-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsudoku.py
executable file
·106 lines (92 loc) · 3.33 KB
/
sudoku.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
import numpy as np
import itertools
# Given a probability grid, returns the MAP assignment grid.
# Assumes the probability distribution is on the last dimension.
def infer_grid(prob_grid):
return np.argmax(prob_grid, axis=-1)
# Given a probability grid, returns the maximum probability for each position.
# Assumes the probability distribution is on the last dimension.
def infer_grid_probabilities(prob_grid):
return np.max(prob_grid, axis=-1)
# Gives the one-hot encoding of a m*n integer matrix.
def to_prob(grid,p):
m,n = grid.shape
prob_grid = np.zeros((m,n,p))
for x in range(m):
for y in range(n):
if grid[x,y] != 0:
prob_grid[x,y,grid[x,y]] = 1
return prob_grid
# Softmax activation function.
def softmax(values):
e_x = np.exp(values - np.max(values))
return e_x / e_x.sum(axis=-1,keepdims=True)
# Converts a variable clipping to the probability distribution of the grid.
def clip_to_grid(clip):
n_samples,_,n,_,p = clip.shape
return softmax(-(clip[:,0]+clip[:,1])/2.)
# Converts a probability grid to the corresponding variable clipping.
def grid_to_clip(grid):
n_samples,m,_,p = grid.shape
clipping = np.zeros((n_samples,2,m,m,p))
clipping[:,0,:,:,:] = -50 #min clip
clipping[:,1,:,:,:] = 50 #max clip
for s in range(n_samples):
for x in range(m):
for y in range(m):
for k in range(p):
if grid[s,x,y,k] == 1:
for k_2 in range(p):
if k != k_2:
clipping[s,0,x,y,k_2] = 50
clipping[s,1,x,y,k] = -50
return clipping
def reduce_matrix(graph,g,p):
res = np.zeros((g**2,g**2,p))
for x in range(g):
for y in range(g):
res[g*x:g*(x+1),g*y:g*(y+1)] = graph[g*(2*x):g*(2*x+1),g*(2*y):g*(2*y+1)]
return res
def expand_matrix(dataset,g,p):
dataset = np.array(dataset)
n_samples,_,_,_ = dataset.shape
target = np.zeros((n_samples,2*(g**2),2*(g**2),p))
target[:,:,:,0] = 1
for x in range(g):
for y in range(g):
target[:,g*(2*x):g*(2*x+1),g*(2*y):g*(2*y+1)] = dataset[:,g*x:g*(x+1),g*y:g*(y+1)]
return target
def is_correct(grid,g):
if np.any(grid == 0):
return False
ok_l = [sum(line) == sum(set(line)) for line in grid]
ok_c = [sum(col) == sum(set(col)) for col in np.transpose(grid)]
squares = []
for i in range(g):
for j in range(g):
square = np.concatenate([row[g*j:g*(j+1)] for row in grid[g*i:g*(i+1)]])
squares.append(square)
ok_sq = [sum(square) == sum(set(square)) for square in squares]
return np.all(ok_l+ok_c+ok_sq)
def values_ok(x,y,grid,g):
ok = set(range(1,g**2+1))
for exp in range(g**2):
ok.discard(grid[x][exp])
ok.discard(grid[exp][y])
sq_x = g*(x//g)
sq_y = g*(y//g)
for px in range(g):
for py in range(g):
ok.discard(grid[sq_x+px][sq_y+py])
return list(ok)
def n_solutions_grid(grid,g):
for x in range(g**2):
for y in range(g**2):
if grid[x][y] == 0:
ns = 0
for t in values_ok(x,y,grid,g):
grid[x][y] = t
ns += n_solutions_grid(grid,g)
grid[x][y] = 0
return ns
return 1