-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_model.py
executable file
·508 lines (434 loc) · 17.6 KB
/
train_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
"""
Language Model training script.
Adapted from https://github.com/huggingface/transformers/blob/main/examples/pytorch/language-modeling/run_clm_no_trainer.py
by Andrzej Szablewski, 2024 as a part of the UCL Final Year Project
"Language Model Adaptation for Low-Resource African Languages".
--- Original header: ---
Copyright 2021 The HuggingFace Inc. team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
import json
import logging
import math
import os
import time
import datasets
import torch
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import set_seed
from datasets import load_dataset
from torch.utils.data import DataLoader
from tqdm.auto import tqdm
import transformers
from transformers import (
default_data_collator,
get_scheduler,
)
from training import parse_args
from training import get_dict_from_args_str, get_config_model, get_tokenizer
from peft import LoraConfig, get_peft_model
logger = get_logger(__name__)
def main():
args = parse_args()
# Initialize the accelerator. We will let the accelerator handle device placement for us in this example.
# If we're using tracking, we also need to initialize it here and it will by default pick up all supported trackers
# in the environment
accelerator_log_kwargs = {}
if args.with_tracking:
accelerator_log_kwargs["log_with"] = args.report_to
accelerator_log_kwargs["project_dir"] = args.output_dir
accelerator = Accelerator(
gradient_accumulation_steps=args.gradient_accumulation_steps,
**accelerator_log_kwargs,
)
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
logger.info(accelerator.state, main_process_only=False)
if accelerator.is_local_main_process:
datasets.utils.logging.set_verbosity_warning()
transformers.utils.logging.set_verbosity_info()
else:
datasets.utils.logging.set_verbosity_error()
transformers.utils.logging.set_verbosity_error()
# If passed along, set the training seed now.
if args.seed is not None:
set_seed(args.seed)
if accelerator.is_main_process:
if args.output_dir is not None:
os.makedirs(args.output_dir, exist_ok=True)
accelerator.wait_for_everyone()
# Load tokenizer
tokenizer = get_tokenizer(
tokenizer_name_or_path=(
args.tokenizer_name
if args.tokenizer_name is not None
else args.model_name_or_path
),
cache_dir=args.cache_dir,
trust_remote_code=args.trust_remote_code,
)
# Load model config and model
config, model = get_config_model(
model_name_or_path=args.model_name_or_path,
cache_dir=args.cache_dir,
trust_remote_code=args.trust_remote_code,
)
# If use LoRA.
if args.use_lora:
peft_config = LoraConfig(
task_type="CAUSAL_LM",
inference_mode=False,
r=8,
lora_alpha=32,
lora_dropout=0.1,
target_modules=["q_proj", "v_proj"],
modules_to_save=["embed_tokens", "embed_positions", "lm_head"],
)
model = get_peft_model(model, peft_config)
if accelerator.is_main_process:
print("Using LoRA.")
model.print_trainable_parameters()
# We resize the embeddings only when necessary to avoid index errors. If you are creating a model from scratch
# on a small vocab and want a smaller embedding size, remove this test.
embedding_size = model.get_input_embeddings().weight.shape[0]
if len(tokenizer) > embedding_size:
print("Resizing model embeddings!")
model.resize_token_embeddings(len(tokenizer))
# Load the model
lm_datasets = load_dataset(
args.dataset_name,
cache_dir=args.cache_dir,
)
train_dataset = lm_datasets["train"]
eval_dataset = lm_datasets["validation"]
# Set the block size
block_size = min(1024, config.max_position_embeddings)
# DataLoaders creation:
train_dataloader = DataLoader(
train_dataset,
shuffle=True,
collate_fn=default_data_collator,
batch_size=args.per_device_train_batch_size,
pin_memory=True,
)
eval_dataloader = DataLoader(
eval_dataset,
collate_fn=default_data_collator,
batch_size=args.per_device_eval_batch_size,
pin_memory=True,
)
# Optimizer
# Split weights in two groups, one with weight decay and the other not.
no_decay = ["bias", "layer_norm.weight"]
optimizer_grouped_parameters = [
{
"params": [
p
for n, p in model.named_parameters()
if not any(nd in n for nd in no_decay)
],
"weight_decay": args.weight_decay,
},
{
"params": [
p
for n, p in model.named_parameters()
if any(nd in n for nd in no_decay)
],
"weight_decay": 0.0,
},
]
optimizer = torch.optim.AdamW(optimizer_grouped_parameters, lr=args.learning_rate)
