forked from GriffinWeber/covid19i2b2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path4CE_Phase1.1_Files_mssql.sql
1024 lines (966 loc) · 79.3 KB
/
4CE_Phase1.1_Files_mssql.sql
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
--##############################################################################
--### 4CE Phase 1.1
--### Date: May 6, 2020
--### Database: Microsoft SQL Server
--### Data Model: i2b2
--### Created By: Griffin Weber ([email protected])
--##############################################################################
--******************************************************************************
--******************************************************************************
--*** Configuration and code mappings (modify for your institution)
--******************************************************************************
--******************************************************************************
--------------------------------------------------------------------------------
-- General settings
--------------------------------------------------------------------------------
create table #config (
siteid varchar(20), -- Up to 20 letters or numbers, must start with letter, no spaces or special characters.
include_race bit, -- 1 if your site collects race/ethnicity data; 0 if your site does not collect this.
race_in_fact_table bit, -- 1 if race in observation_fact.concept_cd; 0 if in patient_dimension.race_cd
hispanic_in_fact_table bit, -- 1 if Hispanic/Latino in observation_fact.concept_cd; 0 if in patient_dimension.race_cd
death_data_accurate bit, -- 1 if the patient_dimension.death_date field is populated and is accurate
code_prefix_icd9cm varchar(50), -- prefix (scheme) used in front of a ICD9CM diagnosis code [required]
code_prefix_icd10cm varchar(50), -- prefix (scheme) used in front of a ICD10CM diagnosis code [required]
code_prefix_icd9proc varchar(50), -- prefix (scheme) used in front of a ICD9 procedure code [required]
code_prefix_icd10pcs varchar(50), -- prefix (scheme) used in front of a ICD10 procedure code [required]
obfuscation_blur int, -- Add random number +/-blur to each count (0 = no blur)
obfuscation_small_count_mask int, -- Replace counts less than mask with -99 (0 = no small count masking)
obfuscation_small_count_delete bit, -- Delete rows with small counts (0 = no, 1 = yes)
obfuscation_demographics bit, -- Replace combination demographics and total counts with -999 (0 = no, 1 = yes)
output_as_columns bit, -- Return the data in tables with separate columns per field
output_as_csv bit -- Return the data in tables with a single column containing comma separated values
)
insert into #config
select 'YOURSITEID', -- siteid
1, -- include_race
0, -- race_in_fact_table
1, -- hispanic_in_fact_table
1, -- death_data_accurate
'DIAG|ICD9:', -- code_prefix_icd9cm
'DIAG|ICD10:', -- code_prefix_icd10cm
'PROC|ICD9:', -- code_prefix_icd9proc
'PROC|ICD10:', -- code_prefix_icd10pcs
0, -- obfuscation_blur
10, -- obfuscation_small_count_mask
0, -- obfuscation_small_count_delete
0, -- obfuscation_demographics
0, -- output_as_columns
1 -- output_as_csv
-- ! If your ICD codes do not start with a prefix (e.g., "ICD:"), then you will
-- ! need to customize the query that populates the #Diagnoses table so that
-- ! only diagnosis codes are selected from the observation_fact table.
--------------------------------------------------------------------------------
-- Code mappings (excluding labs and meds)
-- * Don't change the "code" value.
-- * Modify the "local_code" to match your database.
-- * Repeat a code multiple times if you have more than one local code.
