-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathevaluate_from_local.py
286 lines (246 loc) · 10 KB
/
evaluate_from_local.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
import csv
import json
import argparse
import os
import torch
import random
import transformers
import time
import re
from vllm import LLM, SamplingParams
from tqdm import tqdm
import logging
import sys
from datasets import load_dataset
choices = ["A", "B", "C", "D", "E", "F", "G", "H", "I", "J", "K", "L", "M", "N", "O", "P"]
max_model_length = 4096
max_new_tokens = 2048
def load_mmlu_pro():
dataset = load_dataset("TIGER-Lab/MMLU-Pro")
test_df, val_df = dataset["test"], dataset["validation"]
test_df = preprocess(test_df)
val_df = preprocess(val_df)
return test_df, val_df
def load_model():
llm = LLM(model=args.model, gpu_memory_utilization=float(args.gpu_util),
tensor_parallel_size=torch.cuda.device_count(),
max_model_len=max_model_length,
trust_remote_code=True)
sampling_params = SamplingParams(temperature=0, max_tokens=max_new_tokens,
stop=["Question:"])
tokenizer = transformers.AutoTokenizer.from_pretrained(args.model, trust_remote_code=True)
return (llm, sampling_params), tokenizer
def preprocess(test_df):
res_df = []
for each in test_df:
options = []
for opt in each["options"]:
if opt == "N/A":
continue
options.append(opt)
each["options"] = options
res_df.append(each)
return res_df
def args_generate_path(input_args):
scoring_method = "CoT"
model_name = input_args.model.split("/")[-1]
subjects = args.selected_subjects.replace(",", "-").replace(" ", "_")
return [model_name, scoring_method, subjects]
def select_by_category(df, subject):
res = []
for each in df:
if each["category"] == subject:
res.append(each)
return res
def format_cot_example(example, including_answer=True):
prompt = "Question:\n"
question = example["question"]
options = example["options"]
prompt += question + "\n"
prompt += "Options:\n"
for i, opt in enumerate(options):
prompt += "{}. {}\n".format(choices[i], opt)
if including_answer:
cot_content = example["cot_content"].replace("A: Let's think step by step.",
"Answer: Let's think step by step.")
prompt += cot_content + "\n\n"
else:
prompt += "Answer: Let's think step by step."
return prompt
def generate_cot_prompt(val_df, curr, k):
prompt = ""
with open(f"cot_prompt_lib/initial_prompt.txt", "r") as fi:
for line in fi.readlines():
prompt += line
subject = curr["category"]
val_df = select_by_category(val_df, subject)
val_df = val_df[: k]
prompt = prompt.replace("{$}", subject) + "\n"
for example in val_df:
prompt += format_cot_example(example, including_answer=True)
prompt += format_cot_example(curr, including_answer=False)
return prompt
def extract_answer(text):
pattern = r"answer is \(?([A-J])\)?"
match = re.search(pattern, text)
if match:
return match.group(1)
else:
print("1st answer extract failed\n" + text)
return extract_again(text)
def extract_again(text):
match = re.search(r'.*[aA]nswer:\s*([A-J])', text)
if match:
return match.group(1)
else:
return extract_final(text)
def extract_final(text):
pattern = r"\b[A-J]\b(?!.*\b[A-J]\b)"
match = re.search(pattern, text, re.DOTALL)
if match:
return match.group(0)
else:
return None
def batch_inference(llm, sampling_params, inference_batch):
start = time.time()
outputs = llm.generate(inference_batch, sampling_params)
logging.info(str(len(inference_batch)) + "size batch costing time: " + str(time.time() - start))
response_batch = []
pred_batch = []
for output in outputs:
generated_text = output.outputs[0].text
response_batch.append(generated_text)
pred = extract_answer(generated_text)
pred_batch.append(pred)
return pred_batch, response_batch
def save_res(res, output_path):
accu, corr, wrong = 0.0, 0.0, 0.0
with open(output_path, "w") as fo:
fo.write(json.dumps(res))
for each in res:
if not each["pred"]:
random.seed(12345)
x = random.randint(0, len(each["options"]) - 1)
if x == each["answer_index"]:
