-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
326 lines (268 loc) · 13.5 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
from __future__ import print_function
import argparse
import torch
import torch.optim as optim
from torchvision import transforms
import PIL
import logging
from utils import *
import sys
import traceback
from voxel2layer_torch import *
from ResNet import *
from DatasetLoader import *
from DatasetCollector import *
torch.backends.cudnn.benchmark = True
def pos_loss(pred, target, num_components=6):
"""
Modified L1-loss, which penalizes background pixels
only if predictions are closer than 1 to being considered foreground.
"""
fg_loss = pred.new_zeros(1)
bg_loss = pred.new_zeros(1)
fg_count = 0 # counter for normalization
bg_count = 0 # counter for normalization
for i in range(num_components):
mask = target[:,i,:,:].gt(0).float().detach()
target_i = target[:,i,:,:]
pred_i = pred[:,i,:,:]
# L1 between prediction and target only for foreground
dist = pred_i-target_i
l1 = torch.abs(dist)
l1_masked = l1.mul(mask)
l1_mean = l1_masked.mean()
fg_loss += l1_mean
fg_count += torch.mean(mask)
# flip mask => background
mask = 1-mask
# L1 for background pixels > -1
bg_loss += torch.mean(((pred_i + 1)).clamp(min=0).mul(mask))
bg_count += torch.mean(mask)
return fg_loss / max(1, fg_count) + \
bg_loss / max(1, bg_count)
def iou_voxel(pred, voxel):
"""
Computes intersection over union between two shapes.
Returns iou summed over batch
"""
bs,_,h,w = pred.size()
inter = pred.mul(voxel).detach()
union = pred.add(voxel).detach()
union = union.sub_(inter)
inter = inter.sum(3).sum(2).sum(1)
union = union.sum(3).sum(2).sum(1)
return inter.div(union).sum(), bs
def iou_shapelayer(pred, voxel, id1, id2, id3):
"""
Compares prediction and ground truth shape layers using IoU.
Returns iou summed over batch and number of samples in batch.
"""
pred = pred.detach()
voxel = voxel.detach()
bs, _, side, _ = pred.shape
vp = pred.new_zeros(bs,side,side,side, requires_grad=False)
vt = pred.new_zeros(bs,side,side,side, requires_grad=False)
for i in range(bs):
vp[i,:,:,:] = decode_shape(pred[i,:,:,:].short().permute(1,2,0), id1, id2, id3)
vt[i,:,:,:] = decode_shape(voxel[i,:,:,:].short().permute(1,2,0), id1, id2, id3)
return iou_voxel(vp,vt)
dataset_default = 'ShapeNet'
optim_default = 'adam'
net_default = 'resnet'
# register networks, datasets, etc.
name2net = {net_default: ResNet}
name2dataset = {\
# 'SanityCheck':SanityCollector, \
# 'ShapeNetPTN':ShapeNetPTNCollector, \
'ShapeNetCars': ShapeNetCarsOGNCollector,
'Faust': FaustCollector,
dataset_default: ShapeNet3DR2N2Collector
}
name2optim = { optim_default: optim.Adam }
def main(args):
args.cuda = not args.no_cuda and torch.cuda.is_available()
args.shuffle_train = not args.no_shuffle_train
args.shuffle_val = not args.no_shuffle_val
device = torch.device(f"cuda:{args.gpu}" if args.cuda else "cpu")
id1, id2, id3 = generate_indices(args.side, device)
torch.manual_seed(1)
# load dataset
try:
logging.info(f'Initializing dataset "{args.dataset}"')
Collector = name2dataset[args.dataset](resolution=args.side, base_dir=args.basedir, shapenet_base_dir=args.shapenet_base_dir)
except KeyError:
traceback.print_exc()
logging.error(f'A dataset named "{args.dataset}" is not available.')
exit(1)
logging.info('Initializing dataset loader')
train_samples = Collector.train()
logging.info(f'Found {len(train_samples)} training samples.')
