-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathfinetune_llama.sh
123 lines (113 loc) · 3.45 KB
/
finetune_llama.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
#!/bin/bash
#SBATCH --job-name=llama_finetune
#SBATCH -c 10
#SBATCH --partition=a100
#SBATCH --gres=gpu:4
#SBATCH --time=24:00:00
#SBATCH --mem=100G
#SBATCH --output=../../jobs/%x/%j.out
nvidia-smi
MASTER_PORT=4637
MODEL_DIR="meta-llama/Llama-2-7b-hf" # 13b
run_name="llama.train_mix.check.clean.mathQA" # change this every time you run a new experiment
output_dir="../../outputs/${MODEL_DIR}/${run_name}"
train_data_path="../../data/train_mix.check.clean.mathQA.format_v2.json" #
mkdir -p ${output_dir}
# slurm system gpus can't connect to each other by default
# set the following environment variables to enable nccl
export NCCL_IB_DISABLE=1;
export NCCL_P2P_DISABLE=1;
export NCCL_DEBUG=INFO;
export NCCL_SOCKET_IFNAME=en,eth,em,bond;
export CXX=g++;
# batch_size = train_batch_size * gradient_accumulation_steps * num_gpus = 128
# epoch size: alpaca using 3 epochs for 52k data
# epoch size: translation data size, only 8k
# epoch szie: sum, data2text, trans, 30k, epoch_size = 4
# deepspeed \
# --num_gpus 4 \
# --num_nodes 1 \
# --master_port ${MASTER_PORT} \
# train.py \
# --model_name_or_path ${MODEL_DIR} \
# --train_data_path ${train_data_path} \
# --bf16 True \
# --output_dir ${output_dir} \
# --num_train_epochs 3 \
# --per_device_train_batch_size 2 \
# --per_device_eval_batch_size 2 \
# --gradient_accumulation_steps 16 \
# --model_max_length 1024 \
# --evaluation_strategy "no" \
# --save_strategy "epoch" \
# --save_steps 200 \
# --save_total_limit 1 \
# --learning_rate 2e-5 \
# --weight_decay 0. \
# --warmup_ratio 0.1 \
# --lr_scheduler_type "cosine" \
# --logging_steps 2 \
# --tf32 True \
# --deepspeed ds_llama_config.json \
# --run_name ${run_name} \
# --seed 42 \
# --is_lora False \
CUDA_VISIBLE_DEVICES=0,1,2,3 deepspeed \
--num_gpus 4 \
--num_nodes 1 \
--master_port ${MASTER_PORT} \
train.py \
--model_name_or_path ${MODEL_DIR} \
--train_data_path ${train_data_path} \
--bf16 True \
--output_dir ${output_dir} \
--num_train_epochs 3 \
--per_device_train_batch_size 1 \
--per_device_eval_batch_size 2 \
--gradient_accumulation_steps 32 \
--model_max_length 1024 \
--evaluation_strategy "no" \
--save_strategy "epoch" \
--save_steps 64 \
--save_total_limit 6 \
--learning_rate 2e-5 \
--weight_decay 0. \
--warmup_ratio 0.1 \
--lr_scheduler_type "cosine" \
--logging_steps 2 \
--tf32 True \
--deepspeed ds_llama_config.json \
--run_name ${run_name} \
--seed 42 \
--is_lora False \
# # LIMA config
# deepspeed \
# --num_gpus 4 \
# --num_nodes 1 \
# --master_port ${MASTER_PORT} \
# train.py \
# --model_name_or_path ${MODEL_DIR} \
# --train_data_path ${train_data_path} \
# --bf16 True \
# --output_dir ${output_dir} \
# --num_train_epochs 15 \
# --per_device_train_batch_size 1 \
# --per_device_eval_batch_size 2 \
# --gradient_accumulation_steps 32 \
# --model_max_length 1024 \
# --evaluation_strategy "no" \
# --save_strategy "epoch" \
# --save_steps 200 \
# --save_total_limit 1 \
# --learning_rate 1e-5 \
# --adam_beta1 0.9 \
# --adam_beta2 0.95 \
# --weight_decay 0.1 \
# --warmup_ratio 0. \
# --lr_scheduler_type "linear" \
# --logging_steps 2 \
# --tf32 True \
# --deepspeed ds_llama_config.json \
# --run_name ${run_name} \
# --seed 42 \
# --is_lora False \