Skip to content

Latest commit

 

History

History
113 lines (103 loc) · 11.7 KB

README.md

File metadata and controls

113 lines (103 loc) · 11.7 KB

New Updates

Citation Note

If you found this catalog helpful, please consider citing the following:

  • Riley Kiefer, Muhammad Abid, Jessica Steen, Mahsa Raeisi Ardali, and Ehsan Amjadian. 2023. A Catalog of Public Glaucoma Datasets for Machine Learning Applications: A detailed description and analysis of public glaucoma datasets available to machine learning engineers tackling glaucoma-related problems using retinal fundus images and OCT images. In Proceedings of the 2023 7th International Conference on Information System and Data Mining (ICISDM '23). Association for Computing Machinery, New York, NY, USA, 24–31. https://doi.org/10.1145/3603765.3603779

Public Glaucoma Dataset Catalog

[Help expand this repository by providing links/publications to new glaucoma datasets!]

Repository Table of Contents

  • README.md : Glaucoma overview, relevant research, and dataset access links
  • benchmark-eyepacs-airogs-light.md : Leaderboard for the test set evaluation using the train/val sets of the EyePACS-AIROGS-light dataset
  • summary.md : Dataset class breakdown, image types, and glaucoma types
  • data-availability.md : Dataset image and segmentation availability.
  • origin.md : Dataset collection origin and collection years.

Glaucoma Overview

According to AAO, "Glaucoma is a disease that damages your eye’s optic nerve. It usually happens when fluid builds up in the front part of your eye. That extra fluid increases the pressure in your eye, damaging the optic nerve". It is a leading cause of blindness and worsens over time if left untreated. Optometrists diagnose glaucoma through fundus images (a 2D image of the eye) or ocular coherence tomography (OCT) images (a 3D image of the eye). In fundus images, optometrists typically look for optic cup or optic disc damage. In OCT images, optometrists typically look for layer atrophy. To automate the detection of glaucoma, datasets are curated for machine learning. Fundus image datasets are typically designed for either glaucoma classification to distinguish healthy for glaucoma or optic nerve head segmentation to extract and analyze cup or disc damage. High-quality benchmark datasets like EyePACS-AIROGS-light have predetermined train, validation, and test sets for reproducibility.

Relevant Glaucoma Datasets (by me)

Relevant Glaucoma Research (by me)

Example data

Drishti-GS G1020 ORIGA-light REFUGE1-VAL PAPILA

Use Case Acronyms

  • Classification
    • BGC = Binary Glaucoma Classification (healthy vs. glaucoma or non-glaucoma vs. glaucoma)
    • MGC = Multi Glaucoma Classification (at least 2 glaucoma types, including suspect)
  • Segmentation
    • ODS = Optic Disc Segmentation
    • OCS = Optic Cup Segmentation
    • BVS = Blood Vessel Segmentation
    • OLS = OCT Layer Segmentation
    • RNFLS = Retinal Nerve Fiber Layer Segmentation
  • Other
    • LT = Localization Task
    • IQA = Image Quality Assesment
    • MIDI = Multi Image Domain Input
    • CDR = Cup-to-Disc Ratio Estimation
    • N = Notching
    • VF = Visual Field Information/Segmentation