train_loader = torch.utils.data.DataLoader(DatasetLoader(train_samples, args.ncomp,
input_transform=transforms.Compose([transforms.ToTensor(), RandomColorFlip()])),
batch_size=args.batchsize, shuffle=args.shuffle_train, num_workers=args.nthreads,
pin_memory=True
)
if not args.no_val:
val_samples = Collector.val()
logging.info(f'Found {len(val_samples)} validation samples.')
val_loader = torch.utils.data.DataLoader(DatasetLoader(val_samples, args.ncomp,
input_transform=transforms.Compose([transforms.ToTensor()])),
batch_size=args.batchsize, shuffle=args.shuffle_val, num_workers=args.nthreads,
pin_memory=True
)
# load network
try:
logging.info(f'Initializing "{args.net}" network')
net = name2net[args.net](\
num_input_channels=3,
num_initial_channels=args.ninf,
num_inner_channels=args.ngf,
num_penultimate_channels=args.noutf,
num_output_channels=6*args.ncomp,
input_resolution=128,
output_resolution=args.side,
num_downsampling=args.down,
num_blocks=args.block
).to(device)
# TODO: Train with multiple gpus
#net.set_data_parallel(True)
#net = torch.nn.DataParallel(net, device_ids=args.gpu)
logging.info(net)
except KeyError:
logging.error(f'A network named "{args.net}" is not available.')
exit(2)
if args.file:
savegame = torch.load(args.file)
net.load_state_dict(savegame['state_dict'])
# init optimizer
try:
logging.info(f'Initializing "{args.optim}" optimizer with learning rate = {args.lr} and weight decay = {args.decay}')
optimizer = name2optim[args.optim](net.parameters(), lr=args.lr, weight_decay=args.decay)
except KeyError:
logging.error(f'An optimizer named "{args.optim}" is not available.')
exit(3)
# Create results folder
os.makedirs(args.save_results, exist_ok=True)
try:
net.train()
scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=args.drop, gamma=0.5)
agg_loss = 0.
count = 0
val_results = []
for epoch in range(1, args.epochs + 1):
for batch_idx, (inputs, targets) in enumerate(train_loader):
optimizer.zero_grad()
inputs = inputs.to(device, non_blocking=True)
targets = targets.to(device, non_blocking=True)
pred = net(inputs)
loss = pos_loss(pred, shl2shlx(targets), num_components=6*args.ncomp)
loss.backward()
optimizer.step()
agg_loss += loss.detach()
count += inputs.shape[0]
if batch_idx % args.log_inter == 0:
logging.info(f'{epoch}/{batch_idx}: Train loss: {str(round(agg_loss.item()/count, 5))} {args.title}')
agg_loss = 0.
count = 0
scheduler.step()
if not args.no_save and epoch % args.save_inter == 0:
filename = f'{args.save_results}/{args.title}_{args.dataset}_{epoch}.pth.tar'
logging.info(f'Saving model to {filename}.')
net.eval()
torch.save(
{
'state_dict': net.state_dict(),
'optimizer' : optimizer.state_dict(),
'ninf':args.ninf,
'ngf':args.ngf,
'noutf':args.noutf,
'block':args.block,
'side': args.side,
'down':args.down,
'epoch': epoch,
'optim': args.optim,
'lr': args.lr,
}, filename
)
net.train()
# validation
if not args.no_val and epoch % args.val_inter == 0:
net.eval()
agg_iou = 0.
count = 0
with torch.no_grad():
for batch_idx, (inputs, targets) in enumerate(val_loader):
inputs = inputs.to(device, non_blocking=True)
targets = targets.to(device, non_blocking=True)
pred = net(inputs)
iou, bs = iou_shapelayer(shlx2shl(pred), targets, id1, id2, id3)
agg_iou += float(iou)
count += bs
net.train()
total_iou = (100 * agg_iou / count) if count > 0 else 0
val_results.append(total_iou)
logging.info(f'{epoch}: Val set accuracy, iou: {round(total_iou, 2)} {args.title}')
except KeyboardInterrupt:
pass
finally:
if len(val_results) != 0:
np.save(f'{args.save_results}/val_iou.npy', np.asarray(val_results))
if not args.no_save:
filename = f'{args.save_results}/{args.title}_{args.dataset}_{epoch}.pth.tar'
logging.info(f'Saving model to {filename}.')