--------------------------------------------------------------------------------
create table #code_map (
code varchar(50) not null,
local_code varchar(50) not null
)
alter table #code_map add primary key (code, local_code)
-- Inpatient visits (visit_dimension.inout_cd)
insert into #code_map
select 'inpatient', 'I'
union all select 'inpatient', 'IN'
-- Sex (patient_dimension.sex_cd)
insert into #code_map
select 'male', 'M'
union all select 'male', 'Male'
union all select 'female', 'F'
union all select 'female', 'Female'
-- Race (field based on #config.race_in_fact_table; ignore if you don't collect race/ethnicity)
insert into #code_map
select 'american_indian', 'NA'
union all select 'asian', 'A'
union all select 'asian', 'AS'
union all select 'black', 'B'
union all select 'hawaiian_pacific_islander', 'H'
union all select 'hawaiian_pacific_islander', 'P'
union all select 'white', 'W'
-- Hispanic/Latino (field based on #config.hispanic_in_fact_table; ignore if you don't collect race/ethnicity)
insert into #code_map
select 'hispanic_latino', 'DEM|HISP:Y'
union all select 'hispanic_latino', 'DEM|HISPANIC:Y'
-- Codes that indicate a positive COVID-19 test result (use either option #1 and/or option #2)
-- COVID-19 Positive Option #1: individual concept_cd values
insert into #code_map
select 'covidpos', 'LOINC:COVID19POS'
-- COVID-19 Positive Option #2: an ontology path (the example here is the COVID ACT "Any Positive Test" path)
insert into #code_map
select distinct 'covidpos', concept_cd
from concept_dimension c
where concept_path like '\ACT\UMLS_C0031437\SNOMED_3947185011\UMLS_C0022885\UMLS_C1335447\%'
and concept_cd is not null
and not exists (select * from #code_map m where m.code='covidpos' and m.local_code=c.concept_cd)
--------------------------------------------------------------------------------
-- Lab mappings
-- * Do not change the loinc column or the lab_units column.
-- * Modify the local_code column for the code you use.
-- * Add another row for a lab if you use multiple codes (e.g., see PaO2).
-- * Delete a row if you don't have that lab.
-- * Change the scale_factor if you use different units.
-- * The lab value will be multiplied by the scale_factor
-- * to convert from your units to the 4CE units.
--------------------------------------------------------------------------------
create table #lab_map (
loinc varchar(20) not null,
local_lab_code varchar(50) not null,
scale_factor float,
lab_units varchar(20),
lab_name varchar(100)
)
alter table #lab_map add primary key (loinc, local_lab_code)
insert into #lab_map
select loinc, 'LOINC:'+local_lab_code, -- Change "LOINC:" to your local LOINC code prefix (scheme)
scale_factor, lab_units, lab_name
from (
select '6690-2' loinc, '6690-2' local_lab_code, '1' scale_factor, '10*3/uL' lab_units, 'white blood cell count (Leukocytes)' lab_name
union select '751-8','751-8','1','10*3/uL','neutrophil count'
union select '731-0','731-0','1','10*3/uL','lymphocyte count'
union select '1751-7','1751-7','1','g/dL','albumin'
union select '2532-0','2532-0','1','U/L','lactate dehydrogenase (LDH)'
union select '1742-6','1742-6','1','U/L','alanine aminotransferase (ALT)'
union select '1920-8','1920-8','1','U/L','aspartate aminotransferase (AST)'
union select '1975-2','1975-2','1','mg/dL','total bilirubin'
union select '2160-0','2160-0','1','mg/dL','creatinine'
union select '49563-0','49563-0','1','ng/mL','cardiac troponin (High Sensitivity)'
union select '6598-7','6598-7','1','ug/L','cardiac troponin (Normal Sensitivity)'
union select '48065-7','48065-7','1','ng/mL{FEU}','D-dimer (FEU)'
union select '48066-5','48066-5','1','ng/mL{DDU}','D-dimer (DDU)'
union select '5902-2','5902-2','1','s','prothrombin time (PT)'
union select '33959-8','33959-8','1','ng/mL','procalcitonin'
union select '1988-5','1988-5','1','mg/L','C-reactive protein (CRP) (Normal Sensitivity)'
union select '3255-7','3255-7','1','mg/dL','Fibrinogen'
union select '2276-4','2276-4','1','ng/mL','Ferritin'
union select '2019-8','2019-8','1','mmHg','PaCO2'
union select '2703-7','2703-7','1','mmHg','PaO2'
--union select '2703-7','second-code','1','mmHg','PaO2'
--union select '2703-7','third-code','1','mmHg','PaO2'
) t
-- Use the concept_dimension to get an expanded list of local lab codes (optional).
-- Uncomment the query below to run this as part of the script.
-- This will pull in additional labs based on your existing mappings.
-- It will find paths corresponding to concepts already in the #lab_map table,
-- and then find all the concepts corresponding to child paths.
-- NOTE: Make sure to adjust the scale_factor if any of these additional
-- lab codes use different units than their parent code.
