-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdiscr.py
executable file
·133 lines (107 loc) · 4.19 KB
/
discr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
from __future__ import print_function
import numpy as np
import tensorflow as tf
import mf
import pickle
import sys
import sudoku
import argparse
import os
import sys
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
np.set_printoptions(precision=3,suppress=True)
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', type=str, default='')
parser.add_argument('--input', type=str, default='')
parser.add_argument('--boardSz', type=int, default=2)
parser.add_argument('--bs', type=int, default=50)
parser.add_argument('--lognmodes', type=int, default=2)
parser.add_argument('--old', default=False, action='store_true')
parser.add_argument('--out', type=str, default='out')
args = parser.parse_args()
with open(args.dataset,'rb') as f:
dataset_X, dataset_Y = pickle.load(f)
with open(args.input,'rb') as f:
w, u, a = pickle.load(f)
g = args.boardSz
n = 2*(g**2)
p = 1+g**2
n_samples = len(dataset_X)
batch_size = args.bs
n_modes = args.lognmodes
inputs = sudoku.grid_to_clip(sudoku.expand_matrix(dataset_X,g,p))
links = tf.Variable(tf.convert_to_tensor(w))
links_sym = links+tf.transpose(links, [0, 1, 3, 2])
unary = tf.Variable(tf.convert_to_tensor(u))
mmmf = mf.BatchedMultiModalMeanField(n, n, p, batch_size, links_sym, unary, np.exp(a), a.shape[0])
q_mf = mmmf.get_q_mf_values()
E_mf = mmmf.get_energy_values()
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
sess = tf.Session(config=config)
sess.run(tf.global_variables_initializer())
n_correct = 0
n_correct_mul = 0
n_correct_one = 0
n_mul = 0
n_one = 0
correct_energy_table = []
incorrect_energy_table = []
def softmax(x):
e_x = np.exp(x - np.max(x))
return np.transpose(np.transpose(e_x,(2,0,1)) / e_x.sum(axis=-1),(1,2,0))
def compute_circular_convolution(image, filtr):
image_1 = tf.concat(2*[image], axis=1)
image_2 = tf.concat(2*[image_1], axis=2)
image_3 = tf.slice(image_2, [0,0,0,0], [-1, 2*n-1, 2*n-1, -1])
strides = [1, 1, 1, 1]
padding = 'VALID'
return tf.nn.conv2d(image_3, filtr, strides, padding)
image = tf.placeholder(tf.float32, [1,n,n,p])
filtr = tf.placeholder(tf.float32, [n,n,p,p])
res = compute_circular_convolution(image, filtr)
def circular_convolution(np_image, np_filtr):
global image, filtr, sess, res
return sess.run(res, feed_dict={image: np.expand_dims(np_image, axis=0), filtr: np_filtr})[0]
def compute_energy(q,links,unary):
E = circular_convolution(q, links)
return np.sum((E+unary)*q)
for b in range(n_samples/batch_size):
mmmf.reset_all(np.expand_dims(np.array(inputs[b*batch_size:(b+1)*batch_size]),axis=1))
for _ in range(n_modes):
mmmf.iteration(sess)
parameters = {
mmmf._theta_clip: np.reshape(mmmf._modes,(-1,2,n,n,p)),
mmmf._T: 0.2
}
q_values = sess.run(q_mf, feed_dict=parameters)
q_values = np.reshape(q_values,(batch_size,-1,n,n,p))
for q_modes, grid_input in zip(q_values, dataset_X[b*batch_size:(b+1)*batch_size]):
for q_mode in q_modes:
grid = sudoku.infer_grid(sudoku.reduce_matrix(q_mode,g,p))
if args.old:
inp = q_mode
else:
inp = sudoku.to_prob(grid,p)
E_mode = compute_energy(sudoku.expand_matrix(np.array([inp]),g,p)[0],w,u)
if sudoku.is_correct(grid,g):
correct_energy_table.append(E_mode)
else:
incorrect_energy_table.append(E_mode)
max_correct = max(correct_energy_table)
min_incorrect = min(incorrect_energy_table)
lvl = 50
mid_energy = (np.percentile(correct_energy_table,100-lvl) + np.percentile(incorrect_energy_table,lvl))/2.
print(max_correct,mid_energy,min_incorrect,sum(correct_energy_table < mid_energy),'/',len(correct_energy_table),sum(incorrect_energy_table > mid_energy),'/',len(incorrect_energy_table),end='\r')
sys.stdout.flush()
with open(args.out,'wb') as f:
pickle.dump((correct_energy_table,incorrect_energy_table),f)
print()
with open('_success_one.pkl','wb') as f:
pickle.dump(success_one, f)
with open('_success_mul.pkl','wb') as f:
pickle.dump(success_mul, f)
with open('_failure_one.pkl','wb') as f:
pickle.dump(failure_one, f)
with open('_failure_mul.pkl','wb') as f:
pickle.dump(failure_mul, f)