torch.save(
{
'state_dict': net.state_dict(),
'optimizer' : optimizer.state_dict(),
'ninf':args.ninf,
'ngf':args.ngf,
'noutf':args.noutf,
'block':args.block,
'side': args.side,
'down':args.down,
'epoch': epoch,
'optim': args.optim,
'lr': args.lr,
}, filename
)
if __name__ == '__main__':
logging.basicConfig(level=logging.INFO)
logging.info(sys.argv)
parser = argparse.ArgumentParser(description='Train a Matryoshka Network')
# general options
parser.add_argument('--title', type=str, default='matryoshka', help='Title in logs, filename (default: matryoshka).')
parser.add_argument('--no_cuda', action='store_true', default=False, help='disables CUDA training')
parser.add_argument('--gpu', type=int, default=0, help='GPU ID if cuda is available and enabled')
parser.add_argument('--no_save', action='store_true', default=False, help='Disables saving of final model')
parser.add_argument('--no_val', action='store_true', default=False, help='Disable validation for faster training')
parser.add_argument('--batchsize', type=int, default=32, help='input batch size for training (default: 32)')
parser.add_argument('--epochs', type=int, default=40, help='number of epochs to train')
parser.add_argument('--nthreads', type=int, default=4, help='number of threads for loader')
parser.add_argument('--seed', type=int, default=42, help='random seed (default: 42)')
parser.add_argument('--val_inter', type=int, default=1, help='Validation interval in epochs (default: 1)')
parser.add_argument('--log_inter', type=int, default=100, help='Logging interval in batches (default: 100)')
parser.add_argument('--save_inter', type=int, default=10, help='Saving interval in epochs (default: 10)')
parser.add_argument('--save_results', type=str, default='./results', help='Folder where weights will be saved')
# options for optimizer
parser.add_argument('--optim', type=str, default=optim_default, help=('Optimizer [%s]' % ','.join(name2optim.keys())))
parser.add_argument('--lr', type=float, default=1e-3, help='Learning rate (default: 1e-3)')
parser.add_argument('--decay', type=float, default=0, help='Weight decay for optimizer (default: 0)')
parser.add_argument('--drop', type=int, default=30)
# options for dataset
parser.add_argument('--dataset', type=str, default=dataset_default, help=('Dataset [%s]' % ','.join(name2dataset.keys())))
parser.add_argument('--basedir', type=str, default='./data/', help='Base directory for dataset.')
parser.add_argument('--shapenet_base_dir',type=str, default='./ShapeNetRendering/', help='Directory with rendered images for shapenet dataset.')
parser.add_argument('--no_shuffle_train', action='store_true', default=False, help='Disable shuffling of training samples')
parser.add_argument('--no_shuffle_val', action='store_true', default=False, help='Disable shuffling of validation samples')
# options for network
parser.add_argument('--file', type=str, default=None, help='Savegame')
parser.add_argument('--net', type=str, default=net_default, help=('Network architecture [%s]' % ','.join(name2net.keys())))
parser.add_argument('--side', type=int, default=128, help='Output resolution [if dataset has multiple resolutions.] (default: 128)')
parser.add_argument('--ncomp', type=int, default=1, help='Number of nested shape layers (default: 1)')
parser.add_argument('--ninf', type=int, default=8, help='Number of initial feature channels (default: 8)')
parser.add_argument('--ngf', type=int, default=512, help='Number of inner channels to train (default: 512)')
parser.add_argument('--noutf', type=int, default=128, help='Number of penultimate feature channels (default: 128)')
parser.add_argument('--down', type=int, default=5, help='Number of downsampling blocks. (default: 5)')
parser.add_argument('--block', type=int, default=1, help='Number of inner blocks at same resolution. (default: 1)')
args = parser.parse_args()
main(args)