-- WARNING: This query might take several minutes to run.
/*
insert into #lab_map
select distinct l.loinc, d.concept_cd, l.scale_factor, l.lab_units, l.lab_name
from #lab_map l
inner join concept_dimension c
on l.local_lab_code = c.concept_cd
inner join concept_dimension d
on d.concept_path like c.concept_path+'%'
where not exists (
select *
from #lab_map t
where t.loinc = l.loinc and t.local_lab_code = d.concept_cd
)
*/
--------------------------------------------------------------------------------
-- Medication mappings
-- * Do not change the med_class or add additional medications.
-- * The ATC and RxNorm codes represent the same list of medications.
-- * Use ATC and/or RxNorm, depending on what your institution uses.
--------------------------------------------------------------------------------
create table #med_map (
med_class varchar(50) not null,
code_type varchar(10) not null,
local_med_code varchar(50) not null
)
alter table #med_map add primary key (med_class, code_type, local_med_code)
-- ATC codes (optional)
insert into #med_map
select m, 'ATC' t, 'ATC:'+c -- Change "ATC:" to your local ATC code prefix (scheme)
from (
-- Don't add or remove drugs
select 'ACEI' m, c from (select 'C09AA01' c union select 'C09AA02' union select 'C09AA03' union select 'C09AA04' union select 'C09AA05' union select 'C09AA06' union select 'C09AA07' union select 'C09AA08' union select 'C09AA09' union select 'C09AA10' union select 'C09AA11' union select 'C09AA13' union select 'C09AA15' union select 'C09AA16') t
union select 'ARB', c from (select 'C09CA01' c union select 'C09CA02' union select 'C09CA03' union select 'C09CA04' union select 'C09CA06' union select 'C09CA07' union select 'C09CA08') t
union select 'COAGA', c from (select 'B01AC04' c union select 'B01AC05' union select 'B01AC07' union select 'B01AC10' union select 'B01AC13' union select 'B01AC16' union select 'B01AC17' union select 'B01AC22' union select 'B01AC24' union select 'B01AC25' union select 'B01AC26') t
union select 'COAGB', c from (select 'B01AA01' c union select 'B01AA03' union select 'B01AA04' union select 'B01AA07' union select 'B01AA11' union select 'B01AB01' union select 'B01AB04' union select 'B01AB05' union select 'B01AB06' union select 'B01AB07' union select 'B01AB08' union select 'B01AB10' union select 'B01AB12' union select 'B01AE01' union select 'B01AE02' union select 'B01AE03' union select 'B01AE06' union select 'B01AE07' union select 'B01AF01' union select 'B01AF02' union select 'B01AF03' union select 'B01AF04' union select 'B01AX05' union select 'B01AX07') t
union select 'COVIDVIRAL', c from (select 'J05AE10' c union select 'J05AP01' union select 'J05AR10') t
union select 'DIURETIC', c from (select 'C03CA01' c union select 'C03CA02' union select 'C03CA03' union select 'C03CA04' union select 'C03CB01' union select 'C03CB02' union select 'C03CC01') t
union select 'HCQ', c from (select 'P01BA01' c union select 'P01BA02') t
union select 'ILI', c from (select 'L04AC03' c union select 'L04AC07' union select 'L04AC11' union select 'L04AC14') t
union select 'INTERFERON', c from (select 'L03AB08' c union select 'L03AB11') t
union select 'SIANES', c from (select 'M03AC03' c union select 'M03AC09' union select 'M03AC11' union select 'N01AX03' union select 'N01AX10' union select 'N05CD08' union select 'N05CM18') t
union select 'SICARDIAC', c from (select 'B01AC09' c union select 'C01CA03' union select 'C01CA04' union select 'C01CA06' union select 'C01CA07' union select 'C01CA24' union select 'C01CE02' union select 'C01CX09' union select 'H01BA01' union select 'R07AX01') t
) t
-- RxNorm codes (optional)
insert into #med_map
select m, 'RxNorm' t, 'RxNorm:'+c -- Change "RxNorm:" to your local RxNorm code prefix (scheme)
from (
-- Don't add or remove drugs
select 'ACEI' m, c from (select '36908' c union select '39990' union select '104375' union select '104376' