxZs2bNWLNmDatXr6Zx48aMHz+eiRMnmrykVERERERERERERP4eDHl5eXkPOojCdOzYkUaNGjFv3rwHHYrIX1pmZib29vZkZGTopLqIiIiIiIiIiEgJFTe/9pct/3Lp0iUSEhJISEgoszIZIv9EjSdsoZyF1YMOQ0TkL+/09K4POgQRERERERH5G/rLln/x9fUlJCSEN954gwYNGjzocGjUqBE2Njb5XitXrnzQ4ZkoKE4bGxt27tx53+Lo0qVLgXFMnTr1vsXxoH388cc89thjVK1aFTs7O/z8/NiyZcsd/f773//i6upKxYoVad26NXv37n0A0YqIiIiIiIiIiEhh/rIn1U+fPv2gQzDx2Wefcf369Xzbqlevfp+jKVxSUlKBbTVr1rxvcSxZsoTff/8937b8Xuj5T/Xll1/y2GOPMXXqVBwcHIiNjaV79+7s2bMHX19fAD744APGjh3LO++8Q+vWrZk7dy4BAQEcP36catWqPeAdiIiIiIiIiIiIyC1/+ZrqIveqffv2NG7cGID33nuPChUq8OyzzzJx4kQMBgOXLl3ixRdf5NNPPyU7O5t27doxb9483N3dAYiLiyM0NJS4uDheeeUVzpw5Q7t27ViyZAkuLi53FVOjRo3o168f48ePB6B169a0bNmS+fPnA5Cbm4uLiwvPP/88r776ar5zZGdnk52dbfycmZmJi4sLLqFrVP5FRKQYVP5FREREREREblfcmup/2fIvIqVp2bJllC9fnr179xITE8Ps2bNZsmQJACEhIezfv58NGzawe/du8vLyCAwMNPk/E65evcqUKVNYvnw5iYmJpKen8/TTT99VLLm5uVy+fNl4Wv/atWscOHCATp06GfuUK1eOTp06sXv37gLnmTZtGvb29sbrbhP8IiIiIiIiIiIiUnx/2fIvIqXJxcWFOXPmYDAYaNCgAYcPH2bOnDm0b9+eDRs2kJiYSJs2bQBYuXIlLi4urF+/nj59+gBw/fp15s+fT+vWrYGbSXovLy/27t1Lq1atShTLm2++SVZWFn379gXgwoUL5OTk3FFGqHr16nz33XcFzhMZGcnYsWONn2+dVBcREREREREREZGyo5Pq8q/w0EMPYTAYjJ/9/Pw4efIkx44do3z58sZkOUDlypVp0KABycnJxnvly5enZcuWxs+enp44ODiY9CmOVatWER0dzZo1a+65VrqFhQV2dnYml4iIiIiIiIiIiJQtnVQXuU9Wr17NsGHD+PDDD01KvVSpUgUzMzPOnj1r0v/s2bM4OTnd7zBFRERERERERESkEDqpLv8Ke/bsMfn89ddf4+7uTsOGDblx44ZJ+8WLFzl+/DgNGzY03rtx4wb79+83fj5+/Djp6el4eXkVa/3333+fwYMH8/7779O1q+mL8czNzWnevDnx8fHGe7m5ucTHx+Pn51eifYqIiIiIiIiIiEjZ0kl1+VdITU1l7NixjBw5km+++Ya33nqLWbNm4e7uTo8ePRg+fDgLFy7E1taWV199lZo1a9KjRw/j+AoVKvD8888zb948ypcvz3PPPcdDDz1UrHrqq1atIjg4mJiYGFq3bs2vv/4KgKWlJfb29gCMHTuW4OBgWrRoQatWrZg7dy5Xrlxh8ODBJd7rkegAlYIREREREREREREpI0qqy7/CoEGD+P3332nVqhVmZma8+OKLjBgxAoDY2FhefPFFunXrxrVr12jbti2fffYZFSpUMI63srIiIiKC/v378/PPP/PII4+wdOnSYq29aNEibty4wZgxYxgzZozxfnBwMHFxcQD069eP8+fPM378eH799VeaNm3K5s2b73h5qYiIiIiIiIiIiDxYhry8vLwHHYRISYWEhJCens769euL7Nu+fXuaNm3K3Llz72qtuLg4QkNDSU9PL9Mx9yozMxN7e3tcQtdQzsLqvq0rIvJPcnp616I7iYiIiIiIyD/SrfxaRkZGoZUg7rqm+nvvvYe/vz81atTgxx9/BGDu3Ll88skndzul/M21b9+e0NDQMh/zd9CvXz9OnDjxoMMQERERERERERGRUnZXSfUFCxYwduxYAgMDSU9PJycnBwAHB4e7Pg0s8nfVqFEjbGxsTK6qVatSr149Vq5c+aDDExERERERERERkVJ0V0n1t956i8WLF/Of//wHMzMz4/0WLVpw+PDhUgtO/j5CQkLYsWMHMTExGAwGDAYDp0+fZseOHbRq1QoLCwucnZ159dVXuXHjRqFjcnJyGDp0KHXr1sXS0pIGDRoQExNz17E999xzxMfHY2lpSeXKlenUqRNXrlwB8j8p37NnT0JCQoyfo6KiCAsLY9CgQdjY2FCnTh02bNjA+fPn6dGjB6dOnaJmzZq89957JCUlkZSUxLhx4zAYDDzxxBPGOZo2bcp7772Hq6sr9vb2PP3001y+fNm4zkcffYS3t3e+cYqIiIiIiIiIiMhfw10l1U+dOoWvr+8d9y0sLJQE/JeKiYnBz8+P4cOHk5aWRlpaGhUqVCAwMJCWLVty6NAhFixYwNKlS5k8eXKBY1xcXMjNzaVWrVp8+OGHHDt2jPHjx/Paa6+xZs2aEseVlpZGUFAQQ4YMITk5mYSEBJ588klK+iqBOXPm4O/vz8GDB+natSsDBw5k0KBBPPPMMyQlJdGwYUP+85//UL9+fdzc3KhevTpmZmbY2toa50hJSWH9+vVs3LiRjRs3smPHDqZPn37XcWZnZ5OZmWlyiYiIiIiIiIiISNkqfzeD6tatS1JSEnXq1DG5v3nzZry8vEolMPl7sbe3x9zcHCsrK5ycnAD4z3/+g4uLC/Pnz8dgMODp6ckvv/xCREQE48ePz3cMgJmZGdHR0cbPdevWZffu3axZs4a+ffuWKK60tDRu3LjBk08+afy+ent7l3h/gYGBjBw5EoDx48ezYMECWrZsSZ8+fQCIiIjAz8+Ps2fPmuzldrm5ucTFxRkT7QMHDiQ+Pp4pU6bcVZzTpk0zeU4iIiIiIiIiIiJS9u7qpPrYsWMZM2YMH3zwAXl5eezdu5cpU6YQGRlJeHh4accof1PJycn4+flhMBiM9/z9/cnKyuKnn34qdOx///tfmjdvTtWqVbGxsWHRokWkpqaWOIYmTZrQsWNHvL296dOnD4sXL+bSpUslnsfHx8f4d/Xq1QHTpPete+fOnStwDldXV5OT687Ozsb+dxNnZGQkGRkZxuvMmTMl3peIiIiIiIiIiIiUzF0l1YcNG8Ybb7zB66+/ztWrV+nfvz8LFiwgJiaGp59+urRjlH+Z1atXExYWxtChQ/n8889JSkpi8ODBXLt2rcRzmZmZsXXrVv73v//RsGFD3nrrLRo0aMCpU6cAKFeu3B0lVq5fv37HPBUqVDD+fetHgvzu5ebmFhjL7f1vjbnVv6g482NhYYGdnZ3JJSIiIiIiIiIiImWrxEn1GzdusHz5cjp16sTJkyfJysri119/5aeffmLo0KFlEaP8TZibm5OTk2P87OXlxe7du02S1omJidja2lKrVq18x9zq06ZNG0aPHo2vry9ubm6kpKTcdVwGgwF/f3+io6M5ePAg5ubmrFu3DoCqVauSlpZm7JuTk8ORI0fueq17UVicIiIiIiIiIiIi8tdQ4qR6+fLlGTVqFH/88QcAVlZWVKtWrdQDk78fV1dX9uzZw+nTp7lw4QKjR4/mzJkzPP/883z33Xd88sknTJgwgbFjx1KuXLl8x+Tm5uLu7s7+/fvZsmULJ06cYNy4cezbt++uYtqzZw9Tp05l//79pKam8vHHH3P+/Hlj7f8OHTqwadMmNm3axHfffcezzz5Lenp6aT2SUotTRERERERERERE/hru6kWlrVq14uDBg3e8qFT+3cLCwggODqZhw4b8/vvvnDp1is8++4xXXnmFJk2a4OjoyNChQ3n99dcLHTNy5EgOHjxIv379MBgMBAUFMXr0aP73v/+VOCY7Ozu+/PJL5s6dS2ZmJnXq1GHWrFl06dIFgCFDhnDo0CEGDRpE+fLleemll3j00UdL7ZmUVpwlcSQ6QKVgREREREREREREyogh788FpYthzZo1REZG8tJL/4+9+w7Lsv7//3+/2HspCiqKCCoquC3cpoYjcqVmppD77d44cuDOrVmWEy3NzFVZaUpiSg4sMU1EJQktPpkLQhMVrt8f/ry+XYmI5Koet+M4j4PzfK3n67T+efLieQ6hevXqODo6mrX/+aOOIvJ4ZGRk4OrqSnp6upLqIiIiIiIiIiIiDyi/+bUCJdXvlO4wm8hgwGg0YjAY7qqRLfK0SklJoXTp0hw+fJgqVarct39ERARXrlxhy5Ytj2T+v+PO//Q+g9djYevwSNcSEfmvSJnR8kmHICIiIiIiIo9JfpPqBSr/cubMmQIHJvIwpaamUqFChXu2Hz9+nJIlS96z3cfHh7S0NAoXLvwownvk84uIiIiIiIiIiMjjVaCkumqp/zvcuHEDGxubJx3G31KsWDESEhLybM+LpaUlXl5eDzmqxze/iIiIiIiIiIiIPF5313HJh9WrV+d5ydOpYcOG9O/fn8GDB1O4cGFCQ0M5duwYzZs3x8nJiaJFi9KlSxcuXLhgGpOTk8PMmTPx9/fH1taWkiVLMnXqVFP72bNn6dChA25ubnh4eNCqVStSUlJM7REREbRu3ZrZs2fj7e1NoUKF6NevHzdv3jT1ycrKIjIyEh8fH2xtbfH392f58uUYjUb8/f2ZPXu22T4SEhIwGAycPn0aKysr/P3973mdPn2aunXrYmdnR4UKFdi5cycGg8FUviUlJQWDwWCWmP/hhx944YUXcHFxwdnZmXr16pGcnJzrO922bRt169bFzc2NQoUK8cILL5j1/ev8sbGxGAwGtm/fTtWqVbG3t+e5557j/PnzfPHFFwQGBuLi4sIrr7zCtWvXHvSfWERERERERERERB6xAp1UHzRokNn9zZs3uXbtGjY2Njg4ONC1a9eHEpw8fKtWreJ///sfcXFxXLlyheeee44ePXowb948/vjjDyIjI+nQoQNfffUVAKNHj2bp0qXMmzePunXrkpaWxokTJ4Db/+6hoaGEhISwZ88erKysmDJlCs2aNeP77783nYLftWsX3t7e7Nq1i9OnT9OxY0eqVKlCz549AejatSv79u1j4cKFVK5cmTNnznDhwgUMBgPdunVj5cqVDB8+3LSHlStXUr9+ffz9/fPca3Z2Nq1bt6ZkyZIcOHCA33//nWHDhuU55ueff6Z+/fo0bNiQr776ChcXF+Li4rh161au/a9evcrQoUMJDg4mMzOT8ePH06ZNGxISEnL99sAdEydOZNGiRTg4ONChQwc6dOiAra0ta9euJTMzkzZt2vDmm28SGRl5zzmysrLIysoy3WdkZOS5NxEREREREREREfn7CpRUv3z58l3PTp06xf/+9z9GjBjxt4OSRycgIICZM2cCMGXKFKpWrcq0adNM7StWrMDHx4eTJ0/i7e3NggULWLRoEeHh4QCUKVOGunXrAvDhhx+Sk5PDsmXLMBgMwO2Et5ubG7GxsTz//PMAuLu7s2jRIiwtLSlfvjwtW7YkJiaGnj17cvLkSdavX8+OHTto0qQJAH5+fqZ4IiIiGD9+PAcPHqRWrVrcvHmTtWvX3nV6PTc7duwgOTmZ2NhYUwmWqVOn0rRp03uOeeutt3B1dWXdunVYW1sDULZs2Xv2b9eundn9ihUr8PT05Pjx41SqVOme46ZMmUKdOnUA6N69O6NHjyY5Odm095deeoldu3blmVSfPn06UVFR92wXERERERERERGRh69A5V9yExAQwIwZM+46xS5Pl+rVq5t+PnLkCLt27cLJycl0lS9fHoDk5GQSExPJysqicePGuc515MgRTp8+jbOzs2m8h4cH169fNyuBUrFiRSwtLU333t7enD9/HrhdysXS0pIGDRrkukaxYsVo2bIlK1asAODTTz8lKyuL9u3b33evSUlJ+Pj4mNU0r1WrVp5jEhISqFevnimhfj+nTp2iU6dO+Pn54eLigq+vL3D7A6p5CQ4ONv1ctGhRHBwczH6ZULRoUdM7upfRo0eTnp5uus6ePZuvmEVERERERERERKTgCnRS/Z6TWVnxyy+/PMwp5SFzdHQ0/ZyZmUlYWBhvvPHGXf28vb358ccf85wrMzOT6tWrs2bNmrvaPD09TT//NUFtMBjIyckBwN7e/r4x9+jRgy5dujBv3jxWrlxJx44dcXBwuO+4gshPPH8WFhZGqVKlWLp0KcWKFSMnJ4dKlSpx48aNPMf9+Z0YDIY839G92NraYmtr+0DxioiIiIiIiIiIyN9ToKT6J598YnZvNBpJS0tj0aJFppIW8vSrVq0aGzduxNfXFyuru/9TCAgIwN7enpiYGHr06JHr+A8//JAiRYrg4uJSoBiCgoLIyclh9+7dpvIvf9WiRQscHR1ZvHgx27Zt4+uvv87X3OXKlePs2bP8+uuvFC1aFID4+Pg8xwQHB7Nq1Spu3rx539PqFy9eJCkpiaVLl1KvXj0A9u7dm6/YRERERERERERE5J+pQOVfWrdubXa1bduWiRMnEhwcbCrTIU+/fv36cenSJTp16kR8fDzJycls376d1157jezsbOzs7IiMjGTkyJGsXr2a5ORk9u/fz/LlywHo3LkzhQsXplWrVuzZs4czZ84QGxvLwIEDOXfuXL5i8PX1JTw8nG7durFlyxbTHOvXrzf1sbS0JCIigtGjRxMQEEBISEi+5m7atCllypQhPDyc77//nri4OF5//XUAUw34v+rfvz8ZGRm8/PLLHDp0iFOnTvHee++RlJR0V193d3cKFSrEkiVLOH36NF999RVDhw7NV2wiIiIiIiIiIiLyz1Sgk+r3K0sh/wzFihUjLi6OyMhInn/+ebKysihVqhTNmjXDwuL271vGjRuHlZUV48eP55dffsHb25s+ffoA4ODgwNdff01kZCRt27bl999/p3jx4jRu3PiBTq4vXryYMWPG0LdvXy5evEjJkiUZM2aMWZ/u3bszbdo0XnvttXzPa2lpyZYtW+jRowc1a9bEz8+PWbNmERYWhp2dXa5jChUqxFdffcWIESNo0KABlpaWVKlSJde/wLCwsGDdunUMHDiQSpUqUa5cORYuXEjDhg3zHeOjcCwqtMB/OSAiIiIiIiIiIiJ5MxiNRuODDpo0aRLDhw+/q671H3/89kRdhQABAABJREFUwaxZsxg/fvxDC1AEYM+ePTRu3JizZ8+aSrkURFxcHHXr1uX06dOUKVPmIUb45GVkZODq6kp6erqS6iIiIiIiIiIiIg8ov/m1AiXVLS0tSUtLo0iRImbPL168SJEiRcjOzn7wiOWpk5KSQunSpTl8+DBVqlR5IjFkZWXx22+/ER4ejpeXV64fRc3L5s2bcXJyIiAggNOnTzNo0CDc3d0fee3zhg0bUqVKFebPn1/gOaKjoxk8eDBXrlzJV/87/9P7DF6Phe2j+ZCriMh/TcqMlk86BBEREREREXlM8ptUL1BNdaPRmGtN6iNHjuDh4VGQKeUfIDY2FoPBkO8k78PwwQcfUKpUKa5cucLMmTPN2tasWYOTk1OuV8WKFQH4/fff6devH+XLlyciIoKaNWvy8ccfP7b4RURERERERERE5N/lgWqqu7u7YzAYMBgMlC1b1iyxnp2dTWZmpqnetsjDEBERQURERK5tL774Is8880yubdbW1gB07dqVrl27PqrwRERERERERERE5D/mgU6qz58/n7lz52I0GomKimLevHmm65133mHv3r289dZbjypWeURycnKYOXMm/v7+2NraUrJkSaZOnWrWJyUlhUaNGgH/75crd5LdGzZsICgoCHt7ewoVKkSTJk24evWqaeyyZcsIDAzEzs6O8uXL8/bbb5vaunXrRnBwMFlZWQDcuHGDqlWr5isR7uzsjK2tLWPGjKFGjRrUqlWLYcOGYWVlRalSpYDbSfnWrVsze/ZsvL29KVSoEP369ePmzZumebKysoiMjMTHxwdbW1v8/f1Zvny5qX337t3UqlULW1tbvL29GTVqFLdu3TK1X716la5du+Lk5IS3tzdz5sy5K9asrCyGDx9O8eLFcXR05JlnniE2NtasT3R0NCVLlsTBwYE2bdpw8eLF+74DERERERERERERebwe6KR6eHg4AKVLl6Z27dqm08DyzzZ69GiWLl3KvHnzqFu3LmlpaZw4ccKsj4+PDxs3bqRdu3YkJSXh4uKCvb09aWlpdOrUiZkzZ9KmTRt+//139uzZw51S/WvWrGH8+PEsWrSIqlWrcvjwYXr27ImjoyPh4eEsXLiQypUrM2rUKObNm8fYsWO5cuUKixYtum/cN2/eJDQ0lJCQEPbs2YOVlRVTpkyhWbNmfP/999jY2ACwa9cuvL292bVrF6dPn6Zjx45UqVKFnj17ArdPs+/bt88Uy5kzZ7hw4QIAP//8My1atCAiIoLVq1dz4sQJevbsiZ2dHRMnTgRgxIgR7N69m48//pgiRYowZswYvvvuO7M69P379+f48eOsW7eOYsWKsXnzZpo1a8bRo0cJCAjgwIEDdO/enenTp9O6dWu2bdvGhAkT8tx/VlaW6ZcRcLvmk4iIiIiIiIiIiDxaBfpQ6Z9dv36dGzdumD3Lq4i7PF1+//13PD09WbRoET169DBr++uHSmNjY2nUqBGXL1/Gzc0NgO+++47q1auTkpJiOh3+Z/7+/kyePJlOnTqZnk2ZMoXPP/+cb775BoB9+/bRoEEDRo0axfTp09m1axd169a9b+zvv/8+U6ZMITEx0VSK6MaNG7i5ubFlyxaef/55IiIiiI2NJTk5GUtLSwA6dOiAhYUF69at4+TJk5QrV44dO3bQpEmTu9YYO3YsGzduNFvj7bffJjIykvT0dK5du0ahQoV4//33ad++PQCXLl2iRIkS9OrVi/nz55Oamoqfnx+pqakUK1bMNHeTJk2oVasW06ZN45VXXiE9PZ3PPvvM1P7yyy+zbdu2e9awnzhxIlFRUXc914dKRUQeHn2oVERERERE5L/jkX6o9Nq1a/Tv358iRYrg6OiIu7u72SX/HImJiWRlZdG4ceMCja9cuTKNGzcmKCiI9u3bs3TpUi5fvgzcLouSnJxM9+7dzT4iOmXKFJKTk01zhISEMHz4cCZPnsywYcPylVCH2x/GPX36NM7Ozqa5PTw8uH79utn8FStWNCXUAby9vTl//jwACQkJWFpa0qBBg1zXSExMJCQkxOz7AXXq1CEzM5Nz586RnJzMjRs3zGq7e3h4UK5cOdP90aNHyc7OpmzZsmbvYffu3aY4ExMT76oPHxISkuf+R48eTXp6uuk6e/bs/V6ZiIiIiIiIiIiI/E0PVP7ljhEjRrBr1y4WL15Mly5deOutt/j555959913mTFjxsOOUR4he3v7vzXe0tKSHTt28M033/Dll1/y5ptvMnbsWA4cOICDw+3T0kuXLr0rYfznJHdOTg5xcXFYWlpy+vTpfK+dmZlJ9erVWbNmzV1tnp6epp//WqbIYDCQk5MD/P3950dmZiaWlpZ8++23ZvsGcHJyKvC8tra22Nra/t3wRERERERERERE5AEU6KT6p59+yttvv027du2wsrKiXr16vP7660ybNi3XBKc8vQICArC3tycmJua+fe/UKM/OzjZ7bjAYqFOnDlFRURw+fBgbGxs2b95M0aJFKVasGD/++CP+/v5mV+nSpU3jZ82axYkTJ9i9ezfbtm1j5cqV+Yq9WrVqnDp1iiJFitw1v6ura77mCAoKIicnh927d+faHhgYyL59+/hzlaS4uDicnZ0pUaIEZcqUwdramgMHDpjaL1++zMmTJ033VatWJTs7m/Pnz98Vp5eXl2mdP88BsH///nztQURERERERERERB6fAp1Uv3TpEn5+fsDt+umXLl0CoG7duvzvf/97eNHJI2dnZ0dkZCQjR47ExsaGOnXq8Ntvv/HDDz/cVRKmVKlSGAwGtm7dSosWLbC3t+eHH34gJiaG559/niJFinDgwAF+++03AgMDAYiKimLgwIG4urrSrFkzsrKyOHToEJcvX2bo0KEcPnyY8ePHs2HDBurUqcPcuXMZNGgQDRo0MP03di+dO3dm1qxZtGrVikmTJlGiRAl++uknNm3axMiRIylRosR99+/r60t4eDjdunUzfaj0p59+4vz583To0IG+ffsyf/58BgwYQP/+/UlKSmLChAkMHToUCwsLnJyc6N69OyNGjKBQoUIUKVKEsWPHYmHx/35fVbZsWTp37kzXrl2ZM2cOVatW5bfffiMmJobg4GBatmzJwIEDqVOnDrNnz6ZVq1Zs376dbdu2FeBfFI5Fheq7BiIiIiIiIiIiIo9IgU6q+/n5cebMGQDKly/P+vXrgdsn2O98wFL+OcaNG8ewYcMYP348gYGBdOzY0VRz/M+KFy9OVFQUo0aNomjRovTv3x8XFxe+/vprWrRoQdmyZXn99deZM2cOzZs3B6BHjx4sW7aMlStXEhQURIMGDYiOjqZ06dJcv36dV199lYiICMLCwgDo1asXjRo1okuXLnediP8rBwcHvv76a0qWLEnbtm0JDAyke/fuXL9+/YGSyosXL+all16ib9++lC9fnp49e3L16lXTnj///HMOHjxI5cqV6dOnD927d+f11183jZ81axb16tUjLCyMJk2aULduXapXr262xsqVK+natSvDhg2jXLlytG7dmvj4eEqWLAnAs88+y9KlS1mwYAGVK1fmyy+/NFtDREREREREREREng4G45/rWuTTvHnzsLS0ZODAgezcuZOwsDCMRiM3b940nTQWkccrv18nFhERERERERERkbvlN79WoKT6X/300098++23+Pv7Exwc/Henk3+5iIgIrly5wpYtW550KE+Mr68vgwcPZvDgwffsYzAY2Lx5M61bt87XnHf+p/cZvB4LW4eHE6iIiJikzGj5pEMQERERERGRRyi/SfUClX/5s+vXr1OqVCnatm2rhPo/WMOGDfNM8D6sMQ9i2rRpODk55XrdKS/zTxUfH0+vXr2edBgiIiIiIiIiIiLygAr0odLs7GymTZvGO++8w6+//srJkyfx8/Nj3Lhx+Pr60r1794cdp/wH9enThw4dOuTaZm9vf89xN27cwMbG5lGF9VB4eno+6RBERERERERERESkAAp0Un3q1KlER0czc+ZMs+RlpUqVWLZs2UMLTh6PiIgIdu/ezYIFCzAYDBgMBlJSUti9eze1atXC1tYWb29vRo0axa1bt/Ick52dTffu3SldujT29vaUK1eOBQsWFCguDw8PevTowfz585k/fz7Vq1fn2WefZdWqVRQrVszUz9fXl8mTJ9O1a1dcXFxMJ8D37t1LvXr1sLe3x8fHh4EDB5o+QHpn3JQpU+jatStOTk6UKlWKTz75hN9++41WrVrh5OREcHAwhw4dMo2Jjo7Gzc2NLVu2EBAQgJ2dHaGhoZw9e9bUJzk5mVatWlG0aFGcnJyoWbMmO3fuNNubr68v8+fPN92fOnWK+vXrY2dnR4UKFdixY8d9309WVhYZGRlml4iIiIiIiIiIiDxaBUqqr169miVLltC5c2csLS1NzytXrsyJEyceWnDyeCxYsICQkBB69uxJWloaaWlpWFtb06JFC2rWrMmRI0dYvHgxy5cvZ8qUKfcc4+PjQ05ODiVKlOCjjz7i+PHjjB8/njFjxrB+/foCx7dq1SqsrKw4ePAgCxYsYO7cuXf98mb27NlUrlyZw4cPM27cOJKTk2nWrBnt2rXj+++/58MPP2Tv3r3079/fbNy8efOoU6cOhw8fpmXLlnTp0oWuXbvy6quv8t1331GmTBm6du3Knz89cO3aNaZOncrq1auJi4vjypUrvPzyy6b2zMxMWrRoQUxMDIcPH6ZZs2aEhYWRmpqa6/5ycnJo27YtNjY2HDhwgHfeeYfIyMj7vpfp06fj6upqunx8fB7ktYqIiIiIiIiIiEgBFKj8y88//4y/v/9dz3Nycrh58+bfDkoeL1dXV2xsbHBwcMDLywuAsWPH4uPjw6JFizAYDJQvX55ffvmFyMhIxo8fn+sYAEtLS6Kiokz3pUuXZt++faxfv/6epVzux8fHh3nz5mEwGChXrhxHjx5l3rx59OzZ09TnueeeY9iwYab7Hj160LlzZ1PN94CAABYuXEiDBg1YvHgxdnZ2ALRo0YLevXsDMH78eBYvXkzNmjVp3749AJGRkYSEhPDrr7+a9nnz5k0WLVrEM888A9xO+gcGBnLw4EFq1apF5cqVqVy5simWyZMns3nzZj755JO7kvoAO3fu5MSJE2zfvt10An/atGn3rRs/evRohg4darrPyMhQYl1EREREREREROQRK9BJ9QoVKrBnz567nm/YsIGqVav+7aDkyUtMTCQkJASDwWB6VqdOHTIzMzl37lyeY9966y2qV6+Op6cnTk5OLFmy5J6ntPPj2WefNYsjJCSEU6dOkZ2dbXpWo0YNszFHjhwhOjra7OOmoaGh5OTkcObMGVO/P39ct2jRogAEBQXd9ez8+fOmZ1ZWVtSsWdN0X758edzc3EhMTARun1QfPnw4gYGBuLm54eTkRGJi4j3fQWJiIj4+PmYlbUJCQu77XmxtbXFxcTG7RERERERERERE5NEq0En18ePHEx4ezs8//0xOTg6bNm0iKSmJ1atXs3Xr1ocdo/yDrFu3juHDhzNnzhxCQkJwdnZm1qxZHDhw4JGu6+joaHafmZlJ7969GThw4F19S5YsafrZ2tra9POdxH1uz3JycvIdy/Dhw9mxYwezZ8/G398fe3t7XnrpJW7cuJHvOUREREREREREROTp9EBJ9R9//JHSpUvTqlUrPv30UyZNmoSjoyPjx4+nWrVqfPrppzRt2vRRxSqPkI2NjdnJ78DAQDZu3IjRaDQlluPi4nB2dqZEiRK5jrnTp3bt2vTt29f0LDk5+W/F9teE/P79+wkICDCr5/9X1apV4/jx47mWKfq7bt26xaFDh6hVqxYASUlJXLlyhcDAQOD2O4iIiKBNmzbA7QR/SkrKPecLDAzk7NmzpKWl4e3tDdzeo4iIiIiIiIiIiDx9HiipHhAQQFpaGkWKFKFevXp4eHhw9OhRU4kM+efy9fXlwIEDpKSk4OTkRN++fZk/fz4DBgygf//+JCUlMWHCBIYOHYqFhUWuYzw8PAgICGD16tVs376d0qVL89577xEfH0/p0qULHFtqaipDhw6ld+/efPfdd7z55pvMmTMnzzGRkZE8++yz9O/fnx49euDo6Mjx48fZsWMHixYtKnAscPsk+4ABA1i4cCFWVlb079+fZ5991pRkDwgIYNOmTYSFhWEwGBg3blyeJ92bNGlC2bJlCQ8PZ9asWWRkZDB27NgCx3csKlSlYERERERERERERB6RB6qpbjQaze6/+OILrl69+lADkidj+PDhWFpaUqFCBTw9Pbl58yaff/45Bw8epHLlyvTp04fu3bvz+uuv33NMamoqvXv3pm3btnTs2JFnnnmGixcvmp1aL4iuXbvyxx9/UKtWLfr168egQYPo1atXnmOCg4PZvXs3J0+epF69elStWpXx48eb1S0vKAcHByIjI3nllVeoU6cOTk5OfPjhh6b2uXPn4u7uTu3atQkLCyM0NJRq1ardcz4LCws2b95s2mOPHj2YOnXq345TREREREREREREHj6D8a+Z8jxYWFjwf//3fxQpUgQAZ2dnjhw5gp+f3yMLUPLHYDCwefNmWrdunWt7bGwsjRo14vLly7i5ud1zHl9fXwYPHszgwYMLFMfEiRPZsmULCQkJ+R6TV+wNGzakSpUqzJ8/v0DxPGzR0dEMHjyYK1eu5Np+4sQJIiIiSEhIoHz58g/0Hv6ujIwMXF1d8Rm8Hgtbh8e2roiI/D8pM1o+6RBERERERESkgO7k19LT0/OsBPFAJ9UNBoOpvvafn8k/T3R0dJ7J9ccpLS2N5s2bP9I15s+fT7ly5bC3t8fHx4chQ4Zw/fp1U/vixYsJDg7GxcUFFxcXQkJC+OKLL8zmSE5OZuHChWRkZODi4kKHDh349ddfzfpMmDABR0dHkpKSiImJAeDkyZO0atWKwoUL4+LiQt26ddm1a9cj3a+IiIiIiIiIiIg8Gg9UU91oNBIREYGtrS0A169fp0+fPjg6Opr127Rp08OL8CG4ceMGNjY2TzoM+YvU1FQqVKhwz/bjx48/lHXWrl3LqFGjWLFiBbVr1+bkyZNERERgMBiYO3cuACVKlGDGjBkEBARgNBpZtWoVrVq14vDhw1SsWJGrV6/y/PPP4+bmhpOTE3FxcYwbN46wsDD2799vqjOfnJxMy5YtKVWqlGn9F154gYCAAL766ivs7e2ZP38+L7zwAsnJyXh5eT2UPYqIiIiIiIiIiMjj8UAn1cPDwylSpAiurq64urry6quvUqxYMdP9netJa9iwIf3792fw4MEULlyY0NBQjh07RvPmzXFycqJo0aJ06dKFCxcumMbk5OQwc+ZM/P39sbW1pWTJkmZ1rc+ePUuHDh1wc3PDw8ODVq1akZKSYmqPiIigdevWzJ49G29vbwoVKkS/fv24efOmqU9WVhaRkZH4+Phga2uLv78/y5cvx2g04u/vz+zZs832kZCQgMFg4PTp0/na94ULF2jTpg0ODg4EBATwySef5NovNjaW1157jfT0dNNfH0ycONHUfu3aNbp164azszMlS5ZkyZIlZuPPnTtHp06d8PDwwNHRkRo1anDgwIFc14qPj6dp06YULlwYV1dXGjRowHfffQdAsWLFSEhI4OrVq8yaNYuEhAS2bt3K1atXmTZtGq+88goHDhwgLi6OkydPEh8fT40aNXBycqJ58+b89ttv+Xov33zzDXXq1OGVV17B19eX559/nk6dOnHw4EFTn7CwMFq0aEFAQABly5Zl6tSpODk5sX//fgDi4uJISUlh165dZGRkEBQUxKpVqzh06BBfffUVcPuvNr799lsmTZpkeqcXLlzg1KlTjBo1iuDgYAICApgxYwbXrl3j2LFjAGRnZ9O9e3dKly6Nvb095cqVY8GCBfnam4iIiIiIiIiIiDxeD3RSfeXKlY8qjodu1apV/O9//yMuLo4rV67w3HPP0aNHD+bNm8cff/xBZGQkHTp0MCVER48ezdKlS5k3bx5169YlLS2NEydOAHDz5k1CQ0MJCQlhz549WFlZMWXKFJo1a8b3339vOgW/a9cuvL292bVrF6dPn6Zjx45UqVKFnj17Arc/uLlv3z4WLlxI5cqVOXPmDBcuXMBgMNCtWzdWrlzJ8OHDTXtYuXIl9evXx9/fP197joqKYubMmcyaNYs333yTzp0789NPP+Hh4WHWr3bt2syfP5/x48eTlJQEgJOTk6l9zpw5TJ48mTFjxrBhwwb+97//0aBBA8qVK0dmZiYNGjSgePHifPLJJ3h5efHdd9+Rk5OTa0y///474eHhvPnmmxiNRubMmUOLFi04deoUzs7Opr15e3vj7++PldXt/yQXL17M/PnzKVmyJN26deOVV17B2dmZBQsW4ODgQIcOHRg/fjyLFy++73upXbs277//PgcPHqRWrVr8+OOPfP7553Tp0iXX/tnZ2Xz00UdcvXqVkJAQ4PYvRAwGg+mvNADs7OywsLBg7969NGnShLS0NJo0aUKzZs0YPnw4Tk5OODo6Uq5cOVavXk21atWwtbXl3XffpUiRIlSvXh24/QudEiVK8NFHH1GoUCG++eYbevXqhbe3Nx06dLjnvrKyssjKyjLdZ2Rk3PddiIiIiIiIiIiIyN/zQEn1f5KAgABmzpwJwJQpU6hatSrTpk0zta9YsQIfHx9OnjyJt7c3CxYsYNGiRYSHhwNQpkwZ6tatC8CHH35ITk4Oy5YtM9WQX7lyJW5ubsTGxvL8888D4O7uzqJFi7C0tKR8+fK0bNmSmJgYevbsycmTJ1m/fj07duygSZMmAGYfeI2IiGD8+PGmxO/NmzdZu3btXafX8xIREUGnTp0AmDZtGgsXLuTgwYM0a9bMrJ+NjQ2urq4YDIZcy4+0aNGCvn37AhAZGcm8efPYtWsX5cqVY+3atfz222/Ex8ebkvV5Jf2fe+45s/slS5bg5ubG7t27eeGFF+45bvjw4YSGhgIwaNAgOnXqRExMDHXq1AGge/fuREdH3+eN3PbKK69w4cIF6tati9Fo5NatW/Tp04cxY8aY9Tt69CghISFcv34dJycnNm/ebCpP8+yzz+Lo6EhkZCTTpk3DaDQyatQosrOzSUtLA8DLywsrKyucnJzM3uvOnTtp3bo1zs7OWFhYUKRIEbZt24a7uzsA1tbWREVFmfqXLl2affv2sX79+jyT6tOnTzcbJyIiIiIiIiIiIo/eA5V/+Se5cwoY4MiRI+zatQsnJyfTVb58eeB2DezExESysrJo3LhxrnMdOXKE06dP4+zsbBrv4eHB9evXSU5ONvWrWLEilpaWpntvb2/Onz8P3C7lYmlpSYMGDXJdo1ixYrRs2ZIVK1YA8Omnn5KVlUX79u3zvefg4GDTz46Ojri4uJjWfxB/nudO4v3P+6hatepdp9/v5ddff6Vnz54EBATg6uqKi4sLmZmZpKam5juGokWLAhAUFGT2LL97i42NZdq0abz99tt89913bNq0ic8++4zJkyeb9StXrhwJCQkcOHCA//3vf4SHh5vqunt6evLRRx/x6aef4uTkhKurK1euXKFatWqmeuq5MRqN9OvXjyJFirBnzx4OHjxI69atCQsLMyXjAd566y2qV6+Op6cnTk5OLFmy5L7vaPTo0aSnp5uus2fP5ut9iIiIiIiIiIiISMH9a0+q//njqZmZmYSFhfHGG2/c1c/b25sff/wxz7kyMzOpXr06a9asuavN09PT9LO1tbVZm8FgMJVFsbe3v2/MPXr0oEuXLsybN4+VK1fSsWNHHBwc7jsuP+s/iL+7jz8LDw/n4sWLLFiwgFKlSmFra0tISAg3btzIdwx3/jrgr8/yu7dx48bRpUsXevToAdxOzl+9epVevXoxduxYU1LcxsbGdOq+evXqxMfHs2DBAt59910Ann/+eZKTk7lw4QJWVla4ubnh5eVl9hcHf/XVV1+xdetWLl++jIuLCwBvv/02O3bsYNWqVYwaNYp169YxfPhw5syZQ0hICM7OzsyaNeuedervsLW1NStHIyIiIiIiIiIiIo/evzap/mfVqlVj48aN+Pr6mmp2/1lAQAD29vbExMSYEq9/Hf/hhx9SpEgRU2L0QQUFBZGTk8Pu3btN5V/+qkWLFjg6OrJ48WK2bdvG119/XaC18sPGxobs7OwHHhccHMyyZcu4dOlSvk6rx8XF8fbbb9OiRQvg9gdf//yB2Mfh2rVrd50mv/MXBUaj8Z7jcnJyzGqW31G4cGHgdsL8/PnzvPjii3muDdy1voWFhemXAnFxcdSuXdtUcgcw+wsIEREREREREREReXr8a8u//Fm/fv24dOkSnTp1Ij4+nuTkZLZv385rr71GdnY2dnZ2REZGMnLkSFavXk1ycjL79+9n+fLlAHTu3JnChQvTqlUr9uzZw5kzZ4iNjWXgwIGcO3cuXzH4+voSHh5Ot27d2LJli2mO9evXm/pYWloSERHB6NGjCQgIMH0k81Hw9fUlMzOTmJgYLly4YEr+3k+nTp3w8vKidevWxMXF8eOPP7Jx40b27duXa/+AgADee+89EhMTOXDgAJ07d37g0+5/V1hYGIsXL2bdunWcOXOGHTt2MG7cOMLCwkzJ9dGjR/P111+TkpLC0aNHGT16NLGxsXTu3Nk0z8qVK9m/fz/Jycm8//77tG/fniFDhlCuXLl7rh0SEoK7uzvh4eEcOXKEkydPMmLECM6cOUPLli2B2+/o0KFDbN++nZMnTzJu3Dji4+Mf7UsRERERERERERGRAvlPnFQvVqwYcXFxREZG8vzzz5OVlUWpUqVo1qyZ6QTxuHHjsLKyYvz48fzyyy94e3vTp08fABwcHPj666+JjIykbdu2/P777xQvXpzGjRs/0Mn1xYsXM2bMGPr27cvFixcpWbLkXR/L7N69O9OmTeO11157eC8gF7Vr16ZPnz507NiRixcvMmHCBCZOnHjfcTY2Nnz55ZcMGzaMFi1acOvWLSpUqMBbb72Va//ly5fTq1cvqlWrho+PD9OmTWP48OEPeTd5e/311zEYDLz++uv8/PPPeHp6EhYWxtSpU019zp8/T9euXUlLS8PV1ZXg4GC2b99O06ZNTX2SkpIYPXo0ly5dwtfXl7FjxzJkyJA81y5cuDDbtm1j7NixPPfcc9y8eZOKFSvy8ccfU7lyZQB69+7N4cOH6dixIwaDgU6dOtG3b1+++OKLAu33WFRogf+iQkRERERERERERPJmMOZV/0Ieuz179tC4cWPOnj1r+kCnSH5kZGTg6upKenq6kuoiIiIiIiIiIiIPKL/5tf/ESfV/gqysLH777TcmTpxI+/btn6qEutFopHfv3mzYsIHLly9z+PBhqlSpkmvfhg0bUqVKFebPn1/g9SZOnMiWLVtISEi4Z5+IiAiuXLnCli1bCrzOoxAXF0efPn04ceIELVu2fCLxVZqwHQvb/H/gVkREHp2UGS2fdAgiIiIiIiLykP0naqr/E3zwwQeUKlWKK1euMHPmTLO2NWvW4OTklOtVsWLFRx7btm3biI6OZuvWraSlpVGpUqVHvuaDuNe7cXJyYs+ePWRnZzNu3DhKly6Nvb09ZcqUYfLkyWYfKZ04cSLly5fH0dERd3d3mjRpwoEDB8zW+e6772jatClubm4UKlSIXr16kZmZadZn6NChVKlShTNnzhAdHQ1AfHw8jRs3xs3NDXd3d0JDQzly5Mgjfy8iIiIiIiIiIiLy8Omk+lMiIiKCiIiIXNtefPFFnnnmmVzbrK2tH2FUtyUnJ+Pt7U3t2rUf+VoFkdeJ9uLFi/PGG2+wePFiVq1aRcWKFTl06BCvvfYarq6uDBw4EICyZcuyaNEi/Pz8+OOPP5g3bx7PP/88p0+fxtPTk19++YUmTZrQsWNHFi1aREZGBoMHDyYiIoINGzaY1ktOTqZPnz6UKFECgMzMTJo1a8aLL77I22+/za1bt5gwYQKhoaGcPXv2sfz7iYiIiIiIiIiIyMOjmuqSp4iICFatWmW6L1WqFCkpKffs37BhQ4KDg7Gzs2PZsmXY2NjQp08fs4+gpqamMmDAAGJiYrCwsKBZs2a8+eabppI3fy3/kp2dzYgRI1ixYgWWlpZ0796dX3/9lfT09HyVV3nhhRcoWrQoy5cvNz1r164d9vb2vP/++7mOuVM/aefOnTRu3JglS5Ywbtw40tLSTB+3PXr0KMHBwZw6dQorKytKly5tNsfKlSupVKkSNWvWJDU1FR8fn7vG+fv7c/HiRfr378/XX3/N5cuXKVOmDGPGjKFTp0733VtuMfsMXq/yLyIiTwmVfxEREREREfnnyG9NdZV/kTwtWLCASZMmUaJECdLS0oiPj7/vmFWrVuHo6MiBAweYOXMmkyZNYseOHQDk5OTQqlUrLl26xO7du9mxYwc//vgjHTt2vOd8c+bMITo6mhUrVrB3714uXbrE5s2b872H2rVrExMTw8mTJwE4cuQIe/fupXnz5rn2v3HjBkuWLMHV1ZXKlSsDt2ve29jYmBLqAPb29gDs3bsXHx8f0tLScHFxYf78+aSlpdGxY0fKlStHoUKFWL58OTdu3OCPP/5g+fLlBAYG4uvrC8D169epXr06n332GceOHaNXr1506dKFgwcP5rmvrKwsMjIyzC4RERERERERERF5tJRUlzy5urri7OyMpaUlXl5eeHp63ndMcHAwEyZMICAggK5du1KjRg1iYmIAiImJ4ejRo6xdu5bq1avzzDPPsHr1anbv3n3PhP38+fMZPXo0bdu2JTAwkHfeeQdXV9d872HUqFG8/PLLlC9fHmtra6pWrcrgwYPp3LmzWb+tW7fi5OSEnZ0d8+bNY8eOHRQuXBiA5557jv/7v/9j1qxZ3Lhxg8uXLzNq1CgA0tLSTO/HYDDg6uqKl5cX9vb2ODs7Exsby/vvv4+9vT1OTk5s27aNL774Aiur29WXihcvzvDhw6lSpQp+fn4MGDCAZs2asX79+jz3NX36dFxdXU3XnZPwIiIiIiIiIiIi8ugoqS4PXXBwsNm9t7c358+fByAxMREfHx+zBHCFChVwc3MjMTHxrrnS09NJS0szqylvZWVFjRo18h3P+vXrWbNmDWvXruW7775j1apVzJ4926ysDUCjRo1ISEjgm2++oVmzZnTo0MEUd8WKFVm1ahVz5szBwcEBLy8vSpcuTdGiRc1Or//VH3/8Qffu3alTpw779+8nLi6OSpUq0bJlS/744w/gdnmbyZMnExQUhIeHB05OTmzfvp3U1NQ89zV69GjS09NN19mzZ/P9TkRERERERERERKRg9KFSeej++vFNg8FATk7OE4oGRowYYTqtDhAUFMRPP/3E9OnTCQ8PN/VzdHTE398ff39/nn32WQICAli+fDmjR48G4JVXXuGVV17h119/xdHREYPBwNy5c/Hz87vn2mvXriUlJYV9+/aZku9r167F3d2djz/+mJdffplZs2axYMEC5s+fT1BQEI6OjgwePJgbN27kuS9bW1tsbW3/7usRERERERERERGRB6CT6vJYBQYGcvbsWbNT1cePH+fKlStUqFDhrv6urq54e3tz4MAB07Nbt27x7bff5nvNa9eu3XWa3NLS8r6J/pycHLKysu56XrRoUZycnPjwww+xs7OjadOm913bYDCYnt25v7N+XFwcrVq14tVXX6Vy5cr4+fmZ6r+LiIiIiIiIiIjI00Un1eWxatKkCUFBQXTu3Jn58+dz69Yt+vbtS4MGDe5Z0mXQoEHMmDGDgIAAypcvz9y5c7ly5Uq+1wwLC2Pq1KmULFmSihUrcvjwYebOnUu3bt0AuHr1KlOnTuXFF1/E29ubCxcu8NZbb/Hzzz/Tvn170zyLFi2idu3aODk5sWPHDkaMGMGMGTNwc3O759pNmzZlxIgR9OvXjwEDBpCTk8OMGTOwsrKiUaNGAAQEBLBhwwa++eYb3N3dmTt3Lr/++muuv2TIj2NRoXl+nVhEREREREREREQKTkl1eawMBgMff/wxAwYMoH79+lhYWNCsWTPefPPNe44ZNmwYaWlphIeHY2FhQbdu3WjTpg3p6en5WvPNN99k3Lhx9O3bl/Pnz1OsWDF69+7N+PHjgdun1k+cOMGqVau4cOEChQoVombNmuzZs4eKFSua5jl48CATJkwgMzOT8uXL8+6779KlS5c81y5fvjyffvopUVFRhISEYGFhQdWqVdm2bRve3t4AvP766/z444+Ehobi4OBAr169aN26db73JyIiIiIiIiIiIo+PwWg0Gp90ECLy92VkZODq6kp6erpOqouIiIiIiIiIiDyg/ObXdFJd/rbY2FgaNWrE5cuX8yyFAhAdHc3gwYMfqHyLPJhKE7ZjYevwpMMQEZECSpnR8kmHICIiIiIiInnQh0ol31JTU3Fycrrrat68OYDZx0fvpWPHjg/1I5z3iunOlZqa+tDWepwMBgNbtmx50mGIiIiIiIiIiIjIX+ikuuRbsWLFSEhIuOv5gQMHePXVV001wvNib2+Pvb39I4/pz+0iIiIiIiIiIiIiD4tOqj/Ftm3bRt26dXFzc6NQoUK88MILJCcnA5CSkoLBYGDTpk00atQIBwcHKleuzL59+0zjo6OjcXNzY/v27QQGBuLk5ESzZs1IS0sz9WnYsCGDBw82W7d169ZERESY7t977z1q1KiBu7s7devWZfz48bi4uODv74+/vz/FixcHwMrq/r+juRPTHRMnTqRKlSq89957+Pr64urqyssvv8zvv/9u6pOTk8PMmTPx9/fH1taWkiVLMnXqVNOaf/zxB7169SIoKIhnnnmGmTNn4uXlhb+/P1ZWVkRERNC6dWumTZtG0aJFcXNzY9KkSdy6dYsRI0bg4eFBiRIlWLlypVmsZ8+epUOHDri5ueHh4UGrVq1ISUm57x7vWLZsGYGBgdjZ2VG+fHnefvttU9uNGzfo378/3t7e2NnZUapUKaZPnw6Ar68vAG3atMFgMJju/yorK4uMjAyzS0RERERERERERB4tJdWfYlevXmXo0KEcOnSImJgYLCwsaNOmDTk5OaY+Y8eOZfjw4SQkJFC2bFk6derErVu3TO3Xrl1j9uzZvPfee3z99dekpqYyfPjwB4rj5s2bTJ48mSNHjrBlyxZSUlLMku5/V3JyMlu2bGHr1q1s3bqV3bt3M2PGDFP76NGjmTFjBuPGjeP48eOsXbuWokWLArffUWhoKO7u7sTHx/PRRx+xc+dO+vfvb7bGV199xS+//MLXX3/N3LlzmTBhAi+88ALu7u4cOHCAPn360Lt3b86dO2fac2hoKM7OzuzZs4e4uDjTLyVu3Lhx3z2tWbOG8ePHM3XqVBITE5k2bRrjxo1j1apVACxcuJBPPvmE9evXk5SUxJo1a0zJ8/j4eABWrlxJWlqa6f6vpk+fjqurq+ny8fF5sBcvIiIiIiIiIiIiD0zlX55i7dq1M7tfsWIFnp6eHD9+HCcnJwCGDx9Oy5a3P2gWFRVFxYoVOX36NOXLlwduJ4ffeecdypQpA0D//v2ZNGnSA8XRrVs3089+fn4sXLiQmjVrkpmZaYrj78jJySE6OhpnZ2cAunTpQkxMDFOnTuX3339nwYIFLFq0iPDwcADKlClD3bp1AVi7di3Xr19n9erVODo6ArBo0SLCwsJ44403TMl3Dw8PFi5ciIWFBeXKlWPmzJlcu3aNMWPGAP8vcb93715efvllPvzwQ3Jycli2bBkGgwG4neR2c3MjNjaW559/Ps89TZgwgTlz5tC2bVsASpcuzfHjx3n33XcJDw8nNTWVgIAA6tati8FgoFSpUqaxnp6eALi5ueHl5XXPNUaPHs3QoUNN9xkZGUqsi4iIiIiIiIiIPGI6qf4UO3XqFJ06dcLPzw8XFxfTSeY/f3wzODjY9POdmubnz583PXNwcDAl1O/0+XN7fnz77beEhYVRsmRJnJ2dadCgwV1x/B2+vr6mhPpfY0xMTCQrK4vGjRvnOjYxMZHKlSubEuoAderUIScnh6SkJNOzihUrYmHx//5zL1q0KEFBQaZ7S0tLChUqZFr3yJEjnD59GmdnZ9NHTz08PLh+/bqpBM+9XL16leTkZLp372720dQpU6aYxkZERJCQkEC5cuUYOHAgX375ZX5fl4mtrS0uLi5ml4iIiIiIiIiIiDxaOqn+FAsLC6NUqVIsXbqUYsWKkZOTQ6VKlczKj1hbW5t+vnOi+s/lYf7cfqeP0Wg03VtYWJjdw+3T7XfcKa8SGhrKmjVr8PT0JDU1ldDQ0HyVQcmP3GK8s4eH9VHT3NbIa93MzEyqV6/OmjVr7prrzknye8nMzARg6dKlPPPMM2ZtlpaWAFSrVo0zZ87wxRdfsHPnTjp06ECTJk3YsGHDg21MREREREREREREHisl1Z9SFy9eJCkpiaVLl1KvXj0A9u7d+9DX8fT0NPtwaXZ2NseOHaNRo0YAnDhxgosXLzJjxgxTaZFDhw499DjuJSAgAHt7e2JiYujRo8dd7YGBgURHR3P16lXTafW4uDhTmZeCqlatGh9++CFFihR54BPgRYsWpVixYvz444907tz5nv1cXFzo2LEjHTt25KWXXqJZs2ZcunQJDw8PrK2tyc7OLnD8IiIiIiIiIiIi8mgoqf6Ucnd3p1ChQixZsgRvb29SU1MZNWrUQ1/nueeeY+jQoXz22WeUKVOGuXPncuXKFVN7yZIlsbGx4c0336RPnz4cO3aMyZMnP/Q47sXOzo7IyEhGjhyJjY0NderU4bfffuOHH36ge/fudO7cmQkTJhAeHs7EiRP57bffGDBgAF26dDHVUy+Izp07M2vWLFq1asWkSZMoUaIEP/30E5s2bWLkyJGUKFEiz/FRUVEMHDgQV1dXmjVrRlZWFocOHeLy5csMHTqUuXPn4u3tTdWqVbGwsOCjjz7Cy8sLNzc34HZJnJiYGOrUqYOtrS3u7u75jv1YVKhKwYiIiIiIiIiIiDwiqqn+lLKwsGDdunV8++23VKpUiSFDhjBr1qyHvk63bt0IDw+na9euNGjQAD8/P9Mpdbh9kj06OpqPPvqIChUqMGPGDGbPnv3Q48jLuHHjGDZsGOPHjycwMJCOHTuaap87ODiwfft2Ll26RM2aNXnppZdo3LgxixYt+ltrOjg48PXXX1OyZEnatm1LYGAg3bt35/r16/lKWPfo0YNly5axcuVKgoKCaNCgAdHR0ZQuXRoAZ2dnZs6cSY0aNahZsyYpKSl8/vnnprrvc+bMYceOHfj4+FC1atW/tRcRERERERERERF5eAzGvxbUFslDbGwsjRo14vLly6ZT1WKuYcOGVKlShfnz5xd4jujoaAYPHmz2VwP3k5GRgaurKz6D12Nh61DgtUVE5OmVMqPlkw5BRERERETkX+tOfi09PT3Pg7U6qS4iIiIiIiIiIiIikk9Kqj/Fbty48aRDeGDNmzfHyckp12vatGlPOryH5l57dHJyeqDT5SIiIiIiIiIiIvLPoqT6U6Rhw4b079+fwYMHU7hwYUJDQ5k7dy5BQUE4Ojri4+ND3759yczMNBsXFxdHw4YNcXBwwN3dndDQUC5fvgxATk4O06dPp3Tp0tjb21O5cmU2bNiQ75g+//xzypYti729PY0aNSIlJeWuPnv37qVevXrY29tz5MgR2rZtyzfffENCQgIJCQkMHz6cQoUKERUVRdGiRXnppZdMY3Nycpg5cyb+/v7Y2tpSsmRJpk6dmq/Yzp49S4cOHXBzc8PDw4NWrVqZxRcREUHr1q2ZPXs23t7eFCpUiH79+nHz5k1Tn6ysLCIjI/Hx8cHW1hZ/f3+WL19uat+9eze1atXC1tYWb29vRo0axa1bt0x7++abb2jSpAk5OTnY29szYMAAnJ2dzeLMyspi+PDhFC9eHEdHR5555hliY2PN+kRHR1OyZEkcHBxo06YNFy9ezNc7EBERERERERERkcdLSfWnzKpVq7CxsSEuLo533nkHCwsLFi5cyA8//MCqVav46quvGDlypKl/QkICjRs3pkKFCuzbt4+9e/cSFhZGdnY2ANOnT2f16tW88847/PDDDwwZMoRXX32V3bt33zeWs2fP0rZtW8LCwkhISKBHjx6MGjXKrE9ycjLNmjWjXbt2fP/992zYsIFjx44xb948/P39uXLlClOmTGHGjBmcPHmSbdu2Ub9+fdP40aNHM2PGDMaNG8fx48dZu3YtRYsWvW9sN2/eJDQ0FGdnZ/bs2UNcXBxOTk40a9bM7IT/rl27SE5OZteuXaxatYro6Giio6NN7V27duWDDz5g4cKFJCYm8u677+Lk5ATAzz//TIsWLahZsyZHjhxh8eLFLF++nClTpuDv74+/vz/vvPMOhw8f5tNPP+Wrr77i2LFjHDlyxCzW/v37s2/fPtatW8f3339P+/btadasGadOnQLgwIEDdO/enf79+5OQkECjRo2YMmXKfd9BVlYWGRkZZpeIiIiIiIiIiIg8WvpQ6VOkYcOGZGRk8N13392zz4YNG+jTpw8XLlwA4JVXXiE1NZW9e/fe1TcrKwsPDw927txJSEiI6XmPHj24du0aa9euzTOeMWPG8PHHH/PDDz+Yno0aNYo33njD9KHSHj16YGlpybvvvmvqs3fvXho0aMDVq1f5/PPPee211zh37txdJ7h///13PD09WbRoET169Mj75fzF+++/z5QpU0hMTMRgMAC3y+W4ubmxZcsWnn/+eSIiIoiNjSU5ORlLS0sAOnTogIWFBevWrePkyZOUK1eOHTt20KRJk7vWGDt2LBs3bjRb4+233yYyMpL09HSuXbtGoUKFeP/992nfvj0Aly5dokSJEvTq1Yv58+eTmpqKn58fqampFCtWzDR3kyZNqFWrFtOmTeOVV14hPT2dzz77zNT+8ssvs23btjxLyUycOJGoqKi7nutDpSIi/176UKmIiIiIiMijk98PlVo9xpgkH6pXr252v3PnTqZPn86JEyfIyMjg1q1bXL9+nWvXruHg4EBCQoIpoftXp0+f5tq1azRt2tTs+Y0bN6hatep9Y0lMTOSZZ54xe/bn5DzAkSNH+P7771mzZo3pmdFoJCcnhzNnztC0aVNKlSqFn58fzZo1o1mzZrRp0wYHBwcSExPJysqicePG943lr44cOcLp06fvStRfv36d5ORk033FihVNCXUAb29vjh49Ctw+5W9paUmDBg3uuf+QkBBTQh2gTp06ZGZmcu7cOS5fvsyNGzfM3pGHhwflypUz3R89epTs7GzKli1rNndWVhaFChUyrdOmTRuz9pCQELZt25bnOxg9ejRDhw413WdkZODj45PnGBEREREREREREfl7lFR/yjg6Opp+TklJ4YUXXuB///sfU6dOxcPDg71799K9e3du3LiBg4MD9vb295zrTu31zz77jOLFi5u12draPpR4MzMz6d27NwMHDryrrWTJktjY2PDdd98RGxvLl19+yfjx45k4cSLx8fF5xp6fdatXr26WzL/D09PT9LO1tbVZm8FgICcnB+BvrZ9fmZmZWFpa8u2335ol9wFTmZmCsrW1fWj/jiIiIiIiIiIiIpI/Sqo/xb799ltycnKYM2cOFha3y9+vX7/erE9wcDAxMTG5lgGpUKECtra2pKam3vM0dl4CAwP55JNPzJ7t37/f7L5atWocP34cf3//e85jZWVFkyZNaNKkCRMmTMDNzY2vvvqKFi1aYG9vT0xMzAOXf6lWrRoffvghRYoUyfNPMfISFBRETk4Ou3fvzrX8S2BgIBs3bsRoNJpOq8fFxeHs7EyJEiXw8PDA2tqaAwcOULJkSQAuX77MyZMnTe+7atWqZGdnc/78eerVq5drHIGBgRw4cMDs2V/fs4iIiIiIiIiIiDwd9KHSp5i/vz83b97kzTff5Mcff+S9997jnXfeMeszevRo4uPj6du3L99//z0nTpxg8eLFXLhwAWdnZ4YPH86QIUNYtWoVycnJfPfdd7z55pusWrXqvuv36dOHU6dOMWLECJKSkli7dq3ZRz4BIiMj+eabb0wf2Tx16hQff/wx/fv3B2Dr1q0sXLiQhIQEfvrpJ1avXk1OTg7lypXDzs6OyMhIRo4cyerVq0lOTmb//v0sX778vrF17tyZwoUL06pVK/bs2cOZM2eIjY1l4MCBnDt3Ll/v19fXl/DwcLp168aWLVtMc9z5xUXfvn05e/YsAwYM4MSJE3z88cdMmDCBoUOHYmFhgZOTE927d2fEiBGmj5RGRESYfgECULZsWTp37kzXrl3ZtGkTZ86c4eDBg0yfPt1UQ33gwIFs27aN2bNnc+rUKRYtWnTf0i8iIiIiIiIiIiLyhBjlqdGgQQPjoEGDzJ7NnTvX6O3tbbS3tzeGhoYaV69ebQSMly9fNvWJjY011q5d22hra2t0c3MzhoaGmtpzcnKM8+fPN5YrV85obW1t9PT0NIaGhhp3796dr5g+/fRTo7+/v9HW1tZYr14944oVK+5a/+DBg8amTZsanZycjI6Ojsbg4GDj1KlTjUaj0bhnzx5jgwYNjO7u7kZ7e3tjcHCw8cMPPzSNzc7ONk6ZMsVYqlQpo7W1tbFkyZLGadOm5Su2tLQ0Y9euXY2FCxc22traGv38/Iw9e/Y0pqenG41GozE8PNzYqlUrszGDBg0yNmjQwHT/xx9/GIcMGWL09vY22tjYGP39/Y0rVqwwe7c1a9Y02tjYGL28vIyRkZHGmzdvmtp///1346uvvmp0cHAwFi1a1Dhz5sy7/h1v3LhhHD9+vNHX19dobW1t9Pb2NrZp08b4/fffm/osX77cWKJECaO9vb0xLCzMOHv2bKOrq2u+3sMd6enpRsC0fxEREREREREREcm//ObXDEaj0fhk0/oi8jDk9+vEIiIiIiIiIiIicrf85tdUU/0hMRqN9O7dmw0bNnD58mVcXV2JiIhg/vz5D2V+g8HA5s2bad269UOZ73Hx9fVl8ODBDB48uMBzTJw4kS1btpCQkPDQ4rqff+r7Bqg0YTsWtg5POgwREXkEUma0fNIhiIiIiIiI/OeppvpDsm3bNqKjo9m6dStpaWlUqlTpicYzceJEqlSpkmefPn364OTklOvVp0+fu/pHR0fj5ub2aAL+i2nTpplimT17NqdPnzbdN2/e/LHEICIiIiIiIiIiIvJXOqn+kCQnJ+Pt7U3t2rUBsLJ6+l/tpEmTGD58eK5tT7p8SJ8+fejQoUOubfb29o85GhEREREREREREZHbdFL9IYiIiGDAgAGkpqZiMBjw9fW9q09aWhotW7bE3t6e0qVLs3btWnx9fQtcHiYyMpKyZcvi4OCAn58f48aN4+bNm8DtE+VRUVEcOXIEg8GAwWAgOjoagCtXrtCjRw88PT3x9/enV69eXL16FX9/f/z9/bl69So9e/akTJkyuLi4UL16dQ4dOkRsbCyvvfYa6enppjknTpyYr1h///13OnXqhKOjI8WLF+ett94ya/9zTC4uLjz33HOcPXvWFNP777/PSy+9ZLofO3YsrVu3Zvbs2Xh7e1OoUCH69etn2v/jft/w//4y4N1338XHxwcHBwc6dOhAenq6qU9sbCy1atXC0dERNzc36tSpw08//WRq//jjj6lWrRp2dnb4+fkRFRXFrVu3ChSviIiIiIiIiIiIPBpP/3Hqf4AFCxZQpkwZlixZQnx8PJaWlrRv396sT9euXblw4QKxsbFYW1szdOhQzp8/X+A1nZ2diY6OplixYhw9epSePXvi7OzMyJEj6dixI8eOHWPbtm3s3LkTAFdXVwDat2+Pvb09X3zxBa6urrz77rs0btyYkydP4uHhQefOnalatSqLFy/G0tKShIQErK2tqV27NvPnz2f8+PEkJSUB4OTklK9YZ82axZgxY4iKimL79u0MGjSIsmXL0rRp03zFlJtdu3bh7e3Nrl27OH36NB07dqRKlSr07Nnzsb/vO06fPs369ev59NNPycjIoHv37vTt25c1a9Zw69YtWrduTc+ePfnggw+4ceMGBw8exGAwALBnzx66du3KwoULqVevHsnJyfTq1QuACRMm5BpTVlYWWVlZpvuMjIwC709ERERERERERETyR0n1h8DV1RVnZ2csLS3x8vK6q/3EiRPs3LmT+Ph4atSoAcCyZcsICAgo8Jqvv/666WdfX1+GDx/OunXrGDlyJPb29jg5OWFlZWUWz969ezl48CDnz5/H1tYWgNmzZ7NlyxY2bNhAr169SE1NZcSIEZQvXx7ALEZXV1cMBkOue8xLnTp1GDVqFABly5YlLi6OefPm0bRp03zFlBt3d3cWLVqEpaUl5cuXp2XLlsTExNCzZ8/H/r7vuH79OqtXr6Z48eIAvPnmm7Rs2ZI5c+ZgY2NDeno6L7zwAmXKlAEgMDDQNDYqKopRo0YRHh4OgJ+fH5MnT2bkyJH3TKpPnz6dqKioAu9JREREREREREREHpyS6o9BUlISVlZWVKtWzfTM398fd3f3As/54YcfsnDhQpKTk8nMzOTWrVv3rYN+5MgRMjMzKVSokNnzP/74g+TkZACGDh1Kjx49eO+992jSpAnt27c3JYELKiQk5K77O2VY8hNTbipWrIilpaXp3tvbm6NHjwJP7n2XLFnSlFC/s8+cnBySkpJo0KABERERhIaG0rRpU5o0aUKHDh3w9vY2vYe4uDimTp1qGp+dnc3169e5du0aDg4Od8U0evRohg4darrPyMjAx8enwHsUERERERERERGR+1NS/R9o3759dO7cmaioKEJDQ3F1dWXdunXMmTMnz3GZmZl4e3sTGxt7V5ubmxtwuzb4K6+8wmeffcYXX3zBhAkTWLduHW3atHkEO8lfTLmxtrY2uzcYDOTk5Dzk6G4r6Pv+q5UrVzJw4EC2bdvGhx9+yOuvv86OHTt49tlnyczMJCoqirZt2941zs7OLtf5bG1tTaf7RURERERERERE5PFQUv0xKFeuHLdu3eLw4cNUr14duF1/+/LlywWa75tvvqFUqVKMHTvW9OzPH7wEsLGxITs72+xZtWrV+L//+z+srKxy/ZjqHWXLlqVs2bIMGTKETp06sXLlStq0aZPrnPmxf//+u+7vlD7Jb0wP4km8b4DU1FR++eUXihUrBtzep4WFBeXKlTP1qVq1KlWrVmX06NGEhISwdu1ann32WapVq0ZSUhL+/v4FilFEREREREREREQeDyXVH4Py5cvTpEkTevXqxeLFi7G2tmbYsGHY29ubPlT5IAICAkhNTWXdunXUrFmTzz77jM2bN5v18fX15cyZMyQkJFCiRAmcnZ1p0qQJISEhtG7dmpkzZ1K2bFl++eUXPvvsM9q0aUPFihUZMWIEL730EqVLl+bcuXPEx8fTrl0705yZmZnExMRQuXJlHBwcci1L8ldxcXHMnDmT1q1bs2PHDj766CM+++wzgPvGdKcm+oN4Eu8bbp8oDw8PZ/bs2WRkZDBw4EA6dOiAl5cXZ86cYcmSJbz44osUK1aMpKQkTp06RdeuXQEYP348L7zwAiVLluSll17CwsKCI0eOcOzYMaZMmfJA8R6LCr1vKSAREREREREREREpGIsnHcB/xerVqylatCj169enTZs29OzZE2dn53uW9sjLiy++yJAhQ+jfvz9VqlThm2++Ydy4cWZ92rVrR7NmzWjUqBGenp588MEHGAwGPv/8c+rXr89rr71G2bJlefnll/npp58oWrQolpaWXLx4ka5du1K2bFk6dOhA8+bNTR/DrF27Nn369KFjx454enoyc+bMfMU7bNgwDh06RNWqVZkyZQpz584lNDQU4L4xFdTjft9wu25727ZtadGiBc8//zzBwcG8/fbbADg4OHDixAnatWtH2bJl6dWrF/369aN3794AhIaGsnXrVr788ktq1qzJs88+y7x58yhVqlSB34GIiIiIiIiIiIg8fAaj0Wh80kH8F507dw4fHx927txJ48aNn3Q4/3qP+n1PnDiRLVu2kJCQ8NDnzq+MjAxcXV1JT0/XSXUREREREREREZEHlN/8msq/PCZfffUVmZmZBAUFkZaWxsiRI/H19aV+/fpPOrR/pb/zviMiIrhy5Qpbtmx59IE+ApUmbMfC9v5leURE5N8lZUbLJx2CiIiIiIjIf4LKvzwmN2/eZMyYMVSsWJE2bdrg6elJbGws1tbWrFmzBicnp1yvihUrPunQ72nPnj33jNvJyemhrtWwYUMGDx6c7/43b96kU6dOlC1b9l/zvkVEREREREREROTJU/mXp8Dvv//Or7/+mmubtbX1U1tX+48//uDnn3++Z7u/v/9DW6thw4ZUqVKF+fPn/+0x93vfEyZM+EeeVL/z5yk+g9frpLqIyH+QTqqLiIiIiIj8Pfkt/6KT6k8BZ2dn/P39c72e1oQ6gL29/T3jfpgJ9YiICHbv3s2CBQswGAwYDAZSUlLYvXs3tWrVwtbWFm9vb0aNGsWtW7fyHJOdnc3gwYNp2rQpQUFBtGzZks8++6zA73vbtm3UrVsXNzc3ChUqxAsvvEBycrKpPSUlBYPBwLp166hduzZ2dnZUqlSJ3bt3m81z7NgxmjdvjpOTE0WLFqVLly5cuHDh7788EREREREREREReaiUVJen3oIFCwgJCaFnz56kpaWRlpaGtbU1LVq0oGbNmhw5coTFixezfPlypkyZcs8xPj4+5OTkUKJECT766COOHz/O+PHjGTNmDOvXry9QbFevXmXo0KEcOnSImJgYLCwsaNOmDTk5OWb9RowYwbBhwzh8+DAhISGEhYVx8eJFAK5cucJzzz1H1apVOXToENu2bePXX3+lQ4cOea6dlZVFRkaG2SUiIiIiIiIiIiKPlj5UKk89V1dXbGxscHBwwMvLC4CxY8fi4+PDokWLMBgMlC9fnl9++YXIyEjGjx+f6xgAS0tLoqKiTPelS5dm3759rF+//r5J7Ny0a9fO7H7FihV4enpy/PhxKlWqZHrev39/U9/Fixezbds2li9fzsiRI1m0aBFVq1Zl2rRpZvP4+Phw8uRJypYtm+va06dPN9uLiIiIiIiIiIiIPHo6qS7/SImJiYSEhGAwGEzP6tSpQ2ZmJufOnctz7FtvvUX16tXx9PTEycmJJUuWkJqaWqA4Tp06RadOnfDz88PFxQVfX1+Au+YLCQkx/WxlZUWNGjVITEwE4MiRI+zatcvsg6nly5cHMCsl81ejR48mPT3ddJ09e7ZAexAREREREREREZH800l1+U9Zt24dw4cPZ86cOYSEhODs7MysWbM4cOBAgeYLCwujVKlSLF26lGLFipGTk0OlSpW4ceNGvufIzMwkLCyMN9544642b2/ve46ztbXF1ta2QHGLiIiIiIiIiIhIwSipLv8INjY2ZGdnm+4DAwPZuHEjRqPRdFo9Li4OZ2dnSpQokeuYO31q165N3759Tc/yOg2el4sXL5KUlMTSpUupV68eAHv37s217/79+6lfvz4At27d4ttvv6V///4AVKtWjY0bN+Lr64uVlf6XFBEREREREREReZopgyf/CL6+vhw4cICUlBScnJzo27cv8+fPZ8CAAfTv35+kpCQmTJjA0KFDsbCwyHWMh4cHAQEBrF69mu3bt1O6dGnee+894uPjKV269APH5O7uTqFChViyZAne3t6kpqYyatSoXPu+9dZbBAQEEBgYyLx587h8+TLdunUDoF+/fixdupROnToxcuRIPDw8OH36NOvWrWPZsmVYWlo+UFzHokJxcXF54P2IiIiIiIiIiIjI/ammuvwjDB8+HEtLSypUqICnpyc3b97k888/5+DBg1SuXJk+ffrQvXt3Xn/99XuOSU1NpXfv3rRt25aOHTvyzDPPcPHiRbNT6w/CwsKCdevW8e2331KpUiWGDBnCrFmzcu07Y8YMZsyYQeXKldm7dy+ffPIJhQsXBqBYsWLExcWRnZ3N888/T1BQEIMHD8bNzc30CwIRERERERERERF5OhiMRqPxSQfxsBmNRnr37s2GDRu4fPkyrq6uREREMH/+/Icyv8FgYPPmzbRu3fqpmCc/UlJSKF26NIcPH6ZKlSp/a64/x/0w5/0nut+/4d95Pw/630dGRgaurq6kp6frpLqIiIiIiIiIiMgDym9+7V9Z/mXbtm1ER0cTGxuLn58fL7300kOdPy0tDXd394c65z+Vj48PaWlpplPXT5qvry+DBw9m8ODBTzqUJ6bShO1Y2Do86TBEROQJSZnR8kmHICIiIiIi8q/2r0yqJycn4+3tTe3atQEe+scfvby8Hup8D9ONGzewsbF5bHNbWlo+1e/j70hNTaVChQr3bD9+/PjfXuNR/nuJiIiIiIiIiIjIw/evK9gcERHBgAEDSE1NxWAw4Ovre1eftLQ0WrZsib29PaVLl2bt2rX4+vrmuzyMwWBgy5YtwO2kaP/+/fH29sbOzo5SpUoxffr0fMeblpZG8+bNsbe3x8/Pjw0bNpi1Hz16lOeeew57e3sKFSpEr169yMzMNNtv69atmTp1KsWKFaNcuXIAHDx4kKpVq2JnZ0eNGjU4fPjwXWsfO3aM5s2b4+TkRNGiRenSpQsXLlwwtTds2JD+/fszePBgChcuTGho6F1zpKSkYDAYSEhIACA2NhaDwUBMTAw1atTAwcGB2rVrk5SUZDbu448/plq1atjZ2eHn50dUVBS3bt267/syGo1MnDiRkiVLYmtrS7FixRg4cKAp3p9++okhQ4ZgMBgwGAwAXLx4kU6dOlG8eHEcHBwICgrigw8+MJu3YcOGDBw40PShUC8vL5YtW0ZCQoLp2rJlC4GBgdy8eRMvL69ck+qRkZGULVsWBwcH/Pz8WL58OTdu3DCVfpk4cSJVqlRh2bJllC5dGjs7OwBOnTpF/fr1sbOzo0KFCuzYseO+70JEREREREREREQev39dUn3BggVMmjSJEiVKkJaWRnx8/F19unbtyi+//EJsbCwbN25kyZIlnD9/vkDrLVy4kE8++YT169eTlJTEmjVrck3k38u4ceNo164dR44coXPnzrz88sskJiYCcPXqVUJDQ3F3dyc+Pp6PPvqInTt30r9/f7M5YmJiSEpKYseOHWzdupXMzExeeOEFKlSowLfffsvEiRMZPny42ZgrV67w3HPPUbVqVQ4dOsS2bdv49ddf6dChg1m/VatWYWNjQ1xcHO+8806+9zV27FjmzJnDoUOHsLKyolu3bqa2PXv20LVrVwYNGsTx48d59913iY6OZurUqfedd+PGjcybN493332XU6dOsWXLFoKCggDYtGkTJUqUYNKkSaSlpZGWlgbA9evXqV69Op999hnHjh2jV69edOnShYMHD961V0dHRw4cOMDMmTOZMmUKZ86cwd/fHz8/P4YMGYKrqysHDx5kxYoVjBkz5q74nJ2diY6O5vjx4yxYsIClS5cyb948sz6nT59m48aNbNq0iYSEBHJycmjbti02NjYcOHCAd955h8jIyPu+i6ysLDIyMswuERERERERERERebT+deVfXF1dcXZ2vmdZkhMnTrBz507i4+OpUaMGAMuWLSMgIKBA66WmphIQEEDdunUxGAyUKlXqgca3b9+eHj16ADB58mR27NjBm2++ydtvv83atWu5fv06q1evxtHREYBFixYRFhbGG2+8QdGiRQFwdHRk2bJlpjIiS5YsIScnh+XLl2NnZ0fFihU5d+4c//vf/0zrLlq0iKpVqzJt2jTTsxUrVuDj48PJkycpW7YsAAEBAcycOfOB38vUqVNp0KABAKNGjaJly5Zcv34dOzs7oqKiGDVqFOHh4QD4+fkxefJkRo4cyYQJE/KcNzU1FS8vL5o0aYK1tTUlS5akVq1aAHh4eGBpaYmzs7PZv33x4sXNfqkwYMAAtm/fzvr1601jAYKDg03rBwQEsGjRImJiYmjatCk7d+7kxIkTbN++nWLFigEwbdo0mjdvbhbf66+/bvrZ19eX4cOHs27dOkaOHGl6fuPGDVavXo2npycAX375Zb7m/qvp06cTFRWVZx8RERERERERERF5uP51J9XvJykpCSsrK6pVq2Z65u/vX+APj0ZERJCQkEC5cuUYOHAgX3755QONDwkJuev+zkn1xMREKleubEqoA9SpU4ecnByzcipBQUFmdbkTExMJDg42lRbJbZ0jR46wa9cunJycTFf58uWB2zXp76hevfoD7eeO4OBg08/e3t4Apr8GOHLkCJMmTTJbu2fPnqSlpXHt2rU8523fvj1//PEHfn5+9OzZk82bN9+3bEx2djaTJ08mKCgIDw8PnJyc2L59O6mpqfeM+U7cd2JOTEzEx8fHlPSGu98pwIcffkidOnXw8vLCycmJ119//a51SpUqZUqoP8jcfzV69GjS09NN19mzZ+87RkRERERERERERP6ef91J9cetWrVqnDlzhi+++IKdO3fSoUMHmjRpcldt9Efpz0n3/MrMzDSdeP+rO0nwgs4NYG1tbfr5Tm3znJwc09pRUVG0bdv2rnF//kVAbnx8fEhKSmLnzp3s2LGDvn37MmvWLHbv3m225p/NmjWLBQsWMH/+fIKCgnB0dGTw4MHcuHHjnjHfiftOzPmxb98+OnfuTFRUFKGhobi6urJu3TrmzJlj1q+g7/SvbG1tsbW1fShziYiIiIiIiIiISP7855Lq5cqV49atWxw+fNh0Cvv06dNcvny5wHO6uLjQsWNHOnbsyEsvvUSzZs24dOkSHh4e9x27f/9+unbtanZftWpVAAIDA4mOjubq1aumRGxcXBwWFhamD5LmJjAwkPfee89UbuXOvH9WrVo1Nm7ciK+vL1ZWj/c/g2rVqpGUlIS/v3+Bxtvb2xMWFkZYWBj9+vWjfPnyHD16lGrVqmFjY0N2drZZ/7i4OFq1asWrr74K3E7unzx5kgoVKuR7zcDAQM6ePUtaWprplw5/fafffPMNpUqVYuzYsaZnP/3000OZW0RERERERERERJ4O/7nyL+XLl6dJkyb06tWLgwcPcvjwYXr16oW9vb3pRPWDmDt3Lh988AEnTpzg5MmTfPTRR3h5eeHm5pav8R999BErVqzg5MmTTJgwgYMHD5o+RNq5c2fs7OwIDw/n2LFj7Nq1iwEDBtClSxdTPfXcvPLKKxgMBnr27Mnx48f5/PPPmT17tlmffv36cenSJTp16kR8fDzJycls376d11577a6k9MM2fvx4Vq9eTVRUFD/88AOJiYmsW7fOrB75vURHR7N8+XKOHTvGjz/+yPvvv4+9vb2plr2vry9ff/01P//8MxcuXABu10ffsWMH33zzDYmJifTu3Ztff/31gWJu0qQJZcuWJTw8nCNHjrBnzx6z5PmddVJTU1m3bh3JycksXLiQzZs3P5S5RURERERERERE5OnwnzupDrB69Wq6d+9O/fr18fLyYvr06fzwww/3LT2SG2dnZ2bOnMmpU6ewtLSkZs2afP7551hY5O/3FVFRUaxbt46+ffvi7e3NBx98YDpB7eDgwPbt2xk0aBA1a9bEwcGBdu3aMXfu3DzndHJy4tNPP6VPnz5UrVqVChUq8MYbb9CuXTtTn2LFihEXF0dkZCTPP/88WVlZlCpVimbNmuU79oIKDQ1l69atTJo0iTfeeANra2vKly9v+mBrXtzc3JgxYwZDhw4lOzuboKAgPv30UwoVKgTApEmT6N27N2XKlCErKwuj0cjrr7/Ojz/+SGhoKA4ODvTq1YvWrVuTnp6e75gtLCzYvHkz3bt3p1atWvj6+rJw4UKaNWtm6vPiiy8yZMgQ+vfvT1ZWFi1btmTcuHFMnDjxb8/9II5FheLi4lKgsSIiIiIiIiIiIpI3g9FoND7pIJ60c+fO4ePjw86dO2ncuPGTDkekQDIyMnB1dSU9PV1JdRERERERERERkQeU3/zaf/Kk+ldffUVmZiZBQUGkpaUxcuRIfH19qV+//pMOTXJhNBrp3bs3GzZs4PLlyxw+fJgqVark2rdhw4ZUqVKF+fPnF3i9iRMnsmXLFhISEu7ZJyIigitXrrBly5b7zvcwYnoQlSZsx8LW4bGsJSIiT7+UGS2fdAgiIiIiIiL/Kv+5muoAN2/eZMyYMVSsWJE2bdrg6elJbGws1tbWrFmzBicnp1yvihUr5nuNhzXPf01u783BwYGlS5fi6upKWloalSpVetJh/i2+vr6PLcEuIiIiIiIiIiIiD9d/8qR6aGgooaGhuba9+OKLPPPMM7m2WVtb53uNhzXPf01u7+29995j6dKlxMbG4uXl9YQiExEREREREREREfmPnlTPi7OzM/7+/rlepUqVeuzz/Nf89b1NmTKFSZMmkZaWhq+vL76+vvedIycnh5EjR+Lh4YGXl9ddHwpNTU2lVatWODk54eLiQocOHfj111/vOV92djZDhw7Fzc2NQoUKMXLkSAr6KYKGDRvy008/MWTIEAwGAwaDwdQWFxdHw4YNcXBwwN3dndDQUC5fvlygdUREREREREREROTRUFJdnmoLFixg0qRJlChRgrS0NOLj4+87ZtWqVTg6OnLgwAFmzpzJpEmT2LFjB3A74d6qVSsuXbrE7t272bFjBz/++CMdO3a853xz5swhOjqaFStWsHfvXi5dusTmzZsLtJ9NmzZRokQJ0y8K0tLSAEhISKBx48ZUqFCBffv2sXfvXsLCwsjOzr7nXFlZWWRkZJhdIiIiIiIiIiIi8mj9J8u/yD+Hq6srzs7OWFpa5rv0S3BwMBMmTAAgICCARYsWERMTQ9OmTYmJieHo0aOcOXMGHx8fAFavXk3FihWJj4+nZs2ad803f/58Ro8eTdu2bQF455132L59e4H24+HhgaWlJc7Ozmb7mTlzJjVq1ODtt982Pbtf7f3p06cTFRVVoDhERERERERERESkYHRSXf51goODze69vb05f/48AImJifj4+JgS6gAVKlTAzc2NxMTEu+ZKT08nLS3NrM67lZUVNWrUeKgx3zmp/iBGjx5Nenq66Tp79uxDjUlERERERERERETuppPq8q/z1w/BGgwGcnJynlA0+WNvb//AY2xtbbG1tX0E0YiIiIiIiIiIiMi96KS6/KcEBgZy9uxZs1Pdx48f58qVK1SoUOGu/q6urnh7e3PgwAHTs1u3bvHtt98WOAYbG5u7aqUHBwcTExNT4DlFRERERERERETk8VBSXf5TmjRpQlBQEJ07d+a7777j4MGDdO3alQYNGtyzpMugQYOYMWMGW7Zs4cSJE/Tt25crV64UOAZfX1++/vprfv75Zy5cuADcLuUSHx9P3759+f777zlx4gSLFy82tYuIiIiIiIiIiMjTQeVf5D/FYDDw8ccfM2DAAOrXr4+FhQXNmjXjzTffvOeYYcOGkZaWRnh4OBYWFnTr1o02bdqQnp5eoBgmTZpE7969KVOmDFlZWRiNRsqWLcuXX37JmDFjqFWrFvb29jzzzDN06tTpgec/FhWKi4tLgWITERERERERERGRvBmMRqPxSQchIn9fRkYGrq6upKenK6kuIiIiIiIiIiLygPKbX9NJ9X+Qhg0bUqVKFebPn/+kQ5GnWKUJ27GwdXjSYYiIyFMoZUbLJx2CiIiIiIjIP56S6v8gmzZtwtra+kmH8cSkpqZSoUIFbty4QXZ2Nvb29mbtx48fp2TJkrmONRgMbN68mdatWz+SmO4lr5hERERERERERETkn0dJ9X8QDw+PJx3CE1WsWDESEhJYuHAhO3bs4NNPP72r/UnFlFe7iIiIiIiIiIiI/HtYPOkAJP8aNmzI4MGDAXj77bcJCAjAzs6OokWL8tJLL+VrjpycHGbOnIm/vz+2traULFmSqVOnmtqPHj3Kc889h729PYUKFaJXr15kZmaa2iMiImjdujWzZ8/G29ubQoUK0a9fP27evGnqk1dsOTk5TJ8+ndKlS2Nvb0/lypXZsGGDqT02NhaDwUBMTAw1atTAwcGB2rVrk5SUhJWVFXv37uXNN9/kxIkTBAQEEBAQwN69e/H398fKKvffEfn6+gLQpk0bDAaD6R5g8eLFlClTBhsbG8qVK8d7772Xr/doNBqZOHEifn5+VKxYkfr167Nw4UL8/f3x9/enSZMmrFu3jm7duuHk5ESpUqX45JNP+O2332jVqhVOTk4EBwdz6NAh05w//fQTYWFhuLu74+joSMWKFfn888/zFY+IiIiIiIiIiIg8Hkqq/wMdOnSIgQMHMmnSJJKSkti2bRv169fP19jRo0czY8YMxo0bx/Hjx1m7di1FixYF4OrVq4SGhuLu7k58fDwfffQRO3fupH///mZz7Nq1i+TkZHbt2sWqVauIjo4mOjo6X7FNnz6d1atX88477/DDDz8wZMgQXn31VXbv3m22xtixY5kzZw6HDh3CysqKbt26AdCxY0eGDRtGxYoVSUtLIy0tjY4dO+a55/j4eABWrlxJWlqa6X7z5s0MGjSIYcOGcezYMXr37s1rr73Grl277vseN27cyLx583j33Xc5deoUW7ZsISgoyKzPvHnzqFOnDocPH6Zly5Z06dKFrl278uqrr/Ldd99RpkwZunbtyp1vBffr14+srCy+/vprjh49yhtvvIGTk9M9Y8jKyiIjI8PsEhERERERERERkUfLYLyT0ZOn3p0PldavX5/XXnuNc+fO4ezsnO/xv//+O56enixatIgePXrc1b506VIiIyM5e/Ysjo6OAHz++eeEhYXxyy+/ULRoUSIiIoiNjSU5ORlLS0sAOnTogIWFBevWrWPTpk33jC0rKwsPDw927txJSEiI6XmPHj24du0aa9euJTY2lkaNGrFz504aN25siqFly5b88ccf2NnZMXHiRLZs2ZJn2ZW/yq2mep06dahYsSJLliwxPevQoQNXr17ls88+y3O+uXPn8u6773Ls2LFc69z7+vpSr14908n3//u//8Pb25tx48YxadIkAPbv309ISAhpaWl4eXkRHBxMu3btmDBhQr72NHHiRKKiou567jN4vT5UKiIiudKHSkVERERERO4tIyMDV1dX0tPTcXFxuWc/nVT/B2ratCmlSpXCz8+PLl26sGbNGq5du3bfcYmJiWRlZZmS1bm1V65c2ZRQh9uJ55ycHJKSkkzPKlasaEqoA3h7e3P+/Pn7xnb69GmuXbtG06ZNcXJyMl2rV68mOTnZLJbg4GCz+QHTGg9LYmIiderUMXtWp04dEhMT7zu2ffv2/PHHH/j5+dGzZ082b97MrVu3zPr8eQ93/hrgz6fZ7zy7s6+BAwcyZcoU6tSpw4QJE/j+++/zjGH06NGkp6ebrrNnz943bhEREREREREREfl7lFT/B3J2dua7777jgw8+wNvbm/Hjx1O5cmWuXLmS5zh7e/uHsv5fT2YbDAZycnLuG9ud2uyfffYZCQkJpuv48eNmddX/uobBYAAwrfE08PHxISkpibfffht7e3v69u1L/fr1zWrL57aHvPbVo0cPfvzxR7p06cLRo0epUaMGb7755j1jsLW1xcXFxewSERERERERERGRR0tJ9X8oKysrmjRpwsyZM/n+++9JSUnhq6++ynNMQEAA9vb2xMTE5NoeGBjIkSNHuHr1qulZXFwcFhYWlCtX7m/HVqFCBWxtbUlNTTV90PPO5ePjk+/5bWxsyM7Oznd/uJ3M/uuYwMBA4uLizJ7FxcVRoUKFfM1pb29PWFgYCxcuJDY2ln379nH06NEHiuuvfHx86NOnD5s2bWLYsGEsXbr0b80nIiIiIiIiIiIiD5fVkw5AHtzWrVv58ccfqV+/Pu7u7nz++efk5OTcN/FtZ2dHZGQkI0eOxMbGhjp16vDbb7/xww8/0L17dzp37syECRMIDw9n4sSJ/PbbbwwYMIAuXbqYSpX8ndicnZ0ZPnw4Q4YMIScnh7p165Kenk5cXBwuLi6Eh4fnaw1fX1/OnDlDQkICJUqUwNnZGVtb2/uOiYmJoU6dOtja2uLu7s6IESPo0KEDVatWpUmTJnz66ads2rSJnTt33jeG6OhosrOzeeaZZ3BwcOD999/H3t6eUqVK5WsPuRk8eDDNmzenbNmyXL58mV27dhEYGPjA8xyLCtWpdRERERERERERkUdESfV/IDc3NzZt2sTEiRO5fv06AQEBfPDBB1SsWPG+Y8eNG4eVlRXjx4/nl19+wdvbmz59+gDg4ODA9u3bGTRoEDVr1sTBwYF27doxd+7chxbb5MmT8fT0ZPr06fz444+4ublRrVo1xowZk+812rVrx6ZNm2jUqBFXrlxh5cqVRERE5Dlmzpw5DB06lKVLl1K8eHFSUlJo3bo1CxYsYPbs2QwaNIjSpUuzcuVKGjZsmK99zpgxg6FDh5KdnU1QUBCffvophQoVyvc+/io7O5t+/fpx7tw5XFxcaNasGfPmzSvwfCIiIiIiIiIiIvLwGYxGo/FJByEif19+v04sIiIiIiIiIiIid8tvfk0n1f9jjEYjvXv3ZsOGDVy+fBlXV1ciIiKYP3/+kw6NlJQUSpcuzeHDh6lSpcqTDue+YmNjadSoEZcvX8bNze2pmbvShO1Y2Do81HhEROTfIWVGyycdgoiIiIiIyD+ePlT6L5KamoqTk9M9r9TUVLZt20Z0dDRbt24lLS2NSpUqPemw/7Y1a9bg5OSEo6MjBoMBBwcH057zUxInrzlzuwo6p4iIiIiIiIiIiPzz6aT6v0ixYsVISEjIs/2TTz7B29ub2rVrA2Bl9c//T+DFF1/kmWee4dy5czRq1Ih169ZRoUIFAKytrf/WnLkp6Jy5uXHjBjY2Ng9tPhEREREREREREXm0dFL9X8TKygp/f/97Xj169GDAgAGkpqZiMBjw9fW9a460tDRatmyJvb09pUuXZu3atfj6+uarPIzRaGTixImULFkSW1tbihUrxsCBA03tBoOBLVu2mI1xc3MjOjra7NmJEyeoXbs2dnZ2VKpUid27d5vaLl++TOfOnfH09MTe3p6AgAA2bNiAv78/jRo1AqBVq1YEBATQo0cPSpUqRXx8PE2bNqVw4cK4urrSoEEDvvvuO7M1DQYDy5Yto02bNjg4OFCtWjWOHz9u9v5OnjxJixYtKF++PI0aNSIlJcVsjosXL9KpUyeKFy+Og4MDQUFBfPDBB2Z9GjZsSP/+/Rk8eDCFCxcmNDQUgM8//5yyZctib2+f69y5ycrKIiMjw+wSERERERERERGRR0tJ9f+QBQsWMGnSJEqUKEFaWhrx8fF39enatSu//PILsbGxbNy4kSVLlnD+/Pl8zb9x40bmzZvHu+++y6lTp9iyZQtBQUEPHOeIESMYNmwYhw8fJiQkhLCwMC5evAjAuHHjOH78OF988QWJiYksXryYwoULA3Dw4EEAdu7cSVpaGps2bQLg999/Jzw8nL1797J//34CAgJo0aIFv//+u9m6UVFRdOjQge+//54WLVrQuXNnLl26BMDZs2dp27YtYWFhJCQk0KNHD0aNGmU2/vr161SvXp3PPvuMY8eO0atXL7p06WKK645Vq1ZhY2NDXFwc77zzTr7mzs306dNxdXU1XT4+Pg/8rkVEREREREREROTB/PNrf0i+ubq64uzsjKWlJV5eXne1nzhxgp07dxIfH0+NGjUAWLZsGQEBAfmaPzU1FS8vL5o0aYK1tTUlS5akVq1aDxxn//79adeuHQCLFy9m27ZtLF++nJEjR5KamkrVqlVN8f35tL2npycAhQoVMtvfc889Zzb/kiVLcHNzY/fu3bzwwgum5xEREXTq1AmAadOmsXDhQg4ePEizZs1YvHgxZcqUYc6cOQCUK1eOo0eP8sYbb5jGFy9enOHDh5vuBwwYwPbt21m/fr3ZewgICGDmzJmm+zFjxtx37tyMHj2aoUOHmu4zMjKUWBcREREREREREXnEdFJdTJKSkrCysqJatWqmZ/7+/ri7u+drfPv27fnjjz/w8/OjZ8+ebN68mVu3bj1wHCEhIaafraysqFGjBomJiQD873//Y926dVSpUoWRI0fyzTff3He+X3/9lZ49exIQEICrqysuLi5kZmaSmppq1i84ONj0s6OjIy4uLqZT+omJiXfVWP9znADZ2dlMnjyZoKAgPDw8cHJyYvv27XetU716dbP7/MydG1tbW1xcXMwuERERERERERERebSUVJeHxsfHh6SkJN5++23s7e3p27cv9evX5+bNm8DtuuVGo9FszJ22/GrevDk//fQTQ4YM4ZdffqFx48Zmp8NzEx4eTkJCAgsWLOCbb74hISGBQoUKcePGDbN+f/0AqcFgICcnJ9+xzZo1iwULFhAZGcmuXbtISEggNDT0rnUcHR3zPaeIiIiIiIiIiIg8XZRUF5Ny5cpx69YtDh8+bHp2+vRpLl++nO857O3tCQsLY+HChcTGxrJv3z6OHj0K3C7PkpaWZup76tQprl27dtcc+/fvN/1869Ytvv32WwIDA03PPD09CQ8P5/3332f+/PksWbIEABsbG+D2ifE/i4uLY+DAgbRo0YKKFStia2vLhQsX8r0ngMDAwLtqo/85zjvrtGrVildffZXKlSvj5+fHyZMnH8rcIiIiIiIiIiIi8nRQTXUxKV++PE2aNKFXr14sXrwYa2trhg0bhr29PQaD4b7jo6Ojyc7O5plnnsHBwYH3338fe3t7SpUqBdyubb5o0SJCQkLIzs4mMjLyrtPhAG+99RYBAQEEBgYyb948Ll++TLdu3QAYP3481atXp2LFimRlZbF161ZTwr1IkSLY29uzbds2SpQogZ2dHa6urgQEBPDee+9Ro0YNMjIyGDFiBPb29g/0bvr06cOcOXMYMWIEPXr04NtvvyU6OtqsT0BAABs2bOCbb77B3d2duXPn8uuvv1KhQoW/PfeDOBYVqlIwIiIiIiIiIiIij4hOqouZ1atXU7RoUerXr0+bNm3o2bMnzs7O2NnZ3Xesm5sbS5cupU6dOgQHB7Nz504+/fRTChUqBMCcOXPw8fGhXr16vPLKKwwfPhwHB4e75pkxYwYzZsygcuXK7N27l08++YTChQsDt0+jjx49muDgYOrXr4+lpSXr1q0DbtdfX7hwIe+++y7FihWjVatWACxfvpzLly9TrVo1unTpwsCBAylSpMgDvZeSJUuyceNGtmzZQuXKlXnnnXeYNm2aWZ/XX3+datWqERoaSsOGDfHy8qJ169YPZW4RERERERERERF5OhiMfy1yLf9ZDRs2pEqVKsyfP9/07Ny5c/j4+LBz504aN25c4Ll9fX0ZPHgwgwcP/vuBFkBue3tSHlUsGRkZuLq64jN4PRa2d/+yQkRE5M9SZrR80iGIiIiIiIg8Ve7k19LT0/OsBKGT6v9BsbGxGAwGrly5clfb2bNn+eSTTzhz5gzffPMNL7/8Mr6+vtSvX//xB3oPecX/b2EwGNiyZcuTDkNERERERERERET+Qkl1MZOTk8OYMWOoWLEibdq0wdPTk9jYWKytrVmzZg1OTk65XhUrVnzSoYuIiIiIiIiIiIg8cv/ppPq2bduoW7cubm5uFCpUiBdeeIHk5GQAateuTWRkpFn/3377DWtra77++msA0tLSaNmyJfb29pQuXZq1a9fi6+ub77IeBoOBd999lxdeeAEHBwcCAwPZt28fp0+fpmHDhjg6OlK7dm1TTHcsXryYMmXKYGNjQ7ly5XjvvffumnfZsmW0adMGBwcHAgIC+OSTTwBISUmhUaNGALi7u2MwGIiIiDCN9fHxoUWLFtjZ2WEwGKhcubLpQ6NhYWF069YNZ2dnbty4gYODA23btiUhIYHPP/88fy/9/zd37lyCgoJwdHTEx8eHvn37kpmZaWr/6aefCAsLw93dHUdHRypWrMjnn39+3/jzcuvWLfr374+rqyuFCxdm3Lhx/Ln60eXLl+natSvu7u44ODjQvHlzTp06ZWqfOHEiVapUMZtz/vz5+Pr6mq0xcOBA039TkZGRhIeH31VbPScnh5EjR+Lh4YGXlxcTJ040td2Zr02bNhgMBrP5RURERERERERE5Mn6TyfVr169ytChQzl06BAxMTFYWFjQpk0bcnJy6Ny5M+vWrTNLun744YcUK1aMevXqAdC1a1d++eUXYmNj2bhxI0uWLOH8+fMPFMPkyZPp2rUrCQkJlC9fnldeeYXevXszevRoDh06hNFopH///qb+mzdvZtCgQQwbNoxjx47Ru3dvXnvtNXbt2mU2b1RUFB06dOD777+nRYsWdO7cmUuXLuHj48PGjRsBSEpKIi0tjQULFpjGrVq1CkdHRw4cOMDMmTOZNGkSO3bsAODLL79k1apVrFixgtOnT7N161bq1auHv7+/KfGeXxYWFixcuJAffviBVatW8dVXXzFy5EhTe79+/cjKyuLrr7/m6NGjvPHGGzg5Od03/rysWrUKKysrDh48yIIFC5g7dy7Lli0ztUdERHDo0CE++eQT9u3bh9FopEWLFty8eTPf+3rjjTdYs2YNK1euJC4ujoyMjFzLuOT1nuPj4wFYuXIlaWlppvu/ysrKIiMjw+wSERERERERERGRR8vqSQfwJLVr187sfsWKFXh6enL8+HE6dOjA4MGD2bt3rymJvnbtWjp16oTBYODEiRPs3LmT+Ph4atSoAcCyZcsICAh4oBhee+01OnToAEBkZCQhISGMGzeO0NBQAAYNGsRrr71m6j979mwiIiLo27cvAEOHDmX//v3Mnj3bdIIbbieIO3XqBMC0adNYuHAhBw8epFmzZnh4eABQpEgR3NzczOIJDg5mwoQJAAQEBLBo0SJiYmJo2rQpqampeHl50aRJE6ytrSlZsiS1atV6oP3e8ecPlvr6+jJlyhT69OnD22+/DUBqairt2rUjKCgIAD8/P1P/vOLPi4+PD/PmzcNgMFCuXDmOHj3KvHnz6NmzJ6dOneKTTz4hLi6O2rVrA7BmzRp8fHzYsmUL7du3z9cab775JqNHj6ZNmzYALFq0KNdT/Hm9Z09PTwDc3Nzw8vK651rTp08nKioq3/sXERERERERERGRv+8/fVL91KlTdOrUCT8/P1xcXExlNlJTU/H09OT5559nzZo1AJw5c4Z9+/bRuXNn4PYpaSsrK6pVq2aaz9/fH3d39weKITg42PRz0aJFAUyJ5DvPrl+/bjqFnJiYSJ06dczmqFOnDon/H3t3Gl7jtf9//L2TSGSOEEkQiUhCEkEISiqCaMxDTVVFzGpqatYaEhRVM4eiraga2qM4ah4qSqg5SgWV0nCkpS1JQwWJ/wN/+2fXkB1Dtaef13Xd15X7vtfwXWtvT9Zevisl5aHt2tvb4+TkZNYu+nvrAXh6ehrrtW7dmt9//x1fX1+6d+/OqlWruHXrljnDvM/WrVupW7cuxYsXx9HRkQ4dOvDLL79w7do1APr378+4ceMIDw9n9OjRfPPNN4/Vz71eeOEFDAaD8b569ep899135OTkkJKSgpWVFdWqVTO+L1y4MGXKlLlvbh8mIyODn376yeSHBktLSypXrnxf2UfNs7mGDx9ORkaG8Tp37ly+6ouIiIiIiIiIiEj+/aMX1Zs0acKvv/7KggUL2Lt3L3v37gXgxo0bALRv354VK1Zw8+ZNli5dSkhIiMmC99NQoEAB4993F3wf9Cw3N/ex273bjjltPKqel5cXJ0+eZM6cOdja2tK7d28iIiLylR4F7uR1b9y4MeXLl+fzzz/n4MGD/Otf/wL+b+67devG999/T4cOHTh69ChhYWHMmjUrX/08bRYWFibpgIB8j/2ux/187mVjY4OTk5PJJSIiIiIiIiIiIs/WP3ZR/ZdffuHkyZOMGDGCunXrEhgYyOXLl03KNGvWjOvXr7Nx40aWLl1q3KUOUKZMGW7dusXhw4eNz06fPn1fG09bYGAgSUlJJs+SkpIICgoyuw1ra2sAcnJy8t2/ra0tTZo0YebMmSQmJrJnzx6OHj2arzYOHjxIbm4uU6ZM4YUXXiAgIIALFy7cV87Ly4tevXqxcuVKBg4cyIIFC54o/rs/mtz19ddf4+/vj6WlJYGBgdy6dcukzN3vyN25dXNz48cffzRZWE9OTjb+7ezsjLu7u0kO9JycHA4dOpSvOOHOovvjfD4iIiIiIiIiIiLybP1jc6oXKlSIwoULM3/+fDw9PUlLS2PYsGEmZezt7WnevDkjR44kJSXFmKMcoGzZskRFRdGjRw/mzp1LgQIFGDhwILa2tiYpRp62wYMH06ZNG0JDQ4mKiuKLL75g5cqVbN261ew2vL29MRgMrF27loYNG2Jra4uDg0Oe9RISEsjJyaFatWrY2dnxySefYGtrm+9DSv38/Lh58yazZs2iSZMmJCUl8f7775uUiY2NpUGDBgQEBHD58mW2b99OYGDgE8WflpbGgAED6NmzJ4cOHWLWrFlMmTIFuJPXvFmzZnTv3p158+bh6OjIsGHDKF68OM2aNQMgMjKSS5cuMWnSJFq1asXGjRvZsGGDyQ7xfv36MWHCBPz8/ChbtiyzZs3i8uXL+f5O+Pj4sG3bNsLDw7Gxscl3WiERERERERERERF5Nv6xi+oWFhYsX76c/v37U65cOcqUKcPMmTOJjIw0Kde+fXsaNmxIREQEJUuWNHn38ccf07VrVyIiIvDw8GDChAl8++23FCxY8JnF3bx5c2bMmMHkyZN54403KFWqFAsXLrwv7kcpXrw48fHxDBs2jM6dO9OxY0cSEhLyrOfi4sLEiRMZMGAAOTk5hISE8MUXX1C4cOF8jaFChQpMnTqVd999l+HDhxMREcGECRPo2LGjsUxOTg59+vTh/PnzODk5Ub9+faZNm/ZE8Xfs2JHff/+dqlWrYmlpyRtvvEGPHj2M7xcuXMgbb7xB48aNuXHjBhEREaxfv96YqiUwMJA5c+Ywfvx4xo4dS8uWLRk0aBDz5883tjF06FB+/PFHOnbsiKWlJT169CA6OhpLS8t8zdGUKVMYMGAACxYsoHjx4pw9e9bsusfio5UKRkRERERERERE5Bkx3P5jkmh5bOfPn8fLy8t4CKdIbm4ugYGBtGnThrFjxz7TvjIzM3F2diYjI0OL6iIiIiIiIiIiIvlk7vraP2qnemJiIrVr1+by5cu4uLg8cXtffvklWVlZhISE4OvrS9myZfHx8SEiIuLJg32E+fPnM3bsWP773/8ydepUYmNjn2l/fzc+Pj7ExsY+03l52Hfphx9+YPPmzdSqVYvs7Gxmz57NmTNnePXVV59ZLH9UbvQmLGzs/rT+RERE8uvsxEbPOwQREREREZHH9j97UGlkZOQzX2y+efMmb731FsHBwcCdgyoTExMpUKAAS5YswcHB4YHX3fKPIzMzk759+zJ06FD++9//mqQveV527tz50LGak+v8SaWlpZn0d+nSJUaMGGG8T0tLe6L2H/RdqlGjBunp6Tg7O5s8t7CwICEhgSpVqhAeHs7Ro0fZunWrMR+8iIiIiIiIiIiI/L39o3aqP23R0dFER0cDYDAYGDZsmPHQzqZNm1KtWrUH1rubo/txpKWlcfPmTRo1aoSnp+djt/M0hYWFkZyc/Nz6L1as2CP7L1as2FPv09raGg8Pj/uee3l5kZSU9NT7ExERERERERERkb+Gv8RO9cjISPr160dsbCyFChXC3d2dBQsWcPXqVTp37oyjoyN+fn5s2LDBWOfYsWM0aNAABwcH3N3d6dChAz///DMAMTEx7NixgxkzZmAwGDAYDCYHPR48eJCwsDDs7OyoUaMGJ0+eNIln7ty5lC5dGmtra8qUKcPixYtN3n/33XdERERQsGBBgoKC2LJli8n7GzduMHz4cGrWrEm5cuWoW7cu//73v/Hz88PPz8+48P4gaWlpNGvWDAcHB5ycnGjTpg0//fQTAAkJCYSEhADg6+t737ge5osvvqBKlSoULFiQIkWK0KJFC+O7y5cv07FjRwoVKoSdnR0NGjTgu+++M75PSEjAxcWFtWvXUqZMGezs7GjVqhXXrl1j0aJF+Pj4UKxYMWbOnEmpUqWMY4yKimL58uWMGTMGBwcHvL29WbNmDZcuXTKOr3z58hw4cMDYV1xcHBUrVjSJffr06fj4+BjvY2JiaN68OZMnT8bT05PChQvzxhtv4O3tbdL32rVrjfdZWVn07NkTd3d3ChYsSLly5Vi7di0Av/zyC+3ataN48eLY2dkREhLCsmXLTPp70HcpMTERg8HAlStXjGU///xzgoODsbGxwcfHhylTppiMxcfHh/Hjx9OlSxccHR0pWbKkySGnN27coG/fvnh6elKwYEG8vb2ZMGFCnp+viIiIiIiIiIiI/Hn+EovqAIsWLaJIkSLs27ePfv368frrr9O6dWtq1KjBoUOHeOmll+jQoQPXrl3jypUr1KlTh9DQUA4cOMDGjRv56aefaNOmDQAzZsygevXqdO/enfT0dNLT0/Hy8jL29fbbbzNlyhQOHDiAlZUVXbp0Mb5btWoVb7zxBgMHDuTYsWP07NmTzp07s337duDOwZMvv/wy1tbW7N27l/fff5+hQ4eajGXmzJmsWbOGzz77jJMnT7JkyRKTheGHyc3NpVmzZvz666/s2LGDLVu28P3339O2bVsA2rZty9atWwHYt2/ffeN6kHXr1tGiRQsaNmzI4cOH2bZtG1WrVjW+j4mJ4cCBA6xZs4Y9e/Zw+/ZtGjZsyM2bN41lrl27xsyZM1m+fDkbN24kMTGRFi1asH79etavX8/ixYuZN28eK1asMOl72rRphIeHc/jwYRo1akSHDh3o2LEjr732GocOHaJ06dJ07NiR/J6Vu337dlJTU9m+fTuLFi0iISGBhISEh85pgwYNSEpK4pNPPuH48eNMnDgRS0tLAK5fv07lypVZt24dx44do0ePHnTo0IF9+/YBeX+X7jp48CBt2rThlVde4ejRo8TFxTFy5Mj74poyZQphYWEcPnyY3r178/rrrxt/1Mnv9yY7O5vMzEyTS0RERERERERERJ6tv0z6lwoVKjBixAgAhg8fzsSJEylSpAjdu3cHYNSoUcydO5dvvvmGrVu3Ehoayvjx4431P/roI7y8vDh16hQBAQFYW1tjZ2f3wBQd77zzDrVq1QJg2LBhNGrUiOvXr1OwYEEmT55MTEwMvXv3BmDAgAF8/fXXTJ48mdq1a7N161ZOnDjBpk2bjGlFxo8fT4MGDYztp6Wl4e/vz4svvojBYHjkzvR7bdu2jaNHj3LmzBnjwu3HH39McHAw+/fvp0qVKhQuXBgANze3B47tQWN95ZVXiI+PN5lruLPjfs2aNSQlJVGjRg0AlixZgpeXF6tXr6Z169bAndzxd3fvA7Rq1YrFixfz008/4eDgQFBQELVr12b79u3GHwAAGjZsSM+ePYH/+/yqVKlibHfo0KFUr16dn376yayx3FWoUCFmz56NpaUlZcuWpVGjRmzbts34XbnX1q1b2bdvHykpKQQEBAB3dvnfVbx4cQYNGmS879evH5s2beKzzz6jatWqODs7P/K7dNfUqVOpW7cuI0eOBCAgIIDjx4/z3nvvERMTYzInd79bQ4cOZdq0aWzfvp0yZcrk+3szYcIEk89VREREREREREREnr2/zE718uXLG/+2tLSkcOHCxlQnAO7u7gBcvHiRI0eOsH37dpPDKcuWLQtAampqvvq6m5f84sWLAKSkpBAeHm5SPjw8nJSUFON7Ly8vkzzd1atXNykfExNDcnIyZcqUoX///mzevDnvCbin7Xt3QgcFBeHi4mLsP7+Sk5OpW7fuQ/uzsrIyyf1euHBhypQpY9KfnZ2dcUEd7nwWPj4+JoeQuru7G+fwrnvn+e7n97DPND+Cg4ONO83hzmf4sDaSk5MpUaKEcUH9j3Jychg7diwhISG4urri4ODApk2b8n246cO+N9999x05OTnGZ/fOicFgwMPDwxh7fr83w4cPJyMjw3idO3cuXzGLiIiIiIiIiIhI/v1ldqr/8fBOg8Fg8sxgMAB30nlkZWXRpEkT3n333fvaMefwzoe1+7RUqlSJM2fOsGHDBrZu3UqbNm2Iioq6Lz3Kn8HW1vaJ28jrs7n77I9z+KB5ftTcW1hY3JcK5t40NI+K52GfX17jf++995gxYwbTp08nJCQEe3t7YmNjuXHjxiPrPa5HxZ7f742NjQ02NjbPJE4RERERERERERF5sL/MTvX8qFSpEt9++y0+Pj7GwyjvXvb29gBYW1ub7BA2V2BgIElJSSbPkpKSCAoKMr4/d+4c6enpxvdff/31fe04OTnRtm1bFixYwKeffsrnn3/Or7/+mmff586dM9lxfPz4ca5cuWLsP7/Kly/Ptm3bHtrfrVu32Lt3r/HZL7/8wsmTJx+7vyfh5ubGjz/+aLKwnpyc/ERtli9fnvPnz3Pq1KkHvk9KSqJZs2a89tprVKhQAV9f3/vKmvNdetj3JiAgwGRXfV4e53sjIiIiIiIiIiIif56/zE71/OjTpw8LFiygXbt2DBkyBFdXV06fPs3y5cv54IMPsLS0xMfHh71793L27FkcHBxwdXU1q+3BgwfTpk0bQkNDiYqK4osvvmDlypXGA0KjoqIICAigU6dOvPfee2RmZvL222+btDF16lQ8PT0JDQ3FwsKCf//733h4eODi4vLIvqOioggJCaF9+/ZMnz6dW7du0bt3b2rVqkVYWNhjzdXo0aOpW7cupUuX5pVXXuHWrVusX7+eoUOH4u/vT7NmzejevTvz5s3D0dGRYcOGUbx4cZo1a/ZY/T2JyMhILl26xKRJk2jVqhUbN25kw4YNODk5PXabtWrVIiIigpYtWzJ16lT8/Pw4ceIEBoOB+vXr4+/vz4oVK9i9ezeFChVi6tSp/PTTTyY/KpjzXRo4cCBVqlRh7NixtG3blj179jB79mzmzJljdqyP+735o2Px0U80ZyIiIiIiIiIiIvJwf8ud6sWKFSMpKYmcnBxeeuklQkJCiI2NxcXFBQuLO0MaNGgQlpaWBAUF4ebmZnaO7ObNmzNjxgwmT55McHAw8+bNY+HChURGRgJ3UpSsWrWK33//napVq9KtWzfeeecdkzYcHR2ZNGkSYWFhVKlShbNnz7J+/XpjbA9jMBj4z3/+Q6FChYiIiCAqKgpfX18+/fTT/E/S/xcZGcm///1v1qxZQ8WKFalTpw779u0zvl+4cCGVK1emcePGVK9endu3b7N+/fr70pT8GQIDA5kzZw7/+te/qFChAvv27TM5RPRxff7551SpUoV27doRFBTEkCFDjDvPR4wYQaVKlYiOjiYyMhIPDw+aN29uUt+c71KlSpX47LPPWL58OeXKlWPUqFGMGTPG5JDSvDzu90ZERERERERERET+PIbbf0xiLSJ/S5mZmTg7O5ORkaGd6iIiIiIiIiIiIvlk7vra3zL9y19NZGQkFStWZPr06Q98bzAYWLVq1X07oO8VExPDlStXWL169WPFkJiYSO3atbl8+bLZ6ULyilv+nsqN3oSFjd3zDkNERMQsZyc2et4hiIiIiIiI5IvySvyJlixZgr29PQaDATs7OxwcHIzX4y6mBwcH4+DgQIMGDQAoUaKEsc0lS5Y8su7KlSsZO3bsY/X7ZzEYDI89NyIiIiIiIiIiIiJPm3aq/4maNm1K8eLFqV27NsuXLzc5DHPYsGHcunUr322uX7+emzdvsnfvXl577TW++uor439NcHd3f2Rdcw9vFREREREREREREZE7tFP9KcnNzWXIkCG4urri4eFBXFzcfWUcHR2pXbs2AM2aNcPf359u3brh5+eHg4MDAJMnT8bT05PChQvTp08fbt68aayfnZ3N0KFD8fLywsbGBj8/P7Zu3Yqfnx/FixcHwNfXFz8/PwoVKkSPHj0oXrw4dnZ2hISEsGzZMpN4IiMjiY2NNd77+Pgwbtw4OnbsiIODA97e3qxZs4ZLly7RrFkzHBwcKF++PAcOHDB7XpKSkoiMjMTOzo5ChQoRHR3N5cuXjf3379//ofPm4+MDQIsWLTAYDMb7Rzly5Ai1a9fG0dERJycnKleubIw3Li6OihUrmpSfPn36fe1+9NFHBAcHY2Njg6enJ3379jW+u3LlCj179sTd3Z2CBQtSrlw51q5da3y/a9cuatasia2tLV5eXvTv35+rV68a38+ZMwd/f38KFiyIu7s7rVq1Mr5bsWIFISEh2NraUrhwYaKiokzq/lF2djaZmZkml4iIiIiIiIiIiDxbWlR/ShYtWoS9vT179+5l0qRJjBkzhi1bttxXbt++fQBs3bqV9PR0Vq5caXy3fft2UlNT2b59O4sWLSIhIYGEhATj+44dO7Js2TJmzpxJSkoK8+bNMy7G/9H169epXLky69at49ixY/To0YMOHToY+3+YadOmER4ezuHDh2nUqBEdOnSgY8eOvPbaaxw6dIjSpUvTsWNHzDnfNjk5mbp16xIUFMSePXvYtWsXTZo0IScnx6x5279/PwALFy4kPT3deP8o7du3p0SJEuzfv5+DBw8ybNgwChQokGe9u+bOnUufPn3o0aMHR48eZc2aNfj5+QF3fjhp0KABSUlJfPLJJxw/fpyJEydiaWkJQGpqKvXr16dly5Z88803fPrpp+zatcu4KH/gwAH69+/PmDFjOHnyJBs3biQiIgKA9PR02rVrR5cuXUhJSSExMZGXX375kfM8YcIEnJ2djZeXl5fZ4xQREREREREREZHHY7htzuqoPFJkZCQ5OTns3LnT+Kxq1arUqVOHiRMnmhxUevbsWUqVKsXhw4dNdk3HxMSQmJhIamqqcZG2TZs2WFhYsHz5ck6dOkWZMmXYsmULUVFR98VgzkGljRs3pmzZskyePNkY970Hlfr4+FCzZk0WL14MwI8//oinpycjR45kzJgxAHz99ddUr16d9PR0PDw8Hjkvr776Kmlpaezateux5g3MO+T1Xk5OTsyaNYtOnTrd9y4uLo7Vq1eTnJxsfDZ9+nSmT5/O2bNnAShevDidO3dm3Lhx99XfvHkzDRo0ICUlhYCAgPved+vWDUtLS+bNm2d8tmvXLmrVqsXVq1dZv349nTt35vz58zg6OprUPXToEJUrV+bs2bN4e3ubNdbs7Gyys7ON95mZmXh5eeEV+5kOKhURkb8NHVQqIiIiIiJ/FZmZmTg7O5ORkWFMsf0g2qn+lJQvX97k3tPTk4sXL+arjeDgYOOC+h/bSE5OxtLSklq1apnVVk5ODmPHjiUkJARXV1ccHBzYtGkTaWlpZo/jbk72kJCQ+56ZM7a7O9XN7Q8eb97uNWDAALp160ZUVBQTJ04kNTXV7LoXL17kwoULD405OTmZEiVKPHBBHe6knklISDA5gDY6Oprc3FzOnDlDvXr18Pb2xtfXlw4dOrBkyRKuXbsGQIUKFahbty4hISG0bt2aBQsWGNPkPIyNjQ1OTk4ml4iIiIiIiIiIiDxbWlR/Sv6YYsRgMJCbm/vU2rC1tc1XW++99x4zZsxg6NChbN++neTkZKKjo7lx44bZMRgMhoc+M2ds5sT8NObtXnFxcXz77bc0atSIL7/8kqCgIFatWgWAhYXFfelU7s1Zn1e8eb3PysqiZ8+eJCcnG68jR47w3XffUbp0aRwdHTl06BDLli3D09OTUaNGUaFCBa5cuYKlpSVbtmxhw4YNBAUFMWvWLMqUKcOZM2cecyZERERERERERETkWdCi+p/M2toawCSvuDlCQkLIzc1lx44dZpVPSkqiWbNmvPbaa1SoUAFfX19OnTqV73ifRPny5dm2bdsTtVGgQIF8z1VAQABvvvkmmzdv5uWXX2bhwoUAuLm58eOPP5osrN+bCsbR0REfH5+Hxly+fHnOnz//0HmsVKkSx48fx8/P777r7uduZWVFVFQUkyZN4ptvvuHs2bN8+eWXwJ0fFMLDw4mPj+fw4cNYW1sbfxAQERERERERERGRvwar5x3AP03RokWxtbVl48aNlChRgoIFC+Ls7JxnPR8fHzp16kSXLl2YOXMmFSpU4IcffuDixYu0adPmvvL+/v6sWLGC3bt3U6hQIaZOncpPP/1EUFDQsxjWAw0fPpyQkBB69+5Nr169sLa2Zvv27bRu3ZoiRYqY1cbdRe7w8HBsbGwoVKjQQ8v+/vvvDB48mFatWlGqVCnOnz/P/v37admyJXAnh/ulS5eYNGkSrVq1YuPGjWzYsMEkbUpcXBy9evWiaNGiNGjQgN9++42kpCT69etHrVq1iIiIoGXLlkydOhU/Pz9OnDiBwWCgfv36DB06lBdeeIG+ffvSrVs37O3tOX78OFu2bGH27NmsXbuW77//noiICAoVKsT69evJzc2lTJky7N27l23btvHSSy9RtGhR9u7dy6VLlwgMDMz3vB+Lj1YqGBERERERERERkWdEO9X/ZFZWVsycOZN58+ZRrFgxmjVrZnbduXPn0qpVK3r37k3ZsmXp3r07V69efWDZESNGUKlSJaKjo4mMjMTDw8Pswz6floCAADZv3syRI0eoWrUq1atX5z//+Q9WVub/ljNlyhS2bNmCl5cXoaGhjyxraWnJL7/8QseOHQkICKBNmzY0aNCA+Ph4AAIDA5kzZw7/+te/qFChAvv27WPQoEEmbXTq1Inp06czZ84cgoODady4Md99953x/eeff06VKlVo164dQUFBDBkyxLiTvnz58uzYsYNTp05Rs2ZNQkNDGTVqFMWKFQPAxcWFlStXUqdOHQIDA3n//fdZtmwZwcHBODk58dVXX9GwYUMCAgIYMWIEU6ZMoUGDBmbPlYiIiIiIiIiIiDx7htt/TDItf1m3b9+mZ8+erFixgsuXL3P48GEqVqz4vMN6YpGRkVSsWJHp06c/k/Z8fHyIjY0lNjb2qbRvbr+P8ixiuns6sVfsZ1jY2D21dkVERP4qzk5s9LxDEBERERGR/2F319cyMjIemQlC6V/+RjZu3EhCQgKJiYn4+vqanULln27//v3Y29s/7zBERERERERERETkf4DSv/yNpKam4unpSY0aNfDw8MhXGpVnoUGDBjg4ODzwGj9+/DPpMzg4+KF9Llmy5IF13NzcsLPTzm0RERERERERERF5clpU/5uIiYmhX79+pKWlYTAY8PHxeWT53NxcJkyYQKlSpbC1taVChQqsWLHC+K5EiRLMnTvXpM7hw4exsLDghx9+AODKlSt069YNNzc3nJycqFOnDkeOHDGWDwwMxMvLi7feegsXFxeuXr1KcnIyycnJ9OrV64FxXb16lY4dO+Lg4ICnpydTpky5r0x2djaDBg2iePHi2NvbU61aNRITEwFYv349ycnJfPjhhwQHB3Pr1i0sLCwIDQ2lZs2aD+zTx8fHJCWLwWDggw8+oEWLFtjZ2eHv78+aNWtM6hw7dsz4o4G7uzsdOnTg559/ztc48mPq1KmEhIRgb2+Pl5cXvXv3Jisr64naFBERERERERERkadPi+p/EzNmzGDMmDGUKFGC9PR09u/f/8jyEyZM4OOPP+b999/n22+/5c033+S1115jx44dWFhY0K5dO5YuXWpSZ8mSJYSHh+Pt7Q1A69atuXjxIhs2bODgwYNUqlSJunXr8uuvvwLg5OTEuXPn2LlzJ1988QVHjhzBz88PPz8/XF1dHxjX4MGD2bFjB//5z3/YvHkziYmJHDp0yKRM37592bNnD8uXL+ebb76hdevW1K9fn++++w5vb2+ysrLo1KkTlStXZu/evezZs4e2bdvmazd6fHw8bdq04ZtvvqFhw4a0b9/eOK4rV65Qp04dQkNDOXDgABs3buSnn36iTZs2+RpHflhYWDBz5ky+/fZbFi1axJdffsmQIUMeWSc7O5vMzEyTS0RERERERERERJ4t5VT/m3B2dsbR0RFLS0s8PDweWTY7O5vx48ezdetWqlevDoCvry+7du1i3rx51KpVi/bt2zNlyhTS0tIoWbIkubm5LF++nBEjRgCwa9cu9u3bx8WLF7GxsQFg8uTJrF69mhUrVtCjRw8Abty4wccff4ybm1ueY8jKyuLDDz/kk08+oW7dugAsWrSIEiVKGMukpaWxcOFC0tLSKFasGACDBg1i48aNLFy4kPHjxzNp0iTCwsKYM2eOsV5wcLC5Uwnc2fnfrl07AMaPH8/MmTPZt28f9evXZ/bs2YSGhpqksPnoo4/w8vLi1KlTFCtWLM9x5Ne9B5b6+Pgwbtw4evXqZTLGP5owYQLx8fGP3aeIiIiIiIiIiIjknxbV/wedPn2aa9euUa9ePZPnN27cIDQ0FICKFSsSGBjI0qVLGTZsGDt27ODixYu0bt0agCNHjpCVlUXhwoVN2vj9999JTU013nt7e5u1oA53csLfuHGDatWqGZ+5urpSpkwZ4/3Ro0fJyckhICDApG52drYxluTkZGOcj6t8+fLGv+3t7XFycuLixYvAnbFv374dBweHB47h999/z3Mc+bV161YmTJjAiRMnyMzM5NatW1y/fp1r1649dAf+8OHDGTBggPE+MzMTLy+vx45BRERERERERERE8qZF9f9Bd3Nxr1u3juLFi5u8u7vrHKB9+/bGRfWlS5dSv35948J1VlYWnp6exlzm93JxcTH+bW9v/9Rjt7S05ODBg1haWpq8u7vIbWtr+8T9FChQwOTeYDCQm5trjKFJkya8++6799Xz9PTk9OnTT9z/vc6ePUvjxo15/fXXeeedd3B1dWXXrl107dqVGzduPHRR3cbGxuTzFBERERERERERkWdPi+r/g4KCgrCxsSEtLY1atWo9tNyrr77KiBEjOHjwICtWrOD99983vqtUqRI//vgjVlZWeR6Kaq7SpUtToEAB9u7dS8mSJQG4fPkyp06dMsYZGhpKTk4OFy9efOjBo+XLl2fbtm3PLPVJpUqV+Pzzz/Hx8cHK6v5/IuaMIz8OHjxIbm4uU6ZMwcLizjEHn3322ZMNQkRERERERERERJ4JHVT6P8jR0ZFBgwbx5ptvsmjRIlJTUzl06BCzZs1i0aJFxnI+Pj7UqFGDrl27kpOTQ9OmTY3voqKiqF69Os2bN2fz5s2cPXuW3bt38/bbb3PgwIHHisvBwYGuXbsyePBgvvzyS44dO0ZMTIxxIRkgICCA9u3b07FjR1auXMmZM2fYt28fEyZMYN26dcCdtCf79++nd+/efPPNN5w4cYK5c+fy888/P+aMmerTpw+//vor7dq1Y//+/aSmprJp0yY6d+5MTk6OWePIDz8/P27evMmsWbP4/vvvWbx4sckPHCIiIiIiIiIiIvLXoZ3q/6PGjh2Lm5sbEyZM4Pvvv8fFxYVKlSrx1ltvmZRr3749vXv3pmPHjiZpVQwGA+vXr+ftt9+mc+fOXLp0CQ8PDyIiInB3d3/suN577z1jehVHR0cGDhxIRkaGSZmFCxcybtw4Bg4cyH//+1+KFCnCCy+8QOPGjYE7C++bN2/mrbfeomrVqtja2lKtWjXjwaNPqlixYiQlJTF06FBeeuklsrOz8fb2pn79+saFc3PGYa4KFSowdepU3n33XYYPH05ERAQTJkygY8eOj9XesfhonJycHquuiIiIiIiIiIiIPJrh9u3bt593ECLy5DIzM3F2diYjI0OL6iIiIiIiIiIiIvlk7vqadqrLM5OYmEjt2rW5fPmyyeGmeYmLi2Pu3LlcvHiRVatW0bx582cW4/N09uxZSpUqxeHDh6lYseJTa7fc6E1Y2Dz4cFMREZH/BWcnNnreIYiIiIiIyD+Ycqr/DaWlpeHg4PDQKy0tLc82IiMjiY2NzVe/edX5Y1yNGzfGzs6OEiVKmB1XSkoK8fHxzJs3j/T0dBo0aJCvGP8Kdu7c+cjPR0RERERERERERP6+tFP9b6hYsWIkJyc/8v3z8DTiSk1NBaBZs2YYDIbHjuXmzZsUKFDgses/ibCwsEfOg4iIiIiIiIiIiPx9aaf635CVlRV+fn4PvaysHv1bSUxMDDt27GDGjBkYDAYMBgNnz55lx44dVK1aFRsbGzw9PRk2bBi3bt16ZJ1HxXX+/Hn8/f0pUqQIfn5+fPLJJ7i4uLBp0yYCAwNxcHCgfv36pKenA3fSvjRp0gQACwsL46J6bm4uY8aMoUSJEtjY2FCxYkU2btxo7Pfs2bMYDAY+/fRTatWqRcGCBVmyZAkAH330EcHBwcYx9e3b11jvypUrdOvWDTc3N5ycnKhTpw5Hjhwx6zOIi4ujYsWKzJs3Dy8vL+zs7GjTpg0ZGRnY2tri5+eHr68vS5cuJTIykuDgYFq1asXp06cf2ubly5dp3749bm5u2Nra4u/vz8KFC82KR0RERERERERERP4cWlT/B5oxYwbVq1ene/fupKenk56eToECBWjYsCFVqlThyJEjzJ07lw8//JBx48Y9tI6Xl1e++7527RqTJ09m8eLFfPXVV6SlpTFo0CAABg0aZFxEvtvH3b6nTJnC5MmT+eabb4iOjqZp06Z89913Jm0PGzaMN954g5SUFKKjo5k7dy59+vShR48eHD16lDVr1uDn52cs37p1ay5evMiGDRs4ePAglSpVom7duvz6669mjeX06dN89tlnfPHFF2zcuJHDhw/Tu3dvk3k2J+67Ro4cyfHjx9mwYQMpKSnMnTuXIkWKPLT/7OxsMjMzTS4RERERERERERF5tpT+5R/I2dkZa2tr7Ozs8PDwAODtt9/Gy8uL2bNnYzAYKFu2LBcuXGDo0KGMGjXqgXUex82bN3n//fcpXbo0AH379mXMmDEAODg4GA80vbePyZMnM3ToUF555RUA3n33XbZv38706dP517/+ZSwXGxvLyy+/bLwfN24cAwcO5I033jA+q1KlCgC7du1i3759XLx4ERsbG2M/q1evZsWKFfTo0SPPsVy/fp2PP/6Y4sWLAzBr1iwaNWrElClT8PDwMDvuu9LS0ggNDSUsLAwAHx+fR/Y/YcIE4uPj84xTREREREREREREnh7tVBfgzgGh1atXN8ljHh4eTlZWFufPn39q/djZ2RkX1AE8PT25ePHiQ8tnZmZy4cIFwsPDTZ6Hh4eTkpJi8uzuYjTAxYsXuXDhAnXr1n1gu0eOHCErK4vChQubHCJ65swZY173vJQsWdK4oA5QvXp1cnNzOXnyZL7ivuv1119n+fLlVKxYkSFDhrB79+5H9j98+HAyMjKM17lz58yKW0RERERERERERB6fdqrLn+qPh4caDAZu3779VNq2t7c3/m1ra/vIsllZWXh6epKYmHjfu7u75f9sDRo04IcffmD9+vVs2bKFunXr0qdPHyZPnvzA8jY2NsZd9iIiIiIiIiIiIvLn0E71fyhra2tycnKM94GBgezZs8dkgTspKQlHR0dKlCjxwDp/BicnJ4oVK0ZSUpLJ86SkJIKCgh5az9HRER8fH7Zt2/bA95UqVeLHH3984KGvj8pjfq+0tDQuXLhgvP/666+xsLCgTJkyjx23m5sbnTp14pNPPmH69OnMnz/frFhERERERERERETkz6Gd6v9QPj4+7N27l7Nnz+Lg4EDv3r2ZPn06/fr1o2/fvpw8eZLRo0czYMAALCwsHljH1dXV+O5ZGjx4MKNHj6Z06dJUrFiRhQsXkpyczJIlSx5ZLy4ujl69elG0aFEaNGjAb7/9RlJSEv369SMqKorq1avTvHlzJk2aREBAABcuXGDdunW0aNHCJJXMwxQsWJBOnToxefJkMjMz6d+/P23atDHmg89v3KNGjaJy5coEBweTnZ3N2rVrCQwMzP+EiYiIiIiIiIiIyDOjRfV/qEGDBtGpUyeCgoL4/fffOXPmDOvXr2fw4MFUqFABV1dXunbtyogRIx5ZJ6/DNJ+G/v37k5GRwcCBA7l48SJBQUGsWbMGf3//R9br1KkT169fZ9q0aQwaNIgiRYrQqlUr4E7amfXr1/P222/TuXNnLl26hIeHBxEREbi7u5sVl5+fHy+//DINGzbk119/pXHjxsyZM+ex47a2tmb48OGcPXsWW1tbatasyfLly82cpf9zLD4aJyenfNcTERERERERERGRvBluP62E1iL/IHFxcaxevZrk5OTnHYpRZmYmzs7OZGRkaFFdREREREREREQkn8xdX9NO9ecsMjKSihUrMn369OcdijxHCQkJxMbGcuXKFeDJFu3Ljd6EhY3d0w1QRETkf9DZiY2edwgiIiIiIvI3pINKn7OVK1cyduzY5x3GY+nVqxcODg4PvHr16pWvtuLi4qhYsWK+6hgMBlavXp2vOuYKDg5+6NjyyuX+ONq2bcupU6eeersiIiIiIiIiIiLydGmn+nPm6ur6vEN4bGPGjGHQoEEPfPd3Tz+yfv16bt68+cB37u7uODo6EhcX99T6s7W1xdbW9qm1JyIiIiIiIiIiIs+Gdqo/Z5GRkcTGxgIwZ84c/P39KViwIO7u7sZDNfOSm5vLpEmT8PPzw8bGhpIlS/LOO+8Y3x89epQ6depga2tL4cKF6dGjB1lZWcb3MTExNG/enMmTJ+Pp6UnhwoXp06ePyaLyg2IrWrQofn5++Pr68u9//5t69eoREhJCy5Yt+eqrr4x1ExMTMRgMbNu2jbCwMOzs7KhRowYnT54E7qQ+iY+P58iRIxgMBgwGAwkJCY8c890DUlu0aIHBYDA5MHXu3LmULl0aa2trypQpw+LFi82aR4ArV67QrVs3wsLCqFSpEj169ODq1av4+fnh5+fHJ598Qs2aNfnoo48oWbIkDg4O9O7dm5ycHCZNmoSHhwdFixY1mX+AqVOnEhISgr29PV5eXvTu3dvkM0hISMDFxcXsOEVEREREREREROT50E71v4gDBw7Qv39/Fi9eTI0aNfj111/ZuXOnWXWHDx/OggULmDZtGi+++CLp6emcOHECgKtXrxIdHU316tXZv38/Fy9epFu3bvTt29dk4Xr79u14enqyfft2Tp8+Tdu2balYsSLdu3fPM7YJEybwySef8P777+Pv789XX33Fa6+9hpubG7Vq1TKWe/vtt5kyZQpubm706tWLLl26kJSURNu2bTl27BgbN25k69atADg7Oz9yzPv376do0aIsXLiQ+vXrY2lpCcCqVat44403mD59OlFRUaxdu5bOnTtTokQJateunedctm7dGltbWzZs2ICzszPz5s2jbt26nDp1yvi/ClJTU9mwYQMbN24kNTWVVq1a8f333xMQEMCOHTvYvXs3Xbp0ISoqimrVqgFgYWHBzJkzKVWqFN9//z29e/dmyJAhzJkzx4xP+MGys7PJzs423mdmZj52WyIiIiIiIiIiImIeLar/RaSlpWFvb0/jxo1xdHTE29ub0NDQPOv99ttvzJgxg9mzZ9OpUycASpcuzYsvvgjA0qVLuX79Oh9//DH29vYAzJ49myZNmvDuu+/i7u4OQKFChZg9ezaWlpaULVuWRo0asW3bNrp37/7I2LKzsxk/fjxbt26levXqAPj6+rJr1y7mzZtnsqj+zjvvGO+HDRtGo0aNuH79Ora2tjg4OGBlZYWHh4dZ8+Xm5gaAi4uLSZ3JkycTExND7969ARgwYABff/01kydPznNRfdeuXezbt4+LFy9iY2NjbG/16tWsWLGCHj16AHf+Z8BHH32Eo6MjQUFB1K5dm5MnT7J+/XosLCwoU6YM7777Ltu3bzcuqt/93whwZ5f9uHHj6NWr1xMtqk+YMIH4+PjHri8iIiIiIiIiIiL5p/QvfxH16tXD29sbX19fOnTowJIlS7h27Vqe9VJSUsjOzqZu3boPfV+hQgXjgjpAeHg4ubm5xvQrcOdgzru7vQE8PT25ePFinrGdPn2aa9euUa9ePZPDPD/++GNSU1NNYilfvrxJ+4Cxj6clJSWF8PBwk2fh4eGkpKTkWffIkSNkZWVRuHBhk7GcOXPGZCw+Pj44Ojoa793d3QkKCsLCwsLk2b1j27p1K3Xr1qV48eI4OjrSoUMHfvnlF7M+44cZPnw4GRkZxuvcuXOP3ZaIiIiIiIiIiIiYRzvV/yIcHR05dOgQiYmJbN68mVGjRhEXF8f+/fsfmWv7aR1uWaBAAZN7g8FAbm5unrHdzQu+bt06ihcvbtLG3d3eD+rDYDAAGPv4K8jKysLT05PExMT73t37GTxorh41f2fPnqVx48a8/vrrvPPOO7i6urJr1y66du3KjRs3sLOze6x4bWxs7ptjEREREREREREReba0U/0vxMrKiqioKCZNmsQ333zD2bNn+fLLLx9Zx9/fH1tbW7Zt2/bA94GBgRw5coSrV68anyUlJRnTlDxpbEFBQdjY2JCWlmY8zPPu5eXlZXb71tbW5OTkmF0e7ixu/7FOYGAgSUlJJs+SkpIICgrKs71KlSrx448/YmVldd9YihQpkq/Y7nXw4EFyc3OZMmUKL7zwAgEBAVy4cOGx2xMREREREREREZHnRzvV/yLWrl3L999/T0REBIUKFWL9+vXk5ubmufBdsGBBhg4dypAhQ7C2tiY8PJxLly7x7bff0rVrV9q3b8/o0aPp1KkTcXFxXLp0iX79+tGhQwdjPvUnic3R0ZFBgwbx5ptvkpuby4svvkhGRgZJSUk4OTkZ87znxcfHhzNnzpCcnEyJEiVwdHTMcxe2j48P27ZtIzw8HBsbGwoVKsTgwYNp06YNoaGhREVF8cUXX7By5UrjAaiPEhUVRfXq1WnevDmTJk0yLn6vW7eOFi1aEBYWZtZY/sjPz4+bN28ya9YsmjRpQlJSEu+///5jtWWOY/HRODk5PbP2RURERERERERE/sm0U/0vwsXFhZUrV1KnTh0CAwN5//33WbZsGcHBwXnWHTlyJAMHDmTUqFEEBgbStm1bYz5vOzs7Nm3axK+//kqVKlVo1aoVdevWZfbs2U8ttrFjxzJy5EgmTJhAYGAg9evXZ926dZQqVcrsPlq2bEn9+vWpXbs2bm5uLFu2LM86U6ZMYcuWLXh5eRkPTm3evDkzZsxg8uTJBAcHM2/ePBYuXEhkZGSe7RkMBtavX09ERASdO3cmICCAV155hR9++MHsHyAepEKFCkydOpV3332XcuXKsWTJEiZMmPDY7YmIiIiIiIiIiMjzY7h9+/bt5x2EiDy5zMxMnJ2dycjI0E51ERERERERERGRfDJ3fU3pX+Q+t2/fpmfPnqxYsYLLly/j7OxMTEwM06dPfyrtGwwGVq1aRfPmzZ9Ke/+rHneeyo3ehIXN4x1+KiIiIuY5O7HR8w5BRERERESeE6V/+YtLS0vDwcHhoVdaWtpT73Pjxo0kJCSwdu1a0tPTKVeu3FNtPz09nQYNGjyyzJIlSx46ZnNS4vxZbYqIiIiIiIiIiMg/i3aq/8UVK1aM5OTkR75/2lJTU/H09KRGjRoAWFk93a+Jh4dHnmWaNm1KtWrVHviuQIECj9Vv06ZNqVSp0gPrP26bIiIiIiIiIiIi8s+inep/cVZWVvj5+T30etoL3jExMfTr14+0tDQMBgM+Pj73lUlPT6dRo0bY2tpSqlQpli5dio+Pj9npYQwGA6tXrwbgxo0b9O3bF09PTwoWLIi3tzcTJkzA0dHxoWP29vY2tjN37lwaNGiAra0tvr6+rFixwtjP2bNnMRgMfPrpp9SqVQs3Nzf27t2Lr68vS5cuJTIykuDgYFq1akVKSsp99ZYvX06NGjUoWLAg5cqVY8eOHSbj2LFjB1WrVsXGxgZPT0+GDRvGrVu3jO9XrFhBSEgItra2FC5cmKioKK5evQrA/v37qVevHkWKFMHZ2ZlatWpx6NAhs+bvruzsbDIzM00uEREREREREREReba0qC4mZsyYwZgxYyhRogTp6ens37//vjIdO3bkwoULJCYm8vnnnzN//nwuXrz4WP3NnDmTNWvW8Nlnn3Hy5EmWLFnywIX8hxk5ciQtW7bkyJEjtG/fnldeecVkgRxg2LBhvPHGG6SkpBAdHc2MGTOYMmUKkydP5ptvviE6OpqmTZvy3XffmdQbPHgwAwcO5PDhw1SvXp0mTZrwyy+/APDf//6Xhg0bUqVKFY4cOcLcuXP58MMPGTduHHDnh4d27drRpUsXUlJSSExM5OWXX+buucC//fYbnTp1YteuXXz99df4+/vTsGFDfvvtN7PHPmHCBJydnY2Xl5eX2XVFRERERERERETk8Sj9i5hwdnbG0dERS0vLB6ZpOXHiBFu3bmX//v2EhYUB8MEHH+Dv7/9Y/aWlpeHv78+LL76IwWAw7kI3V+vWrenWrRsAY8eOZcuWLcyaNYs5c+YYy8TGxvLyyy8b7ydPnszQoUN55ZVXAHj33XfZvn0706dP51//+pexXN++fWnZsiUAc+fOZePGjXz44YcMGTKEOXPm4OXlxezZszEYDJQtW5YLFy4wdOhQRo0aRXp6Ordu3eLll182jikkJMTYdp06dUzGMX/+fFxcXNixYweNGzc2a+zDhw9nwIABxvvMzEwtrIuIiIiIiIiIiDxj2qku+XLy5EmsrKyoVKmS8Zmfnx+FChV6rPZiYmJITk6mTJky9O/fn82bN+erfvXq1e+7/+NO9buL/3Bn4fnChQuEh4eblAkPD7+v3r1tW1lZERYWZiyTkpJC9erVMRgMJm1kZWVx/vx5KlSoQN26dQkJCaF169YsWLCAy5cvG8v+9NNPdO/eHX9/f5ydnXFyciIrKytfB8/a2Njg5ORkcomIiIiIiIiIiMizpUV1ea4qVarEmTNnGDt2LL///jtt2rShVatWT7UPe3v7p9qeOSwtLdmyZQsbNmwgKCiIWbNmUaZMGc6cOQNAp06dSE5OZsaMGezevZvk5GQKFy7MjRs3/vRYRURERERERERExHxaVJd8KVOmDLdu3eLw4cPGZ6dPnzbZhZ1fTk5OtG3blgULFvDpp5/y+eef8+uvv5pV9+uvv77vPjAw8JF9FStWjKSkJJPnSUlJBAUFPbTtW7ducfDgQWPbgYGB7Nmzx5gj/W4bjo6OlChRArhzkGp4eDjx8fEcPnwYa2trVq1aZSzbv39/GjZsSHBwMDY2Nvz8889mjVlERERERERERESeH+VUl3wpW7YsUVFR9OjRg7lz51KgQAEGDhyIra2tSSoUc02dOhVPT09CQ0OxsLDg3//+Nx4eHri4uJhV/9///jdhYWG8+OKLLFmyhH379vHhhx8+ss7gwYMZPXo0pUuXpmLFiixcuJDk5GSWLFliUu5f//oX/v7+BAYGMm3aNC5fvkyXLl0A6N27N9OnT6dfv3707duXkydPMnr0aAYMGICFhQV79+5l27ZtvPTSSxQtWpS9e/dy6dIl46K8v78/ixcvJiwsjMzMTAYPHoytrW2+5+9BjsVHKxWMiIiIiIiIiIjIM6JFdcm3jz/+mK5duxIREYGHhwcTJkzg22+/pWDBgvluy9HRkUmTJvHdd99haWlJlSpVWL9+PRYW5v0nivj4eJYvX07v3r3x9PRk2bJl9+04/6P+/fuTkZHBwIEDuXjxIkFBQaxZs+a+w1YnTpzIxIkTSU5Oxs/PjzVr1lCkSBEAihcvzvr16xk8eDAVKlTA1dWVrl27MmLECODOjvivvvqK6dOnk5mZibe3N1OmTKFBgwYAfPjhh/To0YNKlSrh5eXF+PHjGTRoUH6nT0RERERERERERP5khtv35q8QeQznz5/Hy8uLrVu3UrduXePzyMhIKlasyPTp059Jv3d3xh8+fJiKFSs+tXbPnj1LqVKlnnq7z1pmZibOzs54xX6GhY3d8w5HRERE/kRnJzZ63iGIiIiIiPzt3V1fy8jIeGQmCOVUl3z78ssvWbNmDWfOnGH37t288sor+Pj4EBERYVJu5cqVjB079jlF+ee5fv06MTExhISEYGVlRfPmzfNVf+XKldSrVw83NzecnJyoXr06mzZtejbBioiIiIiIiIiIyBPRorrk282bN3nrrbcIDg6mRYsWuLm5kZiYSIECBViyZAkODg44ODhQsmRJPD09jffBwcFm93FvO3+88tPOnyEnJwdbW1v69+9PVFRUvut/9dVX1KtXj/Xr13Pw4EFq165NkyZNTA6DFRERERERERERkb8GLapLvkVHR3Ps2DGuXbvGTz/9xKpVq/D29gagadOmJCcnk5ycTHBwMK1atSI5OZlBgwZx9epVChYsiLu7O61atXpkH3fbOXToEL1796Zw4cLcuHEDR0dHY17yM2fOmNTJycmha9eulCpVCltbW8qUKcOMGTNMyiQmJlK1alXs7e1xcXEhPDycH374AYAjR45Qu3ZtQkJCcHR0pGvXrhw4cCDP+bC3t2fu3Ll0794dDw8Ps+fxrunTpzNkyBCqVKmCv78/48ePx9/fny+++CLfbYmIiIiIiIiIiMizpYNK5alydHTE0dERAFtbW1xcXLhy5Qrjxo1j8eLF1KhRg19//ZWdO3ea1c7QoUP54IMPmDZtGi+++CLp6emcOHHigXVyc3MpUaIE//73vylcuDC7d++mR48eeHp60qZNG27dukXz5s3p3r07y5Yt48aNG+zbt8+Ym719+/aEhoYyd+5cLC0tSU5OpkCBAk93gsyQm5vLb7/9hqur6yPLZWdnk52dbbzPzMx81qGJiIiIiIiIiIj842lRXZ65tLQ07O3tady4MY6Ojnh7exMaGppnvd9++40ZM2Ywe/ZsOnXqBEDp0qV58cUXH1i+QIECxMfHG+9LlSrFnj17+Oyzz2jTpg2ZmZlkZGTQuHFjSpcuDUBgYKBJnIMHD6Zs2bIA+Pv7P/aYn8TkyZPJysqiTZs2jyw3YcIEk/GKiIiIiIiIiIjIs6f0L/LM1atXD29vb3x9fenQoQNLlizh2rVredZLSUkhOzubunXrmt3Xv/71LypXroybmxsODg7Mnz+ftLQ0AFxdXYmJiSE6OpomTZowY8YM0tPTjXUHDBhAt27diIqKYuLEiaSmpuZ/sE9o6dKlxMfH89lnn1G0aNFHlh0+fDgZGRnG69y5c39SlCIiIiIiIiIiIv9cWlSXZ87R0ZFDhw6xbNkyPD09GTVqFBUqVODKlSuPrGdra5uvfpYvX86gQYPo2rUrmzdvJjk5mc6dO3Pjxg1jmYULF7Jnzx5q1KjBp59+SkBAAF9//TUAcXFxfPvttzRq1Igvv/ySoKAgVq1ale/xPq7ly5fTrVs3PvvsM7MOPLWxscHJycnkEhERERERERERkWdLi+ryp7CysiIqKopJkybxzTffcPbsWb788stH1vH398fW1pZt27aZ1UdSUhI1atSgd+/ehIaG4ufn98Dd5qGhoQwfPpzdu3dTrlw5li5danwXEBDAm2++yebNm3n55ZdZuHBh/gb6mJYtW0bnzp1ZtmwZjRo1+lP6FBERERERERERkfxTTnV55tauXcv3339PREQEhQoVYv369eTm5lKmTJlH1itYsCBDhw5lyJAhWFtbEx4ezqVLl/j222/p2rXrfeX9/f35+OOP2bRpE6VKlWLx4sXs37+fUqVKAXDmzBnmz59P06ZNKVasGCdPnuS7776jY8eO/P777wwePJhWrVpRqlQpzp8/z/79+2nZsqVZYzx+/Dg3btzg119/5bfffiM5ORmAihUr5ll36dKldOrUiRkzZlCtWjV+/PFH4M5OfWdnZ7P6FxERERERERERkT+HFtXlmXNxcWHlypXExcVx/fp1/P39WbZsGcHBwXnWHTlyJFZWVowaNYoLFy7g6elJr169Hli2Z8+eHD58mLZt22IwGGjXrh29e/dmw4YNANjZ2XHixAkWLVrEL7/8gqenJ3369KFnz57cunWLX375hY4dO/LTTz9RpEgRXn75ZbMPAm3YsCE//PCD8f7uQay3b9/Os+78+fO5desWffr0oU+fPsbnnTp1IiEhwaz+73UsPlqpYERERERERERERJ4Rw21zVv1E5C8vMzMTZ2dnMjIytKguIiIiIiIiIiKST+aur2mnupiIjIykYsWKTJ8+/R/R78MYDAZWrVpF8+bNn3co+VZu9CYsbOyedxgiIiLyN3N2os51ERERERExhw4q/YdKTEzEYDBw5cqV5xZDWloaDg4OODg4cODAAT744APjvYODA2lpac8ttns1aNDAJK57r/Hjx+dZPzg4+KH1lyxZ8ieMQERERERERERERJ4W7VSX56ZYsWLGAz0f9v6v4IMPPuD3339/4DtXV9c8669fv56bN28+8J27u/sTxSYiIiIiIiIiIiJ/rn/8TvWNGzfy4osv4uLiQuHChWncuDGpqakA1KhRg6FDh5qUv3TpEgUKFOCrr74CID09nUaNGmFra0upUqVYunQpPj4+ZqcxMRgMzJs3j8aNG2NnZ0dgYCB79uzh9OnTREZGYm9vT40aNYwx3TV37lxKly6NtbU1ZcqUYfHixfe1+8EHH9CiRQvs7Ozw9/dnzZo1AJw9e5batWsDUKhQIQwGAzExMca6ubm5DBkyBFdXVzw8PIiLizO+u337NnFxcZQsWRIbGxuKFStG//79zRrrnDlz8Pf3p2DBgri7u/PKK6/g5+eHn58f3bp1Y/bs2cb7qKgoJk2aRJcuXXB0dKRkyZLMnz/fpL3z58/Trl07XF1dsbe3JywsjL179xrf/+c//6FSpUoULFgQX19f4uPjuXXrllmx3qt48eIsWLCAhg0bUr58eV566SUWLVqEt7e3cVE9Li6OihUrMm/ePLy8vLCzs6NNmzZkZGTg7e2Nn58f58+f59VXX6VChQqEhYXRqVMnfv3116cer4iIiIiIiIiIiDw7//hF9atXrzJgwAAOHDjAtm3bsLCwoEWLFuTm5tK+fXuWL1/OvWe5fvrppxQrVoyaNWsC0LFjRy5cuEBiYiKff/458+fP5+LFi/mKYezYsXTs2JHk5GTKli3Lq6++Ss+ePRk+fDgHDhzg9u3b9O3b11h+1apVvPHGGwwcOJBjx47Rs2dPOnfuzPbt203ajY+Pp02bNnzzzTc0bNiQ9u3b8+uvv+Ll5cXnn38OwMmTJ0lPT2fGjBnGeosWLcLe3p69e/cyadIkxowZw5YtWwD4/PPPmTZtGvPmzeO7775j9erVhISE5DnGAwcO0L9/f8aMGcPJkyfZuHEjERERj6wzZcoUwsLCOHz4ML179+b111/n5MmTAGRlZVGrVi3++9//smbNGo4cOcKQIUPIzc0FYOfOnXTs2JE33niD48ePM2/ePBISEnjnnXfM+ETu5+joSEJCAsePH2fGjBksWLCAadOmmZQ5ffo0n332GV988QUbN240xg1w69YtmjdvTq1atfjmm2/Ys2cPPXr0wGAwPHa82dnZZGZmmlwiIiIiIiIiIiLybBlu37tiLPz888+4ublx9OhR3N3dKVasGF9++aVxEb1GjRpEREQwceJETpw4QWBgIPv37ycsLAy4s7Dq7+/PtGnTiI2NzbM/g8HAiBEjGDt2LABff/011atX58MPP6RLly4ALF++nM6dOxtTkISHhxMcHGyyc7tNmzZcvXqVdevWPbDdq1ev4uDgwIYNG6hfvz6JiYnUrl2by5cv4+LiYmwnMjKSnJwcdu7caXxWtWpV6tSpw8SJE5k6dSrz5s3j2LFjFChQwOx5XblyJZ07d+b8+fM4Ojre9/6PB5X6+PhQs2ZN4w7827dv4+HhQXx8PL169WL+/PkMGjSIs2fPPjAFS1RUFHXr1mX48OHGZ5988glDhgzhwoULecab10GlkydPZvny5Rw4cAC4s1N93Lhx/PDDDxQvXhy4878gGjVqxH//+1+sra0pXLgwiYmJ1KpV66nEGxcXR3x8/H3PvWI/00GlIiIikm86qFRERERE/ukyMzNxdnYmIyMDJyenh5b7x+9U/+6772jXrh2+vr44OTnh4+MD3DlE083NjZdeesl4mOSZM2fYs2cP7du3B+7s8raysqJSpUrG9vz8/ChUqFC+Yihfvrzx77s5tu/d/e3u7s7169eNO5FTUlIIDw83aSM8PJyUlJSHtmtvb4+Tk5NZu+jvrQfg6elprNe6dWt+//13fH196d69O6tWrTIrRUm9evXw9vbG19eXDh06sGTJEq5du2Z2HAaDAQ8PD2McycnJhIaGPjSn+ZEjRxgzZozJoaDdu3cnPT09z34f5NNPPyU8PBwPDw8cHBwYMWLEfQeplixZ0rigDlC9enVyc3M5efIkrq6uxMTEEB0dTZMmTZgxYwbp6elPFO/w4cPJyMgwXufOncv3uERERERERERERCR//vGL6k2aNOHXX39lwYIF7N2715iT+8aNGwC0b9+eFStWcPPmTZYuXUpISIhZ6U7y494d33fTgTzo2d3UJo/T7t12zGnjUfW8vLw4efIkc+bMwdbWlt69exMREfHQgzjvcnR05NChQyxbtgxPT09GjRpFhQoVuHLlymPFYWtr+8j+srKyiI+PJzk52XgdPXqU7777joIFCz6y7h/d/SGlYcOGrF27lsOHD/P2228bvyPmWrhwIXv27KFGjRp8+umnBAQE8PXXXz92vDY2Njg5OZlcIiIiIiIiIiIi8mz9oxfVf/nlF06ePMmIESOoW7cugYGBXL582aRMs2bNuH79Ohs3bmTp0qXGXeoAZcqU4datWxw+fNj47PTp0/e18bQFBgaSlJRk8iwpKYmgoCCz27C2tgYgJycn3/3b2trSpEkTZs6cSWJiInv27OHo0aN51rOysjIeQPrNN99w9uxZvvzyy3z3D3d2sScnJ5sc9HmvSpUqcfLkSePBp/deFhb5+9rv3r0bb29v3n77bcLCwvD39+eHH364r1xaWppJqpavv/4aCwsLypQpY3wWGhrK8OHD2b17N+XKlWPp0qVPPV4RERERERERERF5dqyedwDPU6FChShcuDDz58/H09OTtLQ0hg0bZlLG3t6e5s2bM3LkSFJSUmjXrp3xXdmyZYmKiqJHjx7MnTuXAgUKMHDgQGxtbY27y5+FwYMH06ZNG0JDQ4mKiuKLL75g5cqVbN261ew2vL29MRgMrF27loYNG2Jra4uDg0Oe9RISEsjJyaFatWrY2dnxySefYGtri7e39yPrrV27lu+//56IiAgKFSrE+vXryc3NNVlwzo927doxfvx4mjdvzoQJE/D09OTw4cMUK1aM6tWrM2rUKBo3bkzJkiVp1aoVFhYWHDlyhGPHjjFu3Lh89eXv709aWhrLly+nSpUqrFu3jlWrVt1XrmDBgnTq1InJkyeTmZlJ//79adOmDR4eHpw5c4b58+fTtGlTihUrxsmTJ/nuu+/o2LEjwFON91h8tHati4iIiIiIiIiIPCP/6C2wFhYWLF++nIMHD1KuXDnefPNN3nvvvfvKtW/fniNHjlCzZk1Klixp8u7jjz/G3d2diIgIWrRoQffu3XF0dMx3ipH8aN68OTNmzGDy5MkEBwczb948Fi5cSGRkpNltFC9enPj4eIYNG4a7uzt9+/Y1q56LiwsLFiwgPDyc8uXLs3XrVr744gsKFy6cZ72VK1dSp04dAgMDef/991m2bBnBwcFmx3wva2trNm/eTNGiRWnYsCEhISFMnDgRS0tLAKKjo1m7di2bN2+mSpUqvPDCC0ybNi3Pxf8Hadq0KW+++SZ9+/alYsWK7N69m5EjR95Xzs/Pj5dffpmGDRvy0ksvUb58eebMmQOAnZ0dJ06coGXLlgQEBNCjRw/69OlDz549n3q8IiIiIiIiIiIi8uwYbt++fft5B/G/5Pz583h5ebF161bq1q37vMORP0lcXByrV68mOTn5ucVg7unEIiIiIiIiIiIicj9z19f+0elf8uP27dv07NmTFStWcPnyZZydnYmJiaFp06ZkZWUREhJCeno6Q4YMwcfHh4iIiHy1bzAYWLVqFc2bN382A3hGfHx8iI2NJTY29rHb+CssSP8VPe7clhu9CQsbu2cTlIiIiMg/yNmJjZ53CCIiIiLyF/SPTv+SHxs3biQhIYG1a9eSnp5OuXLlALh58yZvvfUWwcHBtGjRAjc3NxITEylQoABLlizBwcHhgdfjpj25Ky4ujooVKz6Fkf2fhIQEXFxcHqvuzp07HzrWvHK1Dxo0iG3btj1Wv4/jWX4uIiIiIiIiIiIi8r9NO9XNlJqaiqenJzVq1ADAyurO1EVHRxMdHf3AOk2bNqVatWoPfFegQIFnE+hzEhYW9tg7zc1ZeH+ansXnEhcXR1xc3BNEJSIiIiIiIiIiIn8H2qluhpiYGPr160daWhoGgwEfH5/7yqSnp9OoUSNsbW0pVaoUS5cuJSQkhLVr1+Ln53ffldcBlEOHDiUgIAA7Ozt8fX0ZOXIkN2/eBO7sKI+Pj+fIkSMYDAYMBgMJCQkAXLlyhW7duuHm5oaTkxN16tThyJEjxnaPHDlC7dq1cXR0xMnJicqVK3PgwAESExPp3LkzGRkZxjbNXST+7bff6NKlCxUqVKBWrVps2rTJZKxFihR5ZEx/3HUfExND8+bNmTx5Mp6enhQuXJg+ffoYx/+w+fbx8WH69Ol5xuvo6EiRIkV47733CA8Pp1y5cjRv3pwTJ07g7e3NL7/8Qrt27ShevDh2dnaEhISwbNkykzYiIyPp378/Q4YMwdXVFQ8Pj/vm68qVK/Ts2RN3d3cKFixIuXLlWLt2rfH9rl27qFmzJra2tnh5edG/f3+uXr1q1pwDZGdnk5mZaXKJiIiIiIiIiIjIs6Wd6maYMWMGpUuXZv78+ezfvx9LS0tat25tUqZjx478/PPPxtQvAwYM4OLFi4/dp6OjIwkJCRQrVoyjR4/SvXt3HB0dGTJkCG3btuXYsWNs3LiRrVu3AuDs7AxA69atsbW1ZcOGDTg7OzNv3jzq1q3LqVOncHV1pX379oSGhjJ37lwsLS1JTk6mQIEC1KhRg+nTpzNq1ChOnjwJYPbu8ffee4+33nqL+Ph4Nm3axBtvvEFAQAD16tUzK6YH2b59O56enmzfvp3Tp0/Ttm1bKlasSPfu3Z94vnNzc2nQoAG//fYbn3zyCaVLl+b48eNYWloCcP36dSpXrszQoUNxcnJi3bp1dOjQgdKlS1O1alVjO4sWLWLAgAHs3buXPXv2EBMTQ3h4OPXq1cuzj9TUVOrXr8+4ceP46KOPuHTpEn379qVv374sXLjQrHFMmDCB+Ph4s8qKiIiIiIiIiIjI06FFdTM4Ozvj6OiIpaUlHh4e970/ceIEW7duZf/+/YSFhQHwwQcf4O/v/9h9jhgxwvi3j48PgwYNYvny5QwZMgRbW1scHBywsrIyiWfXrl3s27ePixcvYmNjA8DkyZNZvXo1K1asoEePHqSlpTF48GDKli0LYBKjs7MzBoPhgWN8lPDwcIYNGwZAQEAASUlJTJs2jXr16pkV04MUKlSI2bNnY2lpSdmyZWnUqBHbtm2je/fuTzzfW7duZd++faSkpBAQEACAr6+v8X3x4sUZNGiQ8b5fv35s2rSJzz77zGRRvXz58owePRq4M4+zZ89m27Zt1KtXL88+JkyYQPv27Y2HkPr7+zNz5kxq1arF3LlzKViwYJ7jGD58OAMGDDDeZ2Zm4uXlZdYciIiIiIiIiIiIyOPRovpTcPLkSaysrKhUqZLxmZ+fH4UKFXrsNj/99FNmzpxJamoqWVlZ3Lp1Cycnp0fWOXLkCFlZWRQuXNjk+e+//05qaioAAwYMoFu3bixevJioqChat25N6dKlHztOgOrVq993fzcNizkxPUhwcLBxVzeAp6cnR48eBZ58vpOTkylRooRxsfuPcnJyGD9+PJ999hn//e9/uXHjBtnZ2djZ2ZmUK1++vMm9p6encbd8Xn0cOXKEb775hiVLlhif3b59m9zcXM6cOUNgYGCe47CxsTH+UCEiIiIiIiIiIiJ/Di2q/wXt2bOH9u3bEx8fT3R0NM7OzixfvpwpU6Y8sl5WVhaenp4kJibe987FxQW4k7/81VdfZd26dWzYsIHRo0ezfPlyWrRo8QxGYl5MD/LHA0MNBgO5ublPJSZbW9tHvn/vvfeYMWMG06dPJyQkBHt7e2JjY7lx44bZMebVR1ZWFj179qR///73vStZsqQ5wxAREREREREREZHnQIvqT0GZMmW4desWhw8fpnLlygCcPn2ay5cvP1Z7u3fvxtvbm7ffftv47IcffjApY21tTU5OjsmzSpUq8eOPP2JlZfXAw1TvCggIICAggDfffJN27dqxcOFCWrRo8cA2zfH111/fd393p7W5MeXHk853+fLlOX/+PKdOnXrgTvKkpCSaNWvGa6+9BtzJwX7q1CmCgoLMjjGvPipVqsTx48fx8/Mzu00RERERERERERF5/rSo/hSULVuWqKgoevTowdy5cylQoAADBw7E1tYWg8GQ7/b8/f1JS0tj+fLlVKlShXXr1rFq1SqTMj4+Ppw5c8aYZsTR0ZGoqCiqV69O8+bNmTRpEgEBAVy4cIF169bRokULgoODGTx4MK1ataJUqVKcP3+e/fv307JlS2ObWVlZbNu2jQoVKmBnZ3dfypMHSUpKYtKkSTRv3pwtW7bw73//m3Xr1gHkGdPdnOj58aTzXatWLSIiImjZsiVTp07Fz8+PEydOYDAYqF+/Pv7+/qxYsYLdu3dTqFAhpk6dyk8//ZSvRfW8+hg6dCgvvPACffv2pVu3btjb23P8+HG2bNnC7Nmz8z0n9zoWH51nqiARERERERERERF5PBbPO4D/FR9//DHu7u5ERETQokULunfvjqOjo1kHTv5R06ZNefPNN+nbty8VK1Zk9+7djBw50qRMy5YtqV+/PrVr18bNzY1ly5ZhMBhYv349ERERdO7cmYCAAF555RV++OEH3N3dsbS05JdffqFjx44EBATQpk0bGjRoQHx8PAA1atSgV69etG3bFjc3NyZNmmRWvAMHDuTAgQOEhoYybtw4pk6dSnR0NECeMT2uJ53vzz//nCpVqtCuXTuCgoIYMmSIcZf+iBEjqFSpEtHR0URGRuLh4UHz5s3zHeOj+ihfvjw7duzg1KlT1KxZk9DQUEaNGkWxYsXy3Y+IiIiIiIiIiIj8eQy3b9++/byD+F90/vx5vLy82Lp1K3Xr1n3e4Tx1P/74Ix06dGD37t0UKFCAK1euYDAYWLVq1WMtQD+pv9J8JyYmUrt2bS5fvvzIvPF58fHxITY2ltjYWLPKZ2Zm4uzsjFfsZ1jY5P0/DERERETk2To7sdHzDkFERERE8uHu+lpGRsYjM0Eo/ctT8uWXX5KVlUVISAjp6ekMGTIEHx8fIiIi/rQYYmJiuHLlCqtXr85Xvbi4OFavXk1ycrLZdaZNm0Z6ejrJyck4OzvnL9Cn4K8w3yIiIiIiIiIiIvLPo/QvT8nNmzd56623CA4OpkWLFri5uZGYmEiBAgVYsmQJDg4OD7yCg4Ofd+gPtXPnzofGPWXKFCpXroy/vz9Fixb902P7X5xvERERERERERER+evTovpTEh0dzbFjx7h27Ro//fQTq1atwtvbG7iTIz05OfmB1/r16/Pd14oVKwgJCcHW1pbChQsTFRXF4MGDWbRoEf/5z38wGAwYDAYSExMBGDp0KAEBAdjZ2eHr68vIkSO5efMmAAkJCcTHx3PkyBFjvYSEBADCwsIeGLOzszM5OTl8/PHHGAwGYmJiHhjno/q9a9y4cRQtWhRHR0e6devGsGHDqFixotnzPXPmTFxdXdmwYQPR0dHMmTPHON9r167l6tWrvPvuuwQHB3Pr1i1yc3PZs2ePSVtJSUlERkZiZ2dHoUKFiI6O5vLlywBkZ2fTv39/ihYtSsGCBXnxxRfZv3+/Sf3169cTEBCAra0ttWvX5uzZs/fFu2vXLmrWrImtrS1eXl7079+fq1evGt9fvHiRJk2aYGtrS6lSpViyZEmecyAiIiIiIiIiIiJ/PqV/+RM4Ojri6Oj4VNpKT0+nXbt2TJo0iRYtWvDbb7+xc+dOOnbsSFpaGpmZmSxcuBAAV1dXY/8JCQkUK1aMo0ePGg/1HDJkCG3btuXYsWNs3LiRrVu3AhjTudja2uLn53dfDMnJyXTs2BEnJydmzJiBra3tQ8f9sH4BlixZwjvvvMOcOXMIDw9n+fLlTJkyhVKlSpk1F0uWLGHUqFHMnj2b0NBQDh8+TPfu3bG3t6dTp05YWd35es+ePZvJkyfj7+/P22+/Tbt27Th9+jRWVlYkJydTt25dunTpwowZM7CysmL79u3GA0WHDBnC559/zqJFi/D29mbSpElER0dz+vRpXF1dOXfuHC+//DJ9+vShR48eHDhwgIEDB5rEmZqaSv369Rk3bhwfffQRly5dom/fvvTt29f4WcXExHDhwgW2b99OgQIF6N+/PxcvXnzk+LOzs8nOzjbeZ2ZmmjVvIiIiIiIiIiIi8vh0UOnfzKFDh6hcuTJnz5417oS/y9yc6pMnT2b58uUcOHAAeLyc6s2bN8fFxcW4qx3I86DSP/b7wgsvEBYWxuzZs41lXnzxRbKyssyKxc/Pj7Fjx9KuXTvjs3HjxrF+/Xp2797N2bNnKVWqFB988AFdu3YF4Pjx4wQHB5OSkkLZsmV59dVXSUtLY9euXfe1f/XqVQoVKkRCQgKvvvoqcCftzN0DRAcPHsxbb73Ff/7zH7799ltjvWHDhvHuu+8aDyrt1q0blpaWzJs3z1hm165d1KpVi6tXr5KWlkaZMmXYt28fVapUAeDEiRMEBgYybdq0hx5UGhcXR3x8/H3PdVCpiIiIyF+DDioVERER+Xsx96BSpX/5m6lQoQJ169YlJCSE1q1bs2DBAmOqkof59NNPCQ8Px8PDAwcHB0aMGEFaWtozjzWvfk+ePEnVqlVN6vzx/mGuXr1KamoqXbt2NcmZPm7cOFJTU03Kli9f3vi3p6cngHEX+N2d6g+SmprKzZs3CQ8PNz4rUKAAVatWJSUlBYCUlBSqVatmUq969eom90eOHCEhIcEkzujoaHJzczlz5gwpKSlYWVlRuXJlY52yZcvi4uLyyDkYPnw4GRkZxuvcuXOPLC8iIiIiIiIiIiJPTulf/mYsLS3ZsmULu3fvZvPmzcyaNYu3336bvXv3PrD8nj17aN++PfHx8URHR+Ps7GxMs/IsPet+s7KyAFiwYMF9i9qWlpYm9wUKFDD+bTAYAMjNzQV4aOqapykrK4uePXvSv3//+96VLFmSU6dOPVa7NjY22NjYPGl4IiIiIiIiIiIikg/aqf43ZDAYCA8PJz4+nsOHD2Ntbc2qVauwtrY25gK/a/fu3Xh7e/P2228TFhaGv78/P/zwg0mZB9V7Uub0W6ZMmfsO/fzj/cO4u7tTrFgxvv/+e/z8/Ewuc3Oyw51d7Nu2bXvgu9KlS2NtbU1SUpLx2c2bN9m/fz9BQUEABAYGsm/fPpN6X3/9tcl9pUqVOH78+H1x+vn5YW1tTdmyZbl16xYHDx401jl58iRXrlwxexwiIiIiIiIiIiLy59BO9b+ZvXv3sm3bNl566SWKFi3K3r17uXTpEoGBgVy/fp1NmzZx8uRJChcujLOzM/7+/qSlpbF8+XKqVKnCunXrWLVqlUmbPj4+nDlzhuTkZEqUKIGjo+MT74A2p99+/frRvXt3wsLCqFGjBp9++inffPMNvr6+ZvURHx9P//79cXZ2pn79+mRnZ3PgwAEuX77MgAEDzGpj+PDhhISE0Lt3b3r16oW1tTXbt2+ndevWFClShNdff53Bgwfj6upKyZIlmTRpEteuXTPmaO/VqxdTpkxh8ODBdOvWjYMHD5rkmQcYOnQoL7zwAn379qVbt27Y29tz/PhxtmzZwuzZsylTpgz169enZ8+ezJ07FysrK2JjY/+UXfQiIiIiIiIiIiKSP1pU/5txcnLiq6++Yvr06WRmZuLt7c2UKVNo0KABYWFhJCYmEhYWRlZWFtu3b6dp06a8+eab9O3bl+zsbBo1asTIkSOJi4szttmyZUtWrlxJ7dq1uXLlCgsXLiQmJuaJ4jSn3/bt2/P9998zaNAgrl+/Tps2bYiJiblv5/fDdOvWDTs7O9577z0GDx6Mvb09ISEhDz3Y80ECAgLYvHkzb731FlWrVsXW1pZq1aoZDz+dOHEiubm5dOjQgd9++42wsDA2bdpEoUKFgDvpWz7//HPefPNNZs2aRdWqVRk/fjxdunQx9lG+fHl27NjB22+/Tc2aNbl9+zalS5embdu2xjILFy6kW7du1KpVC3d3d8aNG8fIkSPNHse9jsVHP/IgBREREREREREREXl8htu3b99+3kGI3FWvXj08PDxYvHjx8w7lb8fc04lFRERERERERETkfuaur2mnujw3165d4/333yc6OhpLS0uWLVvG1q1b2bJly58WQ0JCArGxsf9T+cvLjd6EhY3d8w5DRERERJ7A2YmNnncIIiIiIvIQOqhU7rNkyRIcHBweeAUHBz+1fgwGA+vXryciIoLKlSvzxRdf8PnnnxMVFQXw0BgcHBzYuXPnU4tDRERERERERERExFzaqf4Pd+PGDaytrU2eNW3alGrVqj2wfIECBZ5a37a2tmzduvWh75OTkx/6rnjx4k8tDhERERERERERERFzaaf6P0xkZCR9+/YlNjaWIkWKEB0dzbFjx2jQoAEODg64u7vTu3dvXFxc8PPzw8/PD19fX1auXEn9+vUJCAigZMmSvPPOO8Y2z507R5s2bXBxccHV1ZVmzZpx9uxZ4/uYmBiaN2/O5MmT8fT0pHDhwvTp04ebN28ay2RnZzN06FC8vLywsbHBz8+PHTt2ULp0aerXr8/q1auN8fj5+XHy5EkMBgOnT5/Oc8xXrlyhZ8+euLu7U7BgQcqVK8fatWsfWDYuLo6KFSvy0UcfUbJkSRwcHOjduzc5OTlMmjQJDw8PihYtajJ+c/r4/PPPCQ4OxsbGBh8fH6ZMmWJS38fHx3jAqaOjIyVLlmT+/Pl5jk1ERERERERERET+XFpU/wdatGgR1tbWJCUlMXHiROrUqUNoaCgHDhxg48aN/PTTT7Rp08ZYfvjw4UycOJGRI0dy/Phxli5diru7OwA3b94kOjoaR0dHdu7cSVJSEg4ODtSvX58bN24Y29i+fTupqals376dRYsWkZCQQEJCgvF9x44dWbZsGTNnziQlJYV58+bh4OCAwWCgS5cuLFy40GQMCxcuJCIiAj8/v0eONTc3lwYNGpCUlMQnn3zC8ePHmThxIpaWlg+tk5qayoYNG9i4cSPLli3jww8/pFGjRpw/f54dO3bw7rvvMmLECPbu3WtWHwcPHqRNmza88sorHD16lLi4OEaOHGkyfoApU6YQFhbG4cOH6d27N6+//jonT558aJzZ2dlkZmaaXCIiIiIiIiIiIvJsGW7fvn37eQchf57IyEgyMzM5dOgQAOPGjWPnzp1s2rTJWOb8+fN4eXlx8uRJPD09cXNzY/bs2XTr1u2+9j755BPGjRtHSkoKBoMBuJNSxsXFhdWrV/PSSy8RExNDYmIiqampxoXmNm3aYGFhwfLlyzl16hRlypRhy5Ytxnzq97pw4QIlS5Zk9+7dVK1alZs3b1KsWDEmT55Mp06dHjnezZs306BBA1JSUggICLjv/R8PKo2Li+O9997jxx9/xNHREYD69etz8uRJUlNTsbC48ztU2bJliYmJYdiwYXn20b59ey5dusTmzZuNz4YMGcK6dev49ttvgTs71WvWrMnixYsBuH37Nh4eHsTHx9OrV68Hji0uLo74+Pj7nnvFfqaDSkVERET+5nRQqYiIiMifLzMzE2dnZzIyMnBycnpoOe1U/weqXLmy8e8jR46wfft2k0NAy5YtC9zZsZ2SkkJ2djZ169Z9YFtHjhzh9OnTODo6Guu7urpy/fp1UlNTjeWCg4NNdod7enpy8eJF4E7udEtLS2rVqvXAPooVK0ajRo346KOPAPjiiy/Izs6mdevWeY41OTmZEiVKPHCx+2F8fHyMC+oA7u7uBAUFGRfU7z67N/5H9ZGSkkJ4eLjJs/DwcL777jtycnKMz8qXL2/822Aw4OHhYezjQYYPH05GRobxOnfunNljFBERERERERERkcejg0r/gezt7Y1/Z2Vl0aRJE9599937ynl6evL9998/sq2srCwqV67MkiVL7nvn5uZm/PuPB5waDAZyc3OBOweW5qVbt2506NCBadOmsXDhQtq2bYudXd67sc1p+48eFOuTxv+4/d7t40FsbGywsbF5Kn2LiIiIiIiIiIiIebRT/R+uUqVKfPvtt/j4+JgcBOrn54e9vT3+/v7Y2tqybdu2h9b/7rvvKFq06H31nZ2dzYohJCSE3NxcduzY8dAyDRs2xN7enrlz57Jx40a6dOliVtvly5fn/PnznDp1yqzyjyOvPgIDA0lKSjJ5lpSUREBAwCNzu4uIiIiIiIiIiMhfj3aq/8P16dOHBQsW0K5dO4YMGYKrqyunT59m+fLlfPDBBxQsWJChQ4cyZMgQrK2tCQ8P59KlS3z77bd07dqV9u3b895779GsWTPGjBlDiRIl+OGHH1i5ciVDhgyhRIkSecbg4+NDp06d6NKlCzNnzqRChQr88MMPXLx40XhgqqWlJTExMQwfPhx/f3+qV69u1vhq1apFREQELVu2ZOrUqfj5+XHixAkMBgP169d/orkzt4+BAwdSpUoVxo4dS9u2bdmzZw+zZ89mzpw5T6X/PzoWH/3InE8iIiIiIiIiIiLy+LRT/R+uWLFiJCUlkZOTw0svvURISAixsbG4uLgYc4iPHDmSgQMHMmrUKAIDA2nbtq0x17ednR1fffUVJUuW5OWXXyYwMJCuXbty/fr1fC3szp07l1atWtG7d2/Kli1L9+7duXr1qkmZrl27cuPGDTp37pyvMX7++edUqVKFdu3aERQUxJAhQ0xymT8Nj+qjUqVKfPbZZyxfvpxy5coxatQoxowZQ0xMzFONQURERERERERERJ49w+3bt28/7yBEzLFz507q1q3LuXPncHd3f97h/OWYezqxiIiIiIiIiIiI3M/c9TWlf5E83b59m549e7JixQouX77M4cOHqVix4lNrPzExkdq1a3P58mVcXFzue5+dnc2lS5eIi4ujdevWD11Qj4mJ4cqVK6xevdrsvpOSkujVqxcnTpygUaNG+aprrsjISCpWrMj06dOfetsPUm70Jixs8j7EVURERETkWTg7sdHzDkFERETkmdKiuuRp48aNJCQkkJiYiK+vL0WKFHmq7deoUYP09PSHHmy6bNkyunbtSsWKFfn4449N3i1ZsoSePXsCdxbfb9++jYODAwDe3t58++23j+x7wIABVKxYkQ0bNhjriYiIiIiIiIiIiDyMFtUlT6mpqXh6elKjRo1n0r61tTUeHh4PfR8TE/PQ/ONNmzalWrVqAAwZMoTMzEzef/99AAoUKJBn36mpqfTq1cusA1VFREREREREREREdFCpPFJMTAz9+vUjLS0Ng8GAj4/PI8tHRkbSr18/YmNjKVSoEO7u7ixYsICrV6/SuXNnHB0d8fPzY8OGDcY6iYmJGAwGrly5AkBCQgIuLi5s2rSJwMBAHBwcqF+/Punp6cY6OTk5DBgwAC8vL6pVq8b8+fNxdHTEwcEBPz8//Pz88PLyYsKECZQqVQpbW1sqVKjAihUrADh79iwGg4FffvmFLl26YDAYSEhIeOTY7sa5adMmQkNDsbW1pU6dOly8eJENGzYQGBiIk5MTr776KteuXTOpm5uby5AhQ3B1dcXDw4O4uDiT91OnTiUkJAR7e3u8vLzo3bs3WVlZj/5wRERERERERERE5E+nRXV5pBkzZjBmzBhKlChBeno6+/fvz7POokWLKFKkCPv27aNfv368/vrrtG7dmho1anDo0CFeeuklOnTocN/C872uXbvG5MmTWbx4MV999RVpaWkMGjTI+H7KlCkkJCTw0UcfsWvXLn799VdWrVpl0saECRP4+OOPef/99/n222958803ee2119ixYwdeXl6kp6fj5OTE9OnTSU9Pp23btmbNSVxcHLNnz2b37t2cO3eONm3aMH36dJYuXcq6devYvHkzs2bNum9O7O3t2bt3L5MmTWLMmDFs2bLF+N7CwoKZM2fy7bffsmjRIr788kuGDBnyyDiys7PJzMw0uUREREREREREROTZ0qK6PJKzszOOjo5YWlri4eGBm5tbnnUqVKjAiBEj8Pf3Z/jw4RQsWJAiRYrQvXt3/P39GTVqFL/88gvffPPNQ9u4efMm77//PmFhYVSqVIm+ffuybds24/vp06czfPhwXn75ZQIDA3n//fdNcrJnZ2czfvx4PvroI6Kjo/H19SUmJobXXnuNefPmGcdjMBhwdnbGw8MDW1tbs+Zk3LhxhIeHExoaSteuXdmxYwdz584lNDSUmjVr0qpVK7Zv325Sp3z58owePRp/f386duxIWFiYyXhiY2OpXbs2Pj4+1KlTh3HjxvHZZ589Mo4JEybg7OxsvLy8vMyKX0RERERERERERB6fcqrLU1e+fHnj35aWlhQuXJiQkBDjM3d3dwAuXrz40Dbs7OwoXbq08d7T09NYPiMjg/T0dGMudQArKyvCwsK4ffs2AKdPn+batWvUq1fPpN0bN24QGhr6BKMzHZ+7uzt2dnb4+vqaPNu3b99D6/xxPABbt25lwoQJnDhxgszMTG7dusX169e5du0adnZ2D4xj+PDhDBgwwHifmZmphXUREREREREREZFnTIvq8tT98YBQg8Fg8sxgMAB38oznp427C+bmuJuPfN26dRQvXtzknY2Njdnt5BXbH8d299kfx/aoMmfPnqVx48a8/vrrvPPOO7i6urJr1y66du3KjRs3HrqobmNj88RjERERERERERERkfzRorr87Tg7O+Pp6cnevXuJiIgA4NatWxw8eJBKlSoBEBQUhI2NDWlpadSqVet5hpungwcPkpuby5QpU7CwuJORKa/ULyIiIiIiIiIiIvJ8aFFd/pbeeOMNJk6ciL+/P2XLlmXq1KlcuXLF+N7R0ZFBgwbx5ptvkpuby4svvkhGRgZJSUk4OTnRqVOn5xf8H/j5+XHz5k1mzZpFkyZNSEpK4v3333/s9o7FR+Pk5PQUIxQREREREREREZG7dFCp/C0NHDiQDh060KlTJ6pXr46joyMtWrQwKTN27FhGjhzJhAkTCAwMpH79+qxbt45SpUo9p6gfrEKFCkydOpV3332XcuXKsWTJEiZMmPC8wxIREREREREREZEHMNzOT6JqeWoiIyOpWLEi06dPf65t/NX8cUzXrl2jQ4cObNmyhd9++43Lly/j4uLyXGO8l4+PD7GxscTGxj7vUMjMzMTZ2ZmMjAztVBcREREREREREcknc9fXlP7lOVm5cuV9h1fK/fOyaNEidu7cye7duylSpAjOzs7PJa6EhARiY2NNUswA7N+/H3t7++cS08OUG70JC5sHH24qIiIiIiLyV3F2YqPnHYKIiMhj0aL6c+Lq6vq8Q8i3tLQ0goKCHvr++PHjlCxZ8on6+OO8pKamEhgYSLly5Z6o3YfJycnBYDBgYWFBr169+OSTTx5YrkqVKg987ubm9sj2b968qR9PRERERERERERE/ocop/pzEhkZaUwZMmfOHPz9/SlYsCDu7u60atXK7HZyc3MZMmQIrq6ueHh4EBcXZ/I+LS2NZs2a4eDggJOTE23atOGnn34yvo+JiaF58+YmdWJjY4mMjDTer1ixgpCQEAICArCysqJ8+fLs3r2b5ORkkpOTeeutt3B3dzceGjpnzhxj3VatWtG3b1+Ttg0GAydOnADgxo0b2Nvbs3Xr1vvmJTIykilTpvDVV19hMBiMMWVnZzNo0CCKFy+Ovb091apVIzEx0az5SkhIwMXFhTVr1hAUFISNjQ1paWlkZ2djYWGBvb09OTk5lC5dmnnz5pGcnMy8efNITEwkIyMDg8GAwWAwzrOPj49J+h2DwcDcuXNp2rQp9vb2vPPOOwD85z//oVKlShQsWBBfX1/i4+O5deuWsd6VK1fo1q0bbm5uODk5UadOHY4cOWLWmEREREREREREROTPo53qz9mBAwfo378/ixcvpkaNGvz666/s3LnT7PqLFi1iwIAB7N27lz179hATE0N4eDj16tUjNzfXuKC+Y8cObt26RZ8+fWjbtq3Zi9Dp6em0a9eOSZMm0aJFC3777Td27tyJr68vDg4OLFmyhNmzZzN79mxCQ0M5fPgw3bt3x97enk6dOlGrVi3mzZtnbG/Hjh0UKVKExMREypYty/79+7l58yY1atS4r++VK1cybNgwjh07xsqVK7G2tgagb9++HD9+nOXLl1OsWDFWrVpF/fr1OXr0KP7+/nmO6dq1a7z77rt88MEHFC5cmKJFixrbXLFihbHNrl27cvToUVq3bs3PP//MqFGjOHnyJAAODg4PbT8uLo6JEycyffp0rKys2LlzJx07dmTmzJnUrFmT1NRUevToAcDo0aMBaN26Nba2tmzYsAFnZ2fmzZtH3bp1OXXq1EP/V0N2djbZ2dnG+8zMzDzHLiIiIiIiIiIiIk9Gi+rPWVpaGvb29jRu3BhHR0e8vb0JDQ01u3758uWNC7P+/v7Mnj2bbdu2Ua9ePbZt28bRo0c5c+YMXl5eAHz88ccEBwezf//+h6Y0uVd6ejq3bt3i5ZdfxtvbG4CQkBDj+9GjRzNlyhRefvllAEqVKsXx48eZN28enTp1IjIykjfeeINLly5hZWXF8ePHGTlyJImJifTq1YvExESqVKmCnd39OcBdXV2xs7PD2toaDw8P43wtXLiQtLQ0ihUrBsCgQYPYuHEjCxcuZPz48XmO6ebNm8yZM4cKFSqY3aazszMGg8EYx6O8+uqrdO7c2XjfpUsXhg0bRqdOnQDw9fVl7NixDBkyhNGjR7Nr1y727dvHxYsXsbGxAWDy5MmsXr2aFStWGBfg/2jChAnEx8fnGY+IiIiIiIiIiIg8PVpUf87q1auHt7c3vr6+1K9fn/r169OiRYsHLjI/SPny5U3uPT09uXjxIgApKSl4eXkZF9QBgoKCcHFxISUlxaxF9QoVKlC3bl1CQkKIjo7mpZdeolWrVhQqVIirV6+SmppK165d6d69u7HOrVu3jAeKlitXDldXV3bs2IG1tTWhoaE0btyYf/3rX8Cdnev3pprJy9GjR8nJySEgIMDkeXZ2NoULFzarDWtra5N5expt3issLMzk/siRIyQlJRlTwcCdXO7Xr1/n2rVrHDlyhKysrPv6+v3330lNTX1oP8OHD2fAgAHG+8zMTJPPWkRERERERERERJ4+Lao/Z46Ojhw6dIjExEQ2b97MqFGjiIuLY//+/bi4uORZ/4+HYBoMBnJzc83u38LCgtu3b5s8u3nzpvFvS0tLtmzZwu7du9m8eTOzZs3i7bffZu/evcaF/wULFlCtWjWTNiwtLY3xREREkJiYiI2NDZGRkZQvX57s7GyOHTvG7t27GTRokNnxZmVlYWlpycGDB4193PWolCz3srW1xWAwPNU272Vvb39fzPHx8cbd/PcqWLAgWVlZeHp6PjAlz6O+AzY2Nsad7SIiIiIiIiIiIvLn0KL6X4CVlRVRUVFERUUxevRoXFxc+PLLLx+4CJsfgYGBnDt3jnPnzhl3MB8/fpwrV64QFBQEgJubG8eOHTOpl5ycbLJYbzAYCA8PJzw8nFGjRuHt7c2qVasYMGAAxYoV4/vvv6d9+/YPjaNWrVosWLAAGxsb3nnnHSwsLIiIiOC9994jOzub8PBws8cUGhpKTk4OFy9epGbNmvmZjidq09rampycnMdqv1KlSpw8eRI/P7+Hvv/xxx+xsrLCx8fnsfoQERERERERERGRP4cW1Z+ztWvX8v333xMREUGhQoVYv349ubm5lClT5onbjoqKIiQkhPbt2zN9+nRu3bpF7969qVWrljFFSZ06dXjvvff4+OOPqV69Op988gnHjh0z5nXfu3cv27Zt46WXXqJo0aLs3buXS5cuERgYCEB8fDz9+/fH2dmZ+vXrk52dzYEDB7h8+bIxNUlkZCRvvvkm1tbWvPjii8ZngwYNokqVKvft7H6UgIAA2rdvT8eOHZkyZQqhoaFcunSJbdu2Ub58eRo1apTveTKnTR8fH7Kysti2bRsVKlTAzs7O7BQ9o0aNonHjxpQsWZJWrVphYWHBkSNHOHbsGOPGjSMqKorq1avTvHlzJk2aREBAABcuXGDdunW0aNHivnQyIiIiIiIiIiIi8vxoUf05c3FxYeXKlcTFxXH9+nX8/f1ZtmwZwcHBT9y2wWDgP//5D/369SMiIgILCwvq16/PrFmzjGWio6MZOXIkQ4YM4fr163Tp0oWOHTty9OhRAJycnPjqq6+YPn06mZmZeHt7M2XKFBo0aABAt27dsLOz47333mPw4MHY29sTEhJCbGyssY+QkBBcXFwICAgwplOJjIwkJycnX/nU71q4cCHjxo1j4MCB/Pe//6VIkSK88MILNG7c+LHnKq82a9SoQa9evWjbti2//PILo0ePJi4uzqy2o6OjWbt2LWPGjOHdd9+lQIEClC1blm7dugF3Pqf169fz9ttv07lzZy5duoSHhwcRERG4u7vneyzH4qNxcnLKdz0RERERERERERHJm+H2HxNqi8jfUmZmJs7OzmRkZGhRXUREREREREREJJ/MXV/7n9mpfvv2bXr27MmKFSu4fPkyzs7OxMTEMH369KfSvsFgYNWqVTRv3vyB7xMTE6lduzaXL19+5OGSPj4+xMbGmuzkzo+4uDhWr15NcnKy2XXyiv3vICEhgdjYWK5cufK8Q/nLKzd6ExY25qWmERERERERkTvOTsx/OlEREflnsnjeATwtGzduJCEhgbVr15Kenk65cuWeazwJCQmPXFzPS1paGg4ODvdd48eP5+jRo6SlpZndVnp6ujFdy7Pw7bff0rJlS3x8fDAYDHn+kDFx4kQMBsNj/7DwMLt27aJQoUIYDAYMBgMWFhbY2NiYzN3dGP949enT56nGIiIiIiIiIiIiIv+b/md2qqempuLp6UmNGjUAsLL6ew+tWLFiD9yNPnPmTLZs2UKxYsXMbsvDw+MpRna/a9eu4evrS+vWrXnzzTcfWXb//v3MmzeP8uXLP/U47O3tGTduHL6+vtja2nLw4EFGjBjBsGHDeOWVV3B1daV79+7k5OQY6xw7dox69erRunXrpx7P03Ljxg2sra2fdxgiIiIiIiIiIiLC/8hO9ZiYGPr160daWhoGgwEfH5/7yqSnp9OoUSNsbW0pVaoUS5cuxcfHJ1/pYX7++WdatGiBnZ0d/v7+rFmz5oHlEhMT6dy5MxkZGcad0Pceannt2jW6dOmCo6MjJUuWZP78+Sb1z58/T4cOHahatSoVKlTglVde4ZdffsHPzw9XV1dsbGyMPxrs37+fevXqUaRIEZydnalVqxaHDh0yac9gMLB69WoAzp49i8Fg4LPPPqNmzZrY2tpSpUoVTp06xf79+wkLC8PBwYEGDRpw6dIls+alSpUqvPfee7zyyivY2Ng8tFxWVhbt27dnwYIFFCpU6L73V65coWfPnri7u1OwYEHKlSvH2rVrTcqsXr0af39/ChYsSHR0NOfOnTO+Cw0NpU+fPjRo0IDIyEgGDhxIgwYNOHnypHHu3Nzc8PDwMF5r166ldOnS1KpVy6yxXrlyhW7duuHm5oaTkxN16tThyJEjAJw6dQqDwcCJEydM6kybNo3SpUsb748dO0aDBg1wcHDA3d2dDh068PPPPxvfR0ZG0rdvX2JjYylSpAjR0dFmxSYiIiIiIiIiIiLP3v/EovqMGTMYM2YMJUqUID09nf37999XpmPHjly4cIHExP/X3p2HVVX1//9/HZlBOE4ocEuAgmCKJo5oiqmpWZY24PRRMRPLLL0cs3IgS7M0Z+t2yKEw0iybtUjpNlJxAHOK1CS0UMoJ0ZJpf//w5/l5FPFgIKLPx3Xty7PXXmvt99oXK+x9lmsnaM2aNVq4cKEyMzOLdZ+YmBhFRkbqp59+UpcuXdSnTx+dPHnyqnotW7bUrFmz5OHhoYyMDGVkZGjUqFGW6zNmzFCTJk2UnJysIUOG6JlnnlFqaqqki4nniIgI/f777/rss8+0a9cujRkzRgUFBYXGdPbsWfXv318//PCDtmzZoqCgIHXp0kVnz54tciwTJ07Uyy+/rJ07d8re3l69e/fWmDFjNHv2bG3atEkHDx7UhAkTivV8rufZZ5/Vgw8+qA4dOlx1raCgQA888IASExP1/vvva9++fXr99ddlZ2dnqXP+/Hm99tprWrFihRITE3X69Gn17NnzmvdLTk7Wjz/+eM2EeU5Ojt5//309+eSTMplMNo3hiSeeUGZmpr7++mvt2LFDYWFhat++vU6ePKk6deqoSZMmio2NtWoTGxur3r17S7qYlG/Xrp0aNWqk7du3a926dTp+/LgiIyOt2ixfvlyOjo5KTEzUO++8U2gsFy5cUFZWltUBAAAAAAAAoHSV7z1S/j9ms1nu7u6ys7MrdKuTn3/+WfHx8ZaV2JK0ePFiBQUFFes+UVFR6tWrlyRpypQpmjNnjpKSktS5c2ereo6OjjKbzTKZTIXG06VLFw0ZMkSSNHbsWM2cOVMbN25UcHCwVq5cqT///FPbtm1TlSpVJEmBgYHXjKldu3ZW5wsXLlSlSpX0/fff66GHHrpmu1GjRllWQA8bNky9evXSd999p1atWkmSBg4cqGXLll3nidguLi5OO3fuLPQLD0mKj49XUlKS9u/frzp16kiSatWqZVUnNzdX8+bNU/PmzSVdTDzXrVtXSUlJatasmaVezZo19eeffyovL0+TJk3SU089Veg9165dq9OnTysqKsqmMfzwww9KSkpSZmamZUX+9OnTtXbtWn300UeKjo5Wnz59NG/ePE2ePFnSxdXrO3bs0Pvvvy9Jmjdvnho1aqQpU6ZY+n333Xfl6+urX375xTL2oKAgvfHGG0XGM3XqVMXExNgUOwAAAAAAAICScVusVL+e1NRU2dvbKywszFIWGBhY6BYkRbl8H3A3Nzd5eHgUe7X7lf1cSrxf6iclJUWNGjWyJNSv5/jx4xo0aJCCgoJkNpvl4eGh7Ozs677I9PIYatSoIUkKDQ21KruRsRXmyJEjGjZsmGJjY+Xs7FxonZSUFNWsWdOSVC6Mvb29mjZtajkPCQlRpUqVtH//fqt6mzZt0vbt2/XOO+9o1qxZ+uCDDwrtb8mSJXrggQds3p9+165dys7OVtWqVa1eHnv48GEdOnRIktSzZ0+lpaVpy5Ytki6uUg8LC1NISIilj40bN1q1v3TtUh+S1Lhx4+vGM27cOJ05c8ZyXL4VDgAAAAAAAIDScVusVL9ZHBwcrM5NJtM1t2W50X5cXFyK1Vf//v114sQJzZ49W35+fnJyclJ4eLhycnJsjuHS1idXlt3I2AqzY8cOZWZmWn2pkZ+fr//973+aN2+eLly4UOxxFyUgIEDSxS8Jjh8/rkmTJln+hcElv/32m+Lj4/Xxxx/b3G92dra8vb2VkJBw1bVKlSpJuvhS2Hbt2mnlypVq0aKFVq5cqWeeecaqj65du2ratGlX9eHt7W357Obmdt14nJycitzDHgAAAAAAAEDJuyOS6sHBwcrLy1NycrJlBfDBgwd16tSpUruno6Oj8vPzi92uQYMGWrx4sU6ePGnTavXExEQtWLBAXbp0kXRxVfjlL728FbRv3167d++2KhswYIBCQkI0duxY2dnZqUGDBjp69KjVFihXysvL0/bt2y1bvaSmpur06dOqW7fuNe9dUFCgCxcuXFW+dOlSVa9eXQ8++KDN4wgLC9OxY8dkb29f6MtwL+nTp4/GjBmjXr166ddff7Xa9z0sLExr1qyRv7+/5WWzAAAAAAAAAMqPO2L7l5CQEHXo0EHR0dFKSkpScnKyoqOj5eLiYvMLKovL399f2dnZ+u677/TXX3/p/PnzNrXr1auXvLy81K1bNyUmJurXX3/VmjVrtHnz5kLrBwUF6b333tP+/fu1detW9enTp0RXfdsiJydHKSkpSklJUU5Ojn7//XelpKTo4MGDkiR3d3fVr1/f6nBzc1PVqlVVv359SVJERITatGmjxx57TN9++60OHz6sr7/+WuvWrbPcx8HBQc8995y2bt2qHTt2KCoqSi1atLAk2efPn6/PP/9cBw4c0IEDB7RkyRJNnz5d//d//2cVb0FBgZYuXar+/fsXK7HdoUMHhYeHq1u3bvrmm2+UlpamH3/8US+99JK2b99uqffoo4/q7NmzeuaZZ3TfffdZbS/z7LPP6uTJk+rVq5e2bdumQ4cOaf369RowYMANfQkDAAAAAAAA4Oa6Y5bKrlixQgMHDlSbNm3k5eWlqVOnau/evdfc4/vfatmypZ5++mn16NFDJ06c0MSJEzVp0qTrtnN0dNQ333yjkSNHqkuXLsrLy9Pdd9+t+fPnF1p/yZIlio6OVlhYmHx9fTVlyhSNGjWqhEdTtD/++EONGjWynE+fPl3Tp09XREREoVulXMuaNWs0atQo9erVS+fOnVNgYKBef/11y3VXV1eNHTtWvXv31u+//67WrVtryZIllusFBQUaN26cDh8+LHt7e9WuXVvTpk3T4MGDre4THx+v9PR0Pfnkk8Uap8lk0ldffaWXXnpJAwYM0J9//ikvLy+1adPGsi+9dPFLhK5du2rVqlV69913rfrw8fFRYmKixo4dq44dO+rChQvy8/NT586dVaFCyXzHtSemkzw8PEqkLwAAAAAAAADWTIZhGGUdRFk4evSofH19FR8fr/bt25d1OMC/lpWVJbPZrDNnzpBUBwAAAAAAAIrJ1vzaHbNSfcOGDcrOzlZoaKgyMjI0ZswY+fv7q02bNmUdGm4iwzA0ePBgffTRRzp16pSSk5N1zz33lHVYkqSoqCidPn1aa9eulSS1bdtW99xzj2bNmlWsfupPXK8KTq4lHyAAAAAAAOVU2uu2v1MNAK7njthTXZJyc3P14osvql69eurevbs8PT2VkJAgBwcHxcbGqmLFioUe9erVK+vQy9y1nk3FihW1adOmsg6vWNatW6dly5bpiy++UEZGhmVPd0kl9nPQtm1bDR8+vNixzZ49W8uWLSt2OwAAAAAAAAA3zx2zUr1Tp07q1KlTodcefvhhNW/evNBrDg4OpRlWuZCSknLNa//5z39uXiAl4NChQ/L29lbLli2vuna9n4OcnBw5OjqWWmxms7nU+gYAAAAAAABQMu6YpHpR3N3d5e7uXtZh3LICAwPLOoQSERUVpeXLl0u6+NJRPz8/paWlWa5f+XPQtm1b1a9fX/b29nr//fcVGhqqjRs3as+ePRo9erQ2bdokNzc3dezYUTNnzlS1atUUFRWl77//Xt9//71mz54tSTp8+LB8fX0VHR2tDRs26NixY7rrrrs0ZMgQDRs2zCq+y7d/AQAAAAAAAHDruWO2fwFmz56tV155RTVr1lRGRoa2bdt23TbLly+Xo6OjEhMT9c477+j06dNq166dGjVqpO3bt2vdunU6fvy4IiMjLfcIDw/XoEGDlJGRoYyMDPn6+qqgoEA1a9bU6tWrtW/fPk2YMEEvvviiVq1adcPjuXDhgrKysqwOAAAAAAAAAKWLleq4Y5jNZrm7u8vOzk5eXl42tQkKCtIbb7xhOX/11VfVqFEjTZkyxVL27rvvytfXV7/88ovq1KkjR0dHubq6Wt3Dzs5OMTExlvOAgABt3rxZq1atsiTki2vq1KlWfQIAAAAAAAAofaxUB4rQuHFjq/Ndu3Zp48aNVi8xDQkJkXRxv/aizJ8/X40bN5anp6cqVqyohQsXKj09/YZjGzdunM6cOWM5jhw5csN9AQAAAAAAALANK9WBIri5uVmdZ2dnq2vXrpo2bdpVdb29va/ZT1xcnEaNGqUZM2YoPDxc7u7uevPNN7V169Ybjs3JyUlOTk433B4AAAAAAABA8ZFUB4ohLCxMa9askb+/v+ztC58+jo6Oys/PtypLTExUy5YtNWTIEEvZ9Va2AwAAAAAAALj1kFQHiuHZZ5/VokWL1KtXL40ZM0ZVqlTRwYMHFRcXp8WLF8vOzk7+/v7aunWr0tLSVLFiRVWpUkVBQUFasWKF1q9fr4CAAL333nvatm2bAgICSjzGPTGd5OHhUeL9AgAAAAAAAGBPdaBYfHx8lJiYqPz8fHXs2FGhoaEaPny4KlWqpAoVLk6nUaNGyc7OTnfffbc8PT2Vnp6uwYMH69FHH1WPHj3UvHlznThxwmrVOgAAAAAAAIDywWQYhlHWQQD497KysmQ2m3XmzBlWqgMAAAAAAADFZGt+je1fyomoqCidPn1aa9euLetQruLv76/hw4dr+PDhZR1KoUwmkz755BN169atrEO5KbHUn7heFZxcS61/AAAAAABQutJef7CsQwBQBLZ/+Rfatm1b7ETyjbS500RFRZV6Ajw9PV0VK1a85pGenl6q97+WhIQEmUwmnT59ukzuDwAAAAAAAKBorFSHJCknJ0eOjo5lHcZN4+Pjo5SUlCKvAwAAAAAAAMCVWKl+g6KiovT9999r9uzZMplMMplMSktL0/fff69mzZrJyclJ3t7eeuGFF5SXl1dkm/z8fA0cOFABAQFycXFRcHCwZs+efcOxtW3bVkOHDtXQoUNlNptVrVo1jR8/Xpdvn+/v76/JkyerX79+8vDwUHR0tCRpzZo1qlevnpycnOTv768ZM2ZY9Z2ZmamuXbvKxcVFAQEBio2NtbqelpYmk8lklbA+ffq0TCaTEhISLGV79+7VQw89JA8PD7m7u6t169Y6dOiQJk2apOXLl+vTTz+1PKOEhATl5ORo6NCh8vb2lrOzs/z8/DR16lSbn0lGRoYeeOABubi4qFatWlq7dq0CAwMtx99//63o6GiFhoaqefPmGjJkiLKzs62e6ZX/wqBbt26KioqyuseDDz5oeTYrV66Uv7+/Zs2aZdXur7/+Uvfu3eXq6qqgoCB99tlnlmd33333SZIqV64sk8lk1f+VLly4oKysLKsDAAAAAAAAQOkiqX6DZs+erfDwcA0aNEgZGRnKyMiQg4ODunTpoqZNm2rXrl16++23tWTJEr366qvXbOPr66uCggLVrFlTq1ev1r59+zRhwgS9+OKLWrVq1Q3Ht3z5ctnb2yspKUmzZ8/WW2+9pcWLF1vVmT59uho2bKjk5GSNHz9eO3bsUGRkpHr27Kndu3dr0qRJGj9+vJYtW2ZpExUVpSNHjmjjxo366KOPtGDBAmVmZhYrtt9//11t2rSRk5OTNmzYoB07dujJJ59UXl6eRo0apcjISHXu3NnyjFq2bKk5c+bos88+06pVq5SamqrY2Fj5+/vbfM/x48frscce065du9SnTx/17NlT+/fvlySdO3dOnTp1UuXKlbVt2zatXr1a8fHxGjp0aLHG1a9fP/3xxx9KSEjQmjVrtHDhwkKfTUxMjCIjI/XTTz+pS5cu6tOnj06ePClfX1+tWbNGkpSamqqMjIwiv1yZOnWqzGaz5fD19S1WvAAAAAAAAACKj+1fbpDZbJajo6NcXV3l5eUlSXrppZfk6+urefPmyWQyKSQkRH/88YfGjh2rCRMmFNpGkuzs7BQTE2M5DwgI0ObNm/U03+sAACBRSURBVLVq1SpFRkbeUHy+vr6aOXOmTCaTgoODtXv3bs2cOVODBg2y1GnXrp1GjhxpOe/Tp4/at2+v8ePHS5Lq1Kmjffv26c0331RUVJR++eUXff3110pKSlLTpk0lSUuWLFHdunWLFdv8+fNlNpsVFxcnBwcHy70ucXFx0YULF6yeUXp6uoKCgnTvvffKZDLJz8+vWPd84okn9NRTT0mSJk+erG+//VZz587VggULtHLlSv3zzz9asWKF3NzcJEnz5s1T165dNW3aNNWoUeO6/f/888+Kj4/Xtm3b1KRJE0nS4sWLFRQUdFXdqKgo9erVS5I0ZcoUzZkzR0lJSercubOqVKkiSapevboqVapU5D3HjRunESNGWM6zsrJIrAMAAAAAAACljJXqJWj//v0KDw+XyWSylLVq1UrZ2dk6evRokW3nz5+vxo0by9PTUxUrVtTChQv/1csyW7RoYRVHeHi4Dhw4oPz8fEvZpeTv5fG3atXKqqxVq1aWdvv375e9vb0aN25suR4SEnLd5O+VUlJS1Lp1a0tC3RZRUVFKSUlRcHCwnn/+eX3zzTfFumd4ePhV55dWqu/fv18NGza0JNSli+MuKChQamqqTf2npqbK3t5eYWFhlrLAwEBVrlz5qroNGjSwfHZzc5OHh0exV/tLkpOTkzw8PKwOAAAAAAAAAKWLpPotIC4uTqNGjdLAgQP1zTffKCUlRQMGDFBOTk6p3vfyJHJJqVDh4o/U5fu35+bmWtVxcXEpdr9hYWE6fPiwJk+erL///luRkZF6/PHH/12wxVChQgWrMUlXj8tWV36ZYDKZVFBQcMOxAQAAAAAAALh5SKr/C46OjlYrv+vWravNmzdbJV8TExPl7u6umjVrFtrmUp2WLVtqyJAhatSokQIDA3Xo0KF/FdvWrVutzrds2aKgoCDZ2dlds03dunWVmJh4VWx16tSRnZ2dQkJClJeXpx07dliup6am6vTp05ZzT09PSRdf2nnJ5S8tlS6u1N60adM1k9KFPSNJ8vDwUI8ePbRo0SJ9+OGHWrNmjU6ePHnN8Vxuy5YtV51f2rambt262rVrl86dO2c17goVKig4ONgyrsvHlJ+frz179ljOg4ODlZeXp+TkZEvZwYMHderUKZviu8TR0dHSPwAAAAAAAIBbD3uq/wv+/v7aunWr0tLSVLFiRQ0ZMkSzZs3Sc889p6FDhyo1NVUTJ07UiBEjLCu4r2xTpUoVBQUFacWKFVq/fr0CAgL03nvvadu2bQoICLjh2NLT0zVixAgNHjxYO3fu1Ny5czVjxowi24wcOVJNmzbV5MmT1aNHD23evFnz5s3TggULJF1MHHfu3FmDBw/W22+/LXt7ew0fPtxq5bmLi4tatGih119/XQEBAcrMzNTLL79sdZ+hQ4dq7ty56tmzp8aNGyez2awtW7aoWbNmCg4Olr+/v9avX6/U1FRVrVpVZrNZc+fOlbe3txo1aqQKFSpo9erV8vLysnnrmdWrV6tJkya69957FRsbq6SkJC1ZskTSxb3kJ06cqP79+2vSpEn6888/9dxzz6lv376W/dTbtWunESNG6Msvv1Tt2rX11ltvWX2ZEBISog4dOig6Olpvv/22HBwcNHLkSLm4uFhtw3M9fn5+MplM+uKLL9SlSxe5uLioYsWKNreXpD0xndgKBgAAAAAAACglrFT/F0aNGiU7Ozvdfffd8vT0VG5urr766islJSWpYcOGevrppzVw4ECrpPKVbdLT0zV48GA9+uij6tGjh5o3b64TJ05oyJAh/yq2fv366e+//1azZs307LPPatiwYYqOji6yTVhYmFatWqW4uDjVr19fEyZM0CuvvKKoqChLnaVLl8rHx0cRERF69NFHFR0drerVq1v18+677yovL0+NGzfW8OHD9eqrr1pdr1q1qjZs2KDs7GxFRESocePGWrRokWVblEGDBik4OFhNmjSRp6enZbX/G2+8oSZNmqhp06ZKS0vTV199Zfmy4npiYmIUFxenBg0aaMWKFfrggw909913S5JcXV21fv16nTx5Uk2bNtXjjz+u9u3ba968eZb2Tz75pPr3769+/fopIiJCtWrV0n333Wd1jxUrVqhGjRpq06aNunfvrkGDBsnd3V3Ozs42xShJ//nPfxQTE6MXXnhBNWrU0NChQ21uCwAAAAAAAKD0mYwrN4pGude2bVvdc889mjVrVlmHIuni/uqDBw/WRx99pFOnTslsNisqKuqmxZeWlqaAgAAlJyfrnnvu+Vd9RUVF6fTp01q7du116x49elS+vr6SVCL3vp6srCyZzWb5Dl+lCk6upXovAAAAAAAA3DnSXn+wrEO4KS7l186cOVPkThBs/4JSt27dOi1btkwJCQmqVavWTX3BqCT5+voqIyND1apVK9X7XFp9HxoaqoyMDI0ZM0b+/v763//+J29v71K9NwAAAAAAAICbg6R6OZOenm7ZtqQw+/btu4nR2ObQoUPy9vZWy5YtJUn29iX3YxcbG6vBgwcXes3Pz0979+6VnZ2dvLy8Suye15Kbm6sXX3xRv/76q9zd3dWyZUvFxsZaVqsDAAAAAAAAKP/YU72c8fHxUUpKyjUPHx8fJSQk3DJbv0RFRem5555Tenq6TCaT/P39r6qTkZGhBx98UC4uLgoICNDKlSvl7+9v0xgefvhhrVmzRsHBwcrNzZWXl5fmz5+vc+fOadiwYZIubv9iMpmUkpJiU8x79+7VQw89JA8PD7m7u6t169Y6dOhQoXXXrVune++9V5UqVVLv3r3l7++v3bt36/jx4/rkk09kGIbVvRMSEmQymbR+/Xo1atRILi4uateunTIzM/X111+rbt268vDwUO/evXX+/Hmb4gUAAAAAAABw87BSvZyxt7dXYGBgWYdhs9mzZ6t27dpauHChtm3bJjs7Oz3xxBNWdfr166e//vpLCQkJcnBw0IgRI5SZmWlT/66urho2bJjuuusuJSUl6ezZsxo5cqQkXfUCVVv8/vvvatOmjdq2basNGzbIw8NDiYmJysvLK7T+uXPnNGLECDVo0EDZ2dmaMGGCunfvrpSUlCJfojpp0iTNmzdPrq6uioyMVGRkpJycnLRy5UplZ2ere/fumjt3rsaOHXvNPi5cuKALFy5YzrOysoo9XgAAAAAAAADFQ1IdpcpsNsvd3f2aW7D8/PPPio+P17Zt29SkSRNJ0uLFixUUFGRT/99++60OHTqkhIQES/+vvfaa7r///huKd/78+TKbzYqLi5ODg4MkqU6dOtes/9hjj1mdv/vuu/L09NS+fftUv379a7Z79dVX1apVK0nSwIEDNW7cOB06dEi1atWSJD3++OPauHFjkUn1qVOnKiYmxuaxAQAAAAAAAPj32P4FZSo1NVX29vYKCwuzlAUGBqpy5co2t/f19bVK2Ddr1uyG40lJSVHr1q0tCfXrOXDggHr16qVatWrJw8PDsr1Nenp6ke0aNGhg+VyjRg25urpaEuqXyq63Wn/cuHE6c+aM5Thy5IhNMQMAAAAAAAC4caxUBy7j4uJSrPpdu3aVn5+fFi1aJB8fHxUUFKh+/frKyckpst3lSXuTyXRVEt9kMqmgoKDIPpycnOTk5FSseAEAAAAAAAD8O6xUR5kKDg5WXl6ekpOTLWUHDx7UqVOnbG5/5MgRHT9+3FK2bdu2G46nQYMG2rRpk3Jzc69b98SJE0pNTdXLL7+s9u3bq27dujbHDQAAAAAAAKB8IqmOMhUSEqIOHTooOjpaSUlJSk5OVnR0tFxcXGQyma7b/v7771ft2rXVv39//fTTT0pMTNTLL78sSTa1v9LQoUOVlZWlnj17avv27Tpw4IDee+89paamXlW3cuXKqlq1qhYuXKiDBw9qw4YNGjFiRLHvCQAAAAAAAKD8YPsXlLkVK1Zo4MCBatOmjby8vDR16lTt3btXzs7O121rZ2entWvX6qmnnlLTpk1Vq1Ytvfnmm+ratatN7a9UtWpVbdiwQaNHj1ZERITs7Ox0zz33WF4qerkKFSooLi5Ozz//vOrXr6/g4GDNmTNHbdu2LfZ9S9KemE7y8PAo0xgAAAAAAACA25XJMAyjrIMALnf06FH5+voqPj5e7du3L3b7xMRE3XvvvTp48KBq165dChHemrKysmQ2m3XmzBmS6gAAAAAAAEAx2ZpfY6U6ytyGDRuUnZ2t0NBQZWRkaMyYMfL391ebNm1sav/JJ5+oYsWKCgoK0sGDBzVs2DC1atXqjkqoAwAAAAAAALg52FMdZS43N1cvvvii6tWrp+7du8vT01MJCQlycHBQbGysKlasWOhRr149SdLZs2f17LPPKiQkRFFRUWratKk+/fTTQu/19NNPX7O/p59++mYOGwAAAAAAAEA5xPYvuKWdPXtWx48fL/Sag4OD/Pz8itVfZmamsrKyCr3m4eGh6tWrFzvGWwXbvwAAAAAAAAA3ju1fcFtwd3eXu7t7ifVXvXr1cp04BwAAAAAAAFC22P4FAAAAAAAAAAAbkVQHAAAAAAAAAMBGJNUBAAAAAAAAALARSXUAAAAAAAAAAGxEUh0AAAAAAAAAABuRVAcAAAAAAAAAwEYk1QEAAAAAAAAAsBFJdQAAAAAAAAAAbERSHQAAAAAAAAAAG5FUBwAAAAAAAADARiTVAQAAAAAAAACwEUl1AAAAAAAAAABsRFIdAAAAAAAAAAAbkVQHAAAAAAAAAMBGJNUBAAAAAAAAALARSXUAAAAAAAAAAGxEUh0AAAAAAAAAABuRVAcAAAAAAAAAwEYk1QEAAAAAAAAAsBFJdQAAAAAAAAAAbERSHQAAAAAAAAAAG5FUBwAAAAAAAADARiTVAQAAAAAAAACwEUl1AAAAAAAAAABsRFIdAAAAAAAAAAAbkVQHAAAAAAAAAMBGJNUBAAAAAAAAALARSXUAAAAAAAAAAGxkX9YBACgZhmFIkrKysso4EgAAAAAAAKD8uZRXu5RnuxaS6sBt4sSJE5IkX1/fMo4EAAAAAAAAKL/Onj0rs9l8zesk1YHbRJUqVSRJ6enpRU56ACUvKytLvr6+OnLkiDw8PMo6HOCOwvwDyg7zDyg7zD+g7DD/bm+GYejs2bPy8fEpsh5JdeA2UaHCxVckmM1m/qMOlBEPDw/mH1BGmH9A2WH+AWWH+QeUHebf7cuWxaq8qBQAAAAAAAAAABuRVAcAAAAAAAAAwEYk1YHbhJOTkyZOnCgnJ6eyDgW44zD/gLLD/APKDvMPKDvMP6DsMP8gSSbDMIyyDgIAAAAAAAAAgPKAleoAAAAAAAAAANiIpDoAAAAAAAAAADYiqQ4AAAAAAAAAgI1IqgMAAAAAAAAAYCOS6sAtav78+fL395ezs7OaN2+upKSkIuuvXr1aISEhcnZ2VmhoqL766iur64ZhaMKECfL29paLi4s6dOigAwcOlOYQgHKrpOffxx9/rI4dO6pq1aoymUxKSUkpxeiB8q0k519ubq7Gjh2r0NBQubm5ycfHR/369dMff/xR2sMAyqWS/v03adIkhYSEyM3NTZUrV1aHDh20devW0hwCUG6V9Py73NNPPy2TyaRZs2aVcNTA7aGk519UVJRMJpPV0blz59IcAsoASXXgFvThhx9qxIgRmjhxonbu3KmGDRuqU6dOyszMLLT+jz/+qF69emngwIFKTk5Wt27d1K1bN+3Zs8dS54033tCcOXP0zjvvaOvWrXJzc1OnTp30zz//3KxhAeVCacy/c+fO6d5779W0adNu1jCAcqmk59/58+e1c+dOjR8/Xjt37tTHH3+s1NRUPfzwwzdzWEC5UBq//+rUqaN58+Zp9+7d+uGHH+Tv76+OHTvqzz//vFnDAsqF0ph/l3zyySfasmWLfHx8SnsYQLlUWvOvc+fOysjIsBwffPDBzRgObiYDwC2nWbNmxrPPPms5z8/PN3x8fIypU6cWWj8yMtJ48MEHrcqaN29uDB482DAMwygoKDC8vLyMN99803L99OnThpOTk/HBBx+UwgiA8quk59/lDh8+bEgykpOTSzRm4HZRmvPvkqSkJEOS8dtvv5VM0MBt4mbMvzNnzhiSjPj4+JIJGrhNlNb8O3r0qPGf//zH2LNnj+Hn52fMnDmzxGMHyrvSmH/9+/c3HnnkkVKJF7cOVqoDt5icnBzt2LFDHTp0sJRVqFBBHTp00ObNmwtts3nzZqv6ktSpUydL/cOHD+vYsWNWdcxms5o3b37NPoE7UWnMPwC2uVnz78yZMzKZTKpUqVKJxA3cDm7G/MvJydHChQtlNpvVsGHDkgseKOdKa/4VFBSob9++Gj16tOrVq1c6wQPlXGn+/ktISFD16tUVHBysZ555RidOnCj5AaBMkVQHbjF//fWX8vPzVaNGDavyGjVq6NixY4W2OXbsWJH1L/1ZnD6BO1FpzD8AtrkZ8++ff/7R2LFj1atXL3l4eJRM4MBtoDTn3xdffKGKFSvK2dlZM2fO1Lfffqtq1aqV7ACAcqy05t+0adNkb2+v559/vuSDBm4TpTX/OnfurBUrVui7777TtGnT9P333+uBBx5Qfn5+yQ8CZca+rAMAAAAASltubq4iIyNlGIbefvvtsg4HuGPcd999SklJ0V9//aVFixYpMjJSW7duVfXq1cs6NOC2tWPHDs2ePVs7d+6UyWQq63CAO07Pnj0tn0NDQ9WgQQPVrl1bCQkJat++fRlGhpLESnXgFlOtWjXZ2dnp+PHjVuXHjx+Xl5dXoW28vLyKrH/pz+L0CdyJSmP+AbBNac6/Swn13377Td9++y2r1IErlOb8c3NzU2BgoFq0aKElS5bI3t5eS5YsKdkBAOVYacy/TZs2KTMzU3fddZfs7e1lb2+v3377TSNHjpS/v3+pjAMoj27W///VqlVL1apV08GDB/990LhlkFQHbjGOjo5q3LixvvvuO0tZQUGBvvvuO4WHhxfaJjw83Kq+JH377beW+gEBAfLy8rKqk5WVpa1bt16zT+BOVBrzD4BtSmv+XUqoHzhwQPHx8apatWrpDAAox27m77+CggJduHDh3wcN3CZKY/717dtXP/30k1JSUiyHj4+PRo8erfXr15feYIBy5mb9/jt69KhOnDghb2/vkgkct4ayflMqgKvFxcUZTk5OxrJly4x9+/YZ0dHRRqVKlYxjx44ZhmEYffv2NV544QVL/cTERMPe3t6YPn26sX//fmPixImGg4ODsXv3bkud119/3ahUqZLx6aefGj/99JPxyCOPGAEBAcbff/9908cH3MpKY/6dOHHCSE5ONr788ktDkhEXF2ckJycbGRkZN318wK2spOdfTk6O8fDDDxs1a9Y0UlJSjIyMDMtx4cKFMhkjcKsq6fmXnZ1tjBs3zti8ebORlpZmbN++3RgwYIDh5ORk7Nmzp0zGCNyqSuPvn1fy8/MzZs6cWdpDAcqdkp5/Z8+eNUaNGmVs3rzZOHz4sBEfH2+EhYUZQUFBxj///FMmY0TpIKkO3KLmzp1r3HXXXYajo6PRrFkzY8uWLZZrERERRv/+/a3qr1q1yqhTp47h6Oho1KtXz/jyyy+trhcUFBjjx483atSoYTg5ORnt27c3UlNTb8ZQgHKnpOff0qVLDUlXHRMnTrwJowHKl5Kcf4cPHy507kkyNm7ceJNGBJQfJTn//v77b6N79+6Gj4+P4ejoaHh7exsPP/ywkZSUdLOGA5QrJf33zyuRVAeurSTn3/nz542OHTsanp6ehoODg+Hn52cMGjTIkqTH7cNkGIZRNmvkAQAAAAAAAAAoX9hTHQAAAAAAAAAAG5FUBwAAAAAAAADARiTVAQAAAAAAAACwEUl1AAAAAAAAAABsRFIdAAAAAAAAAAAbkVQHAAAAAAAAAMBGJNUBAAAAAAAAALARSXUAAAAAAAAAAGxEUh0AAAAAAAAAABuRVAcAAABQaqKiomQyma46Dh48WCL9L1u2TJUqVSqRvm5UVFSUunXrVqYxFCUtLU0mk0kpKSllHQoAAMBtwb6sAwAAAABwe+vcubOWLl1qVebp6VlG0Vxbbm6uHBwcyjqMEpWTk1PWIQAAANx2WKkOAAAAoFQ5OTnJy8vL6rCzs5MkffrppwoLC5Ozs7Nq1aqlmJgY5eXlWdq+9dZbCg0NlZubm3x9fTVkyBBlZ2dLkhISEjRgwACdOXPGsgJ+0qRJkiSTyaS1a9daxVGpUiUtW7ZM0v+/evvDDz9URESEnJ2dFRsbK0lavHix6tatK2dnZ4WEhGjBggXFGm/btm313HPPafjw4apcubJq1KihRYsW6dy5cxowYIDc3d0VGBior7/+2tImISFBJpNJX375pRo0aCBnZ2e1aNFCe/bssep7zZo1qlevnpycnOTv768ZM2ZYXff399fkyZPVr18/eXh4KDo6WgEBAZKkRo0ayWQyqW3btpKkbdu26f7771e1atVkNpsVERGhnTt3WvVnMpm0ePFide/eXa6urgoKCtJnn31mVWfv3r166KGH5OHhIXd3d7Vu3VqHDh2yXP+3zxMAAOBWQ1IdAAAAQJnYtGmT+vXrp2HDhmnfvn3673//q2XLlum1116z1KlQoYLmzJmjvXv3avny5dqwYYPGjBkjSWrZsqVmzZolDw8PZWRkKCMjQ6NGjSpWDC+88IKGDRum/fv3q1OnToqNjdWECRP02muvaf/+/ZoyZYrGjx+v5cuXF6vf5cuXq1q1akpKStJzzz2nZ555Rk888YRatmypnTt3qmPHjurbt6/Onz9v1W706NGaMWOGtm3bJk9PT3Xt2lW5ubmSpB07digyMlI9e/bU7t27NWnSJI0fP97yRcEl06dPV8OGDZWcnKzx48crKSlJkhQfH6+MjAx9/PHHkqSzZ8+qf//++uGHH7RlyxYFBQWpS5cuOnv2rFV/MTExioyM1E8//aQuXbqoT58+OnnypCTp999/V5s2beTk5KQNGzZox44devLJJy1fjJTU8wQAALilGAAAAABQSvr372/Y2dkZbm5uluPxxx83DMMw2rdvb0yZMsWq/nvvvWd4e3tfs7/Vq1cbVatWtZwvXbrUMJvNV9WTZHzyySdWZWaz2Vi6dKlhGIZx+PBhQ5Ixa9Ysqzq1a9c2Vq5caVU2efJkIzw8vMgxPvLII5bziIgI495777Wc5+XlGW5ubkbfvn0tZRkZGYYkY/PmzYZhGMbGjRsNSUZcXJylzokTJwwXFxfjww8/NAzDMHr37m3cf//9VvcePXq0cffdd1vO/fz8jG7dulnVuTTW5OTka47BMAwjPz/fcHd3Nz7//HNLmSTj5ZdftpxnZ2cbkoyvv/7aMAzDGDdunBEQEGDk5OQU2ueNPE8AAIBbHXuqAwAAAChV9913n95++23LuZubmyRp165dSkxMtFqZnp+fr3/++Ufnz5+Xq6ur4uPjNXXqVP3888/KyspSXl6e1fV/q0mTJpbP586d06FDhzRw4EANGjTIUp6Xlyez2Vysfhs0aGD5bGdnp6pVqyo0NNRSVqNGDUlSZmamVbvw8HDL5ypVqig4OFj79++XJO3fv1+PPPKIVf1WrVpp1qxZys/Pt2ypc/mYinL8+HG9/PLLSkhIUGZmpvLz83X+/Hmlp6dfcyxubm7y8PCwxJ2SkqLWrVsXuhd9ST5PAACAWwlJdQAAAAClys3NTYGBgVeVZ2dnKyYmRo8++uhV15ydnZWWlqaHHnpIzzzzjF577TVVqVJFP/zwgwYOHKicnJwik+omk0mGYViVXdpG5crYLo9HkhYtWqTmzZtb1buUsLbVlUlmk8lkVWYymSRJBQUFxerXFpePqSj9+/fXiRMnNHv2bPn5+cnJyUnh4eFXvdy0sLFcitvFxeWa/Zfk8wQAALiVkFQHAAAAUCbCwsKUmppaaMJduriHeEFBgWbMmKEKFS6+DmrVqlVWdRwdHZWfn39VW09PT2VkZFjODxw4cNX+5VeqUaOGfHx89Ouvv6pPnz7FHU6J2LJli+666y5J0qlTp/TLL7+obt26kqS6desqMTHRqn5iYqLq1KlTZJLa0dFRkq56TomJiVqwYIG6dOkiSTpy5Ij++uuvYsXboEEDLV++XLm5uVcl32+F5wkAAFAaSKoDAAAAKBMTJkzQQw89pLvuukuPP/64KlSooF27dmnPnj169dVXFRgYqNzcXM2dO1ddu3ZVYmKi3nnnHas+/P39lZ2dre+++04NGzaUq6urXF1d1a5dO82bN0/h4eHKz8/X2LFjC92i5EoxMTF6/vnnZTab1blzZ124cEHbt2/XqVOnNGLEiNJ6FBavvPKKqlatqho1auill15StWrV1K1bN0nSyJEj1bRpU02ePFk9evTQ5s2bNW/ePC1YsKDIPqtXry4XFxetW7dONWvWlLOzs8xms4KCgvTee++pSZMmysrK0ujRo4tceV6YoUOHau7cuerZs6fGjRsns9msLVu2qFmzZgoODi7z5wkAAFAaKpR1AAAAAADuTJ06ddIXX3yhb775Rk2bNlWLFi00c+ZM+fn5SZIaNmyot956S9OmTVP9+vUVGxurqVOnWvXRsmVLPf300+rRo4c8PT31xhtvSJJmzJghX19ftW7dWr1799aoUaNs2oP9qaee0uLFi7V06VKFhoYqIiJCy5YtU0BAQMk/gEK8/vrrGjZsmBo3bqxjx47p888/t6w0DwsL06pVqxQXF6f69etrwoQJeuWVVxQVFVVkn/b29pozZ47++9//ysfHx7Iv+5IlS3Tq1CmFhYWpb9++ev7551W9evVixVu1alVt2LBB2dnZioiIUOPGjbVo0SLLFxhl/TwBAABKg8m4cqNBAAAAAMBNlZCQoPvuu0+nTp1SpUqVyjocAAAAFIGV6gAAAAAAAAAA2IikOgAAAAAAAAAANmL7FwAAAAAAAAAAbMRKdQAAAAAAAAAAbERSHQAAAAAAAAAAG5FUBwAAAAAAAADARiTVAQAAAAAAAACwEUl1AAAAAAAAAABsRFIdAAAAAAAAAAAbkVQHAAAAAAAAAMBGJNUBAAAAAAAAALDR/wO+dT7oDhMXUQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -14328,7 +14397,7 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 48, "metadata": {}, "outputs": [ { @@ -14400,7 +14469,7 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 49, "metadata": {}, "outputs": [], "source": [ @@ -14427,7 +14496,7 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 50, "metadata": {}, "outputs": [ { @@ -14437,9 +14506,9 @@ "traceback": [ "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[1;31mImportError\u001b[0m Traceback (most recent call last)", - "Cell \u001b[1;32mIn[17], line 2\u001b[0m\n\u001b[0;32m 1\u001b[0m \u001b[38;5;66;03m# This cell should output a list of predictions.\u001b[39;00m\n\u001b[1;32m----> 2\u001b[0m test_df \u001b[38;5;241m=\u001b[39m \u001b[43mpd\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mread_parquet\u001b[49m\u001b[43m(\u001b[49m\u001b[43mfilepath\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 3\u001b[0m test_df \u001b[38;5;241m=\u001b[39m test_df\u001b[38;5;241m.\u001b[39mdrop(columns\u001b[38;5;241m=\u001b[39m[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mf_purchase_lh\u001b[39m\u001b[38;5;124m\"\u001b[39m])\n\u001b[0;32m 4\u001b[0m \u001b[38;5;28mprint\u001b[39m(testing_hidden_data(test_df))\n", - "File \u001b[1;32mc:\\Users\\nicholassng\\OneDrive - Singapore Institute Of Technology\\Desktop\\datathon\\venv\\lib\\site-packages\\pandas\\io\\parquet.py:651\u001b[0m, in \u001b[0;36mread_parquet\u001b[1;34m(path, engine, columns, storage_options, use_nullable_dtypes, dtype_backend, filesystem, filters, **kwargs)\u001b[0m\n\u001b[0;32m 498\u001b[0m \u001b[38;5;129m@doc\u001b[39m(storage_options\u001b[38;5;241m=\u001b[39m_shared_docs[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mstorage_options\u001b[39m\u001b[38;5;124m\"\u001b[39m])\n\u001b[0;32m 499\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mread_parquet\u001b[39m(\n\u001b[0;32m 500\u001b[0m path: FilePath \u001b[38;5;241m|\u001b[39m ReadBuffer[\u001b[38;5;28mbytes\u001b[39m],\n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 508\u001b[0m \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs,\n\u001b[0;32m 509\u001b[0m ) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m DataFrame:\n\u001b[0;32m 510\u001b[0m \u001b[38;5;250m \u001b[39m\u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[0;32m 511\u001b[0m \u001b[38;5;124;03m Load a parquet object from the file path, returning a DataFrame.\u001b[39;00m\n\u001b[0;32m 512\u001b[0m \n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 648\u001b[0m \u001b[38;5;124;03m 1 4 9\u001b[39;00m\n\u001b[0;32m 649\u001b[0m \u001b[38;5;124;03m \"\"\"\u001b[39;00m\n\u001b[1;32m--> 651\u001b[0m impl \u001b[38;5;241m=\u001b[39m \u001b[43mget_engine\u001b[49m\u001b[43m(\u001b[49m\u001b[43mengine\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 653\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m use_nullable_dtypes \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m lib\u001b[38;5;241m.\u001b[39mno_default:\n\u001b[0;32m 654\u001b[0m msg \u001b[38;5;241m=\u001b[39m (\n\u001b[0;32m 655\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mThe argument \u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124muse_nullable_dtypes\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m is deprecated and will be removed \u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m 656\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124min a future version.\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m 657\u001b[0m )\n", - "File \u001b[1;32mc:\\Users\\nicholassng\\OneDrive - Singapore Institute Of Technology\\Desktop\\datathon\\venv\\lib\\site-packages\\pandas\\io\\parquet.py:67\u001b[0m, in \u001b[0;36mget_engine\u001b[1;34m(engine)\u001b[0m\n\u001b[0;32m 64\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mImportError\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m err:\n\u001b[0;32m 65\u001b[0m error_msgs \u001b[38;5;241m+\u001b[39m\u001b[38;5;241m=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;124m - \u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;241m+\u001b[39m \u001b[38;5;28mstr\u001b[39m(err)\n\u001b[1;32m---> 67\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mImportError\u001b[39;00m(\n\u001b[0;32m 68\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mUnable to find a usable engine; \u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m 69\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mtried using: \u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mpyarrow\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m, \u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mfastparquet\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m.\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m 70\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mA suitable version of \u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m 71\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mpyarrow or fastparquet is required for parquet \u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m 72\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124msupport.\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m 73\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mTrying to import the above resulted in these errors:\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m 74\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;132;01m{\u001b[39;00merror_msgs\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m 75\u001b[0m )\n\u001b[0;32m 77\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m engine \u001b[38;5;241m==\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mpyarrow\u001b[39m\u001b[38;5;124m\"\u001b[39m:\n\u001b[0;32m 78\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m PyArrowImpl()\n", + "Cell \u001b[1;32mIn[50], line 2\u001b[0m\n\u001b[0;32m 1\u001b[0m \u001b[38;5;66;03m# This cell should output a list of predictions.\u001b[39;00m\n\u001b[1;32m----> 2\u001b[0m test_df \u001b[38;5;241m=\u001b[39m \u001b[43mpd\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mread_parquet\u001b[49m\u001b[43m(\u001b[49m\u001b[43mfilepath\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 3\u001b[0m test_df \u001b[38;5;241m=\u001b[39m test_df\u001b[38;5;241m.\u001b[39mdrop(columns\u001b[38;5;241m=\u001b[39m[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mf_purchase_lh\u001b[39m\u001b[38;5;124m\"\u001b[39m])\n\u001b[0;32m 4\u001b[0m \u001b[38;5;28mprint\u001b[39m(testing_hidden_data(test_df))\n", + "File \u001b[1;32mc:\\Users\\Matthew Chuang\\Documents\\Github\\NUS-SDS-Datathon-Singlife\\venv\\lib\\site-packages\\pandas\\io\\parquet.py:651\u001b[0m, in \u001b[0;36mread_parquet\u001b[1;34m(path, engine, columns, storage_options, use_nullable_dtypes, dtype_backend, filesystem, filters, **kwargs)\u001b[0m\n\u001b[0;32m 498\u001b[0m \u001b[38;5;129m@doc\u001b[39m(storage_options\u001b[38;5;241m=\u001b[39m_shared_docs[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mstorage_options\u001b[39m\u001b[38;5;124m\"\u001b[39m])\n\u001b[0;32m 499\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mread_parquet\u001b[39m(\n\u001b[0;32m 500\u001b[0m path: FilePath \u001b[38;5;241m|\u001b[39m ReadBuffer[\u001b[38;5;28mbytes\u001b[39m],\n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 508\u001b[0m \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs,\n\u001b[0;32m 509\u001b[0m ) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m DataFrame:\n\u001b[0;32m 510\u001b[0m \u001b[38;5;250m \u001b[39m\u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[0;32m 511\u001b[0m \u001b[38;5;124;03m Load a parquet object from the file path, returning a DataFrame.\u001b[39;00m\n\u001b[0;32m 512\u001b[0m \n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 648\u001b[0m \u001b[38;5;124;03m 1 4 9\u001b[39;00m\n\u001b[0;32m 649\u001b[0m \u001b[38;5;124;03m \"\"\"\u001b[39;00m\n\u001b[1;32m--> 651\u001b[0m impl \u001b[38;5;241m=\u001b[39m \u001b[43mget_engine\u001b[49m\u001b[43m(\u001b[49m\u001b[43mengine\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 653\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m use_nullable_dtypes \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m lib\u001b[38;5;241m.\u001b[39mno_default:\n\u001b[0;32m 654\u001b[0m msg \u001b[38;5;241m=\u001b[39m (\n\u001b[0;32m 655\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mThe argument \u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124muse_nullable_dtypes\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m is deprecated and will be removed \u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m 656\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124min a future version.\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m 657\u001b[0m )\n", + "File \u001b[1;32mc:\\Users\\Matthew Chuang\\Documents\\Github\\NUS-SDS-Datathon-Singlife\\venv\\lib\\site-packages\\pandas\\io\\parquet.py:67\u001b[0m, in \u001b[0;36mget_engine\u001b[1;34m(engine)\u001b[0m\n\u001b[0;32m 64\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mImportError\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m err:\n\u001b[0;32m 65\u001b[0m error_msgs \u001b[38;5;241m+\u001b[39m\u001b[38;5;241m=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;124m - \u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;241m+\u001b[39m \u001b[38;5;28mstr\u001b[39m(err)\n\u001b[1;32m---> 67\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mImportError\u001b[39;00m(\n\u001b[0;32m 68\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mUnable to find a usable engine; \u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m 69\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mtried using: \u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mpyarrow\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m, \u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mfastparquet\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m.\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m 70\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mA suitable version of \u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m 71\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mpyarrow or fastparquet is required for parquet \u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m 72\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124msupport.\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m 73\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mTrying to import the above resulted in these errors:\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m 74\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;132;01m{\u001b[39;00merror_msgs\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m 75\u001b[0m )\n\u001b[0;32m 77\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m engine \u001b[38;5;241m==\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mpyarrow\u001b[39m\u001b[38;5;124m\"\u001b[39m:\n\u001b[0;32m 78\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m PyArrowImpl()\n", "\u001b[1;31mImportError\u001b[0m: Unable to find a usable engine; tried using: 'pyarrow', 'fastparquet'.\nA suitable version of pyarrow or fastparquet is required for parquet support.\nTrying to import the above resulted in these errors:\n - Missing optional dependency 'pyarrow'. pyarrow is required for parquet support. Use pip or conda to install pyarrow.\n - Missing optional dependency 'fastparquet'. fastparquet is required for parquet support. Use pip or conda to install fastparquet." ] } @@ -14475,7 +14544,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.6" + "version": "3.9.0" } }, "nbformat": 4,