corr += 1
# print("random hit.")
else:
wrong += 1
elif each["pred"] == each["answer"]:
corr += 1
else:
wrong += 1
if corr + wrong == 0:
return 0.0, 0.0, 0.0
accu = corr / (corr + wrong)
return accu, corr, wrong
@torch.no_grad()
def eval_cot(subject, model, tokenizer, val_df, test_df, output_path):
llm, sampling_params = model
global choices
logging.info("evaluating " + subject)
inference_batches = []
for i in tqdm(range(len(test_df))):
k = args.ntrain
curr = test_df[i]
prompt_length_ok = False
prompt = None
while not prompt_length_ok:
prompt = generate_cot_prompt(val_df, curr, k)
inputs = tokenizer(prompt, return_tensors="pt")
inputs = {key: value.cuda() for key, value in inputs.items()}
length = len(inputs["input_ids"][0])
if length < max_model_length - max_new_tokens:
prompt_length_ok = True
k -= 1
inference_batches.append(prompt)
pred_batch, response_batch = batch_inference(llm, sampling_params, inference_batches)
res = []
for j, curr in enumerate(test_df):
curr["pred"] = pred_batch[j]
curr["model_outputs"] = response_batch[j]
res.append(curr)
accu, corr, wrong = save_res(res, output_path)
logging.info("this batch accu is: {}, corr: {}, wrong: {}\n".format(str(accu), str(corr), str(wrong)))
accu, corr, wrong = save_res(res, output_path)
return accu, corr, wrong
def main():
model, tokenizer = load_model()
if not os.path.exists(save_result_dir):
os.makedirs(save_result_dir)
full_test_df, full_val_df = load_mmlu_pro()
all_subjects = []
for each in full_test_df:
if each["category"] not in all_subjects:
all_subjects.append(each["category"])
if args.selected_subjects == "all":
selected_subjects = all_subjects
else:
selected_subjects = []
args_selected = args.selected_subjects.split(",")
for sub in all_subjects:
for each in args_selected:
if each.replace(" ", "_") in sub.replace(" ", "_"):
selected_subjects.append(sub)
logging.info("selected subjects:\n" + "\n".join(selected_subjects))
print("selected subjects:\n" + "\n".join(selected_subjects))
sta_dict = {}
selected_subjects = sorted(selected_subjects)
with open(os.path.join(summary_path), 'a') as f:
f.write("\n------category level sta------\n")
for subject in selected_subjects:
if subject not in sta_dict:
sta_dict[subject] = {"corr": 0.0, "wrong": 0.0, "accu": 0.0}
test_df = select_by_category(full_test_df, subject)
val_df = select_by_category(full_val_df, subject)
output_path = os.path.join(save_result_dir, "{}.json".format(subject))
acc, corr_count, wrong_count = eval_cot(subject, model, tokenizer, val_df, test_df, output_path)
sta_dict[subject]["corr"] = corr_count
sta_dict[subject]["wrong"] = wrong_count
sta_dict[subject]["accu"] = acc
with open(os.path.join(summary_path), 'a') as f:
f.write("Average accuracy {:.4f} - {}\n".format(sta_dict[subject]["accu"], subject))
total_corr, total_wrong = 0.0, 0.0
for k, v in sta_dict.items():
total_corr += v["corr"]
total_wrong += v["wrong"]
total_accu = total_corr / (total_corr + total_wrong + 0.000001)
sta_dict["total"] = {"corr": total_corr, "wrong": total_wrong, "accu": total_accu}
with open(os.path.join(summary_path), 'a') as f:
f.write("\n------average acc sta------\n")
weighted_acc = total_accu
f.write("Average accuracy: {:.4f}\n".format(weighted_acc))
with open(global_record_file, 'a', newline='') as file:
writer = csv.writer(file)
record = args_generate_path(args) + [time_str, weighted_acc]
writer.writerow(record)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--ntrain", "-k", type=int, default=5)
parser.add_argument("--selected_subjects", "-sub", type=str, default="all")
parser.add_argument("--save_dir", "-s", type=str, default="results")
parser.add_argument("--global_record_file", "-grf", type=str,
default="eval_record_collection.csv")
parser.add_argument("--gpu_util", "-gu", type=str, default="0.8")
parser.add_argument("--model", "-m", type=str, default="meta-llama/Llama-2-7b-hf")
args = parser.parse_args()
os.makedirs(args.save_dir, exist_ok=True)
global_record_file = args.global_record_file
save_result_dir = os.path.join(
args.save_dir, "/".join(args_generate_path(args))
)
file_prefix = "-".join(args_generate_path(args))
timestamp = time.time()
time_str = time.strftime('%m-%d_%H-%M', time.localtime(timestamp))
file_name = f"{file_prefix}_{time_str}_summary.txt"
summary_path = os.path.join(args.save_dir, "summary", file_name)
os.makedirs(os.path.join(args.save_dir, "summary"), exist_ok=True)
os.makedirs(save_result_dir, exist_ok=True)
save_log_dir = os.path.join(args.save_dir, "log")
os.makedirs(save_log_dir, exist_ok=True)
logging.basicConfig(level=logging.DEBUG, format='%(asctime)s %(levelname)s %(message)s',
handlers=[logging.FileHandler(os.path.join(save_log_dir,
file_name.replace("_summary.txt",
"_logfile.log"))),
logging.StreamHandler(sys.stdout)])
main()