-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsudoku_learn_cnn.py
executable file
·161 lines (126 loc) · 5.02 KB
/
sudoku_learn_cnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
from __future__ import print_function
from __future__ import division
import numpy as np
import tensorflow as tf
import pickle
import sys
import argparse
from tqdm import tqdm
import os
import itertools
import setproctitle
import sudoku
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
np.set_printoptions(precision=3,suppress=True)
version = 2.5
parser = argparse.ArgumentParser()
parser.add_argument('--boardSz', type=int, default=2)
parser.add_argument('--dataset', type=str, default='')
parser.add_argument('--test', type=str, default='')
parser.add_argument('--out', type=str, default='latest.pkl')
parser.add_argument('--input', type=str, default='')
parser.add_argument('--lr', type=float, default=0.001)
parser.add_argument('--bs', type=int, default=50)
parser.add_argument('--decay', type=int, default=5)
parser.add_argument('--nepoch', type=int, default=50)
args = parser.parse_args()
setproctitle.setproctitle('sudoku_learning {} -> {}'.format(args.dataset, args.out))
print('loading dataset')
with open(args.dataset,'rb') as f:
dataset_X, dataset_Y = pickle.load(f)
with open(args.test,'rb') as f:
test_X, test_Y = pickle.load(f)
print('Dataset loaded')
n_samples,_,_,_ = dataset_X.shape
g = args.boardSz
n = g**2
p = g**2
# remove zeroval
inputs = dataset_X[:,:,:,1:p+1]
labels = dataset_Y[:,:,:,1:p+1]
inputs_test = test_X[:,:,:,1:p+1]
labels_test = test_Y[:,:,:,1:p+1]
tf_samples = tf.placeholder(tf.float32,[args.bs, n, n, p])
tf_ground_truth = tf.placeholder(tf.float32,[args.bs, n, n, p])
x_one_hot = tf.expand_dims(tf.eye(n), axis=1)
x_one_hot = tf.tile(x_one_hot, [1, n, 1])
y_one_hot = tf.expand_dims(tf.eye(n), axis=0)
y_one_hot = tf.tile(y_one_hot, [n, 1, 1])
location_feature = tf.concat([x_one_hot, y_one_hot], 2) # of shape (n,n,2n)
input_location = tf.tile(tf.expand_dims(location_feature,0), [args.bs, 1, 1, 1])
batch_input = tf.concat([tf_samples, input_location], axis=3) # of shape (bs,n,n,p+2n)
convolutions = [(n,n,256),(n,n,128),(n,n,64),(n,n,64),(n,n,p)]
current_input = batch_input
current_depth = p+2*n
i = 0
for w,h,k in convolutions:
with tf.name_scope('conv_{}'.format(i)):
conv_layer = tf.Variable(tf.random_normal((w,h,current_depth,k), stddev=np.sqrt(2)/np.sqrt(current_depth)),name="conv_params_{}".format(i))
bias_relu = tf.Variable(tf.random_normal([k], stddev=np.sqrt(2)/np.sqrt(current_depth)),name="bias_params_{}".format(i))
output_conv = tf.nn.conv2d(current_input, conv_layer, [1, 1, 1, 1], "SAME")
current_input = tf.nn.elu(output_conv+bias_relu) if i < len(convolutions)-1 else output_conv + bias_relu
current_depth = k
i += 1
with tf.name_scope('final_layer'):
output = tf.nn.softmax(current_input)
with tf.name_scope('loss'):
p_times_q = output * tf_ground_truth
log_likelihood = tf.reduce_sum(tf.log(tf.reduce_sum(p_times_q, 3)+0.0000001), axis=(1,2))
loss = -tf.reduce_mean(log_likelihood)
batch_size = args.bs
step = tf.Variable(0, trainable=False)
rate = args.lr*tf.pow(0.7,tf.cast(tf.div(step, (n_samples//batch_size)*args.decay), tf.float32)) # decrease learning rate every 5 epoch
train_op = tf.train.AdamOptimizer(rate).minimize(loss, global_step=step)
print('tf graph is built')
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
#writer = tf.summary.FileWriter(logdir='output_summary', graph=tf.get_default_graph())
#writer.flush()
#print('tf graph saved')
saver = tf.train.Saver()
sess = tf.Session(config=config)
sess.run(tf.global_variables_initializer())
evol = [[],[],[]]
for i in tqdm(range(args.nepoch),desc='epoch'):
for b in tqdm(range(n_samples//batch_size),desc='batch'):
parameters = {
tf_samples: inputs_test[b*batch_size:(b+1)*batch_size],
tf_ground_truth: labels_test[b*batch_size:(b+1)*batch_size]
}
loss_value,_ = sess.run([loss,train_op], feed_dict=parameters)
evol[0].append(loss_value)
evol[1].append(0)
evol[2].append(0)
saver.save(sess,args.out)
with open(args.out+'.lrn','wb') as f:
pickle.dump(evol,f)
print('done')
n_correct = 0
n = 0
#n_samples = batch_size
ex = [ [0, 1, 2, 0],
[0, 2, 1, 0],
[1, 3, 4, 2],
[2, 4, 3, 1]]
#inputs[:batch_size] = sudoku.to_prob(np.array(ex),5)[:,:,1:]
for b in range(n_samples//batch_size):
parameters = {tf_samples: inputs[b*batch_size:(b+1)*batch_size]}
output_values = sess.run(output, feed_dict=parameters)
for grid_input, grid_output in zip(inputs[b*batch_size:(b+1)*batch_size],output_values):
grid = sudoku.infer_grid(grid_output)
correct = sudoku.is_correct(1+grid,g)
#if args.explain:
# print('###')
# print(grid)
# print(sudoku.infer_grid_probabilities(grid_output))
# print(correct)
if n < 10:
print(sudoku.infer_grid(grid_input))
print(grid_output)
print(grid)
print('####')
n += 1
if correct:
n_correct += 1
print('{}/{} '.format(n_correct,n), end='\r')
print()