Public Glaucoma Image Datasets

Dataset Access Link Accessibility Glaucoma Labels? Use Case
ACRIMA https://figshare.com/s/c2d31f850af14c5b5232 open Y BGC
AGE https://age.grand-challenge.org/Download/ registration Y MGC, LT
BEH (Bangladesh Eye Hospital) https://github.com/mirtanvirislam/Deep-Learning-Based-Glaucoma-Detection-with-Cropped-Optic-Cup-and-Disc-and-Blood-Vessel-Segmentation/tree/master/Dataset open Y BGC
BIOMISA https://data.mendeley.com/datasets/2rnnz5nz74/2 open Y MGC, BGC, MIDI, OLS, CDR
Chaksu-IMAGE https://doi.org/10.6084/m9.figshare.20123135 open Y BGC
CRFO-v4 https://data.mendeley.com/datasets/trghs22fpg/4 open Y BGC, MDI, ODS, OCS
DR-HAGIS https://personalpages.manchester.ac.uk/staff/niall.p.mcloughlin/ open Y BGC, BVS
DRIONS-DB https://www.researchgate.net/publication/326460478_Glaucoma_dataset_-_DRIONS-DB open N ODS
DRISHTI-GS1 https://cvit.iiit.ac.in/projects/mip/drishti-gs/mip-dataset2/Home.php open Y BGC, ODS, OCS, CDR, N
EyePACS-AIROGS https://airogs.grand-challenge.org/data-and-challenge/ open Y BGC, IQA
EyePACS-AIROGS-light (v1) https://www.kaggle.com/datasets/deathtrooper/eyepacs-airogs-light registration Y BGC
EyePACS-AIROGS-light (v2) https://www.kaggle.com/datasets/deathtrooper/glaucoma-dataset-eyepacs-airogs-light-v2 registration Y BGC
FIVES https://figshare.com/articles/figure/FIVES_A_Fundus_Image_Dataset_for_AI-based_Vessel_Segmentation/19688169/1 open Y BGC, BVS
G1020 https://www.kaggle.com/datasets/arnavjain1/glaucoma-datasets registration Y BGC, ODS, OCS
GAMMA https://gamma.grand-challenge.org/ registration Y BGC?, ODS, OCS, OLS?, LT, MIDI
GOALS https://ichallenges.grand-challenge.org/iChallenge-GON3/ registration Y BGC, OLS
GRAPE https://springernature.figshare.com/collections/GRAPE_A_multi-modal_glaucoma_dataset_of_follow-up_visual_field_and_fundus_images_for_glaucoma_management/6406319/1 open Y MGC, VF
Harvard-GF https://ophai.hms.harvard.edu/datasets/harvard-glaucoma-fairness-3300-samples/ request N BGC, VF, RNFLS, MIDI
HRF https://www5.cs.fau.de/research/data/fundus-images/ open Y
INSPIRE-AVR-test https://medicine.uiowa.edu/eye/inspire-datasets open N
INSPIRE-STEREO https://medicine.uiowa.edu/eye/inspire-datasets open N
JSIEC-1000 https://www.kaggle.com/datasets/linchundan/fundusimage1000 registration Y
KEH (Kim's Eye Hospital) https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/1YRRAC open Y
LAG https://github.com/smilell/AG-CNN request Y
LES-AV https://figshare.com/articles/dataset/LES-AV_dataset/11857698/1 open Y
Leuven-Haifa HRF https://rdr.kuleuven.be/dataset.xhtml?persistentId=doi:10.48804/Z7SHGO request Y MGC, BVS
MSHF https://www.nature.com/articles/s41597-023-02188-x#ref-CR17 open Y BGC, IQA
OCTV https://zenodo.org/record/1481223#.Y20g3XbMIuV open Y
OIA-ODIR https://www.kaggle.com/datasets/andrewmvd/ocular-disease-recognition-odir5k registration Y
ONHSD https://aldiri.info/Image%20Datasets/ONHSD.aspx inaccessible Y
ORIGA-light https://www.kaggle.com/datasets/sshikamaru/glaucoma-detection registration Y
PAPILA https://doi.org/10.6084/m9.figshare.14798004.v1 open Y
REFUGE1 https://refuge.grand-challenge.org/REFUGE2Download/ registration Y
REFUGE2 https://refuge.grand-challenge.org/REFUGE2Download/ registration Y
RIGA-BIN-RUSHED https://deepblue.lib.umich.edu/data/concern/data_sets/3b591905z open N
RIGA-MAGRABI https://deepblue.lib.umich.edu/data/concern/data_sets/3b591905z open N
RIGA-MESSIDOR https://deepblue.lib.umich.edu/data/concern/data_sets/3b591905z open N
RIM-ONE-r1 http://medimrg.webs.ull.es/research/retinal-imaging/rim-one/ open Y
RIM-ONE-r2 http://medimrg.webs.ull.es/research/retinal-imaging/rim-one/ open Y
RIM-ONE-r3 http://medimrg.webs.ull.es/research/retinal-imaging/rim-one/ open Y
RIM-ONE-DL http://medimrg.webs.ull.es/research/retinal-imaging/rim-one/ open Y
SIGF https://github.com/XiaofeiWang2018/DeepGF request Y
SMDG https://www.kaggle.com/datasets/deathtrooper/multichannel-glaucoma-benchmark-dataset registration Y
sjchoi86-HRF https://github.com/yiweichen04/retina_dataset open Y
VEIRC https://github.com/ProfMKD/Glaucoma-dataset open Y