# Scheduler and math around the number of training steps.
overrode_max_train_steps = False
num_update_steps_per_epoch = math.ceil(
len(train_dataloader) / args.gradient_accumulation_steps
)
if args.max_train_steps is None:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
overrode_max_train_steps = True
lr_scheduler = get_scheduler(
name=args.lr_scheduler_type,
optimizer=optimizer,
num_warmup_steps=args.num_warmup_steps * accelerator.num_processes,
num_training_steps=(
args.max_train_steps
if overrode_max_train_steps
else args.max_train_steps * accelerator.num_processes
),
)
# Print updateable params.
if accelerator.is_main_process:
for i, (n1, p1) in enumerate(list(model.model.named_parameters())):
if p1.requires_grad:
print(i, n1)
# Prepare everything with our `accelerator`.
(
model,
optimizer,
train_dataloader,
eval_dataloader,
lr_scheduler,
) = accelerator.prepare(
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler
)
# We need to recalculate our total training steps as the size of the training dataloader may have changed.
num_update_steps_per_epoch = math.ceil(
len(train_dataloader) / args.gradient_accumulation_steps
)
if overrode_max_train_steps:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
# Afterwards we recalculate our number of training epochs
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
# Figure out how many steps we should save the Accelerator states
checkpointing_steps = args.checkpointing_steps
if checkpointing_steps is not None and checkpointing_steps.isdigit():
checkpointing_steps = int(checkpointing_steps)
# Logging interval
logging_interval = args.logging_interval
if logging_interval is not None and logging_interval.isdigit():
logging_interval = int(logging_interval)
# Evaluation interval
eval_interval = args.eval_interval
if eval_interval is not None and eval_interval.isdigit():
eval_interval = int(eval_interval)
# We need to initialize the trackers we use, and also store our configuration.
# The trackers initializes automatically on the main process.
if args.with_tracking:
experiment_config = vars(args)
# TensorBoard cannot log Enums, need the raw value
experiment_config["lr_scheduler_type"] = experiment_config[
"lr_scheduler_type"
].value
# With wandb tracking
wandb_args_dict = get_dict_from_args_str(args.wandb_args)
wandb_project_name = wandb_args_dict["project"]
del wandb_args_dict["project"]
accelerator.init_trackers(
wandb_project_name,
experiment_config,
{"wandb": wandb_args_dict},
)
# Train!
total_batch_size = (
args.per_device_train_batch_size
* accelerator.num_processes
* args.gradient_accumulation_steps
)
logger.info("***** Running training *****")
logger.info(f" Num examples = {len(train_dataset)}")
logger.info(f" Num Epochs = {args.num_train_epochs}")
logger.info(
f" Instantaneous batch size per device = {args.per_device_train_batch_size}"
)
logger.info(
f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}"
)
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
logger.info(f" Total optimization steps = {args.max_train_steps}")
# Only show the progress bar once on each machine.
progress_bar = tqdm(
range(args.max_train_steps), disable=not accelerator.is_local_main_process
)
completed_steps = 0
starting_epoch = 0
# update the progress_bar if load from checkpoint
progress_bar.update(completed_steps)
t0 = time.time()
samples_seen = 0
model.eval()
losses = []
for step, batch in enumerate(eval_dataloader):
with torch.no_grad():
outputs = model(**batch)
loss = outputs.loss
losses.append(
accelerator.gather_for_metrics(loss.repeat(args.per_device_eval_batch_size))
)
losses = torch.cat(losses)
try:
eval_loss = torch.mean(losses)
perplexity = math.exp(eval_loss)
except OverflowError:
perplexity = float("inf")
logger.info(f"epoch {0}: perplexity: {perplexity} eval_loss: {eval_loss}")
if args.with_tracking:
accelerator.log(
{
"Perplexity/eval": perplexity,
"Loss/eval": eval_loss,
"epoch": 0,
"step": completed_steps,
},
step=completed_steps,
)
model.train()
for epoch in range(starting_epoch, args.num_train_epochs):
model.train()
if args.with_tracking:
running_loss_per_epoch = 0
loss_per_batch = 0
steps_per_epoch = 0
active_dataloader = train_dataloader
for step, batch in enumerate(active_dataloader):
with accelerator.accumulate(model):
outputs = model(**batch)
loss = outputs.loss
# We keep track of the loss at each epoch
if args.with_tracking:
steps_per_epoch += 1
running_loss_per_epoch -= running_loss_per_epoch / steps_per_epoch
running_loss_per_epoch += loss.detach().float() / steps_per_epoch
loss_per_batch = loss.detach().float()
samples_seen += total_batch_size
accelerator.backward(loss)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
# Checks if the accelerator has performed an optimization step behind the scenes
if accelerator.sync_gradients:
progress_bar.update(1)
completed_steps += 1
if isinstance(checkpointing_steps, int):
if completed_steps % checkpointing_steps == 0:
output_dir = f"step_{completed_steps}"
# save state
if args.output_dir is not None:
output_dir = os.path.join(
args.output_dir, output_dir, "state"
)
accelerator.save_state(output_dir)
# save pre-trained model
if args.output_dir is not None:
output_dir = os.path.join(
args.output_dir, output_dir, "model"
)
accelerator.wait_for_everyone()
unwrapped_model = accelerator.unwrap_model(model)
unwrapped_model.save_pretrained(
output_dir,
is_main_process=accelerator.is_main_process,
safe_serialization=False,
save_function=accelerator.save,
state_dict=accelerator.get_state_dict(model),
)
if accelerator.is_main_process:
tokenizer.save_pretrained(output_dir)
t1 = time.time()
dt = t1 - t0
t0 = t1
if completed_steps % logging_interval == 0 and completed_steps > 0:
if args.with_tracking:
accelerator.log(
{
"Loss/train": running_loss_per_epoch.item(),
"Loss/train_per_batch": loss_per_batch,
"iter_time": dt,
"lr": lr_scheduler.get_last_lr()[0],
"epoch": epoch,
"step": completed_steps,
"samples_seen": samples_seen,
"approx_tokens_seen": samples_seen * block_size,
},
step=completed_steps,
)
if completed_steps % eval_interval == 0:
model.eval()
losses = []
for step, batch in enumerate(eval_dataloader):
with torch.no_grad():
outputs = model(**batch)
loss = outputs.loss
losses.append(
accelerator.gather_for_metrics(
loss.repeat(args.per_device_eval_batch_size)
)
)
losses = torch.cat(losses)
try:
eval_loss = torch.mean(losses)
perplexity = math.exp(eval_loss)
except OverflowError:
perplexity = float("inf")
logger.info(
f"epoch {epoch}: perplexity: {perplexity} eval_loss: {eval_loss}"
)
if args.with_tracking:
accelerator.log(
{
"Perplexity/eval": perplexity,
"Loss/eval": eval_loss,
"epoch": epoch,
"step": completed_steps,
},
step=completed_steps,
)
model.train()
if completed_steps >= args.max_train_steps:
break
model.eval()
losses = []
for step, batch in enumerate(eval_dataloader):
with torch.no_grad():
outputs = model(**batch)
loss = outputs.loss
losses.append(
accelerator.gather_for_metrics(
loss.repeat(args.per_device_eval_batch_size)
)
)
losses = torch.cat(losses)
try:
eval_loss = torch.mean(losses)
perplexity = math.exp(eval_loss)
except OverflowError:
perplexity = float("inf")
logger.info(f"epoch {epoch}: perplexity: {perplexity} eval_loss: {eval_loss}")
if args.with_tracking:
accelerator.log(
{
"Perplexity/eval": perplexity,
"Loss/eval": eval_loss,
"epoch": epoch,
"step": completed_steps,
},
step=completed_steps,
)
if args.checkpointing_steps == "epoch":
output_dir = f"epoch_{epoch}"
if args.output_dir is not None:
output_dir = os.path.join(args.output_dir, output_dir)
accelerator.save_state(output_dir)
if args.with_tracking:
accelerator.end_training()
if args.output_dir is not None:
accelerator.wait_for_everyone()
unwrapped_model = accelerator.unwrap_model(model)
if args.use_lora:
unwrapped_model = unwrapped_model.merge_and_unload()
unwrapped_model.save_pretrained(
args.output_dir,
is_main_process=accelerator.is_main_process,
safe_serialization=False,
save_function=accelerator.save,
state_dict=accelerator.get_state_dict(unwrapped_model),
)
if accelerator.is_main_process:
tokenizer.save_pretrained(args.output_dir)
with open(os.path.join(args.output_dir, "all_results.json"), "w") as f:
json.dump({"perplexity": perplexity}, f)
if __name__ == "__main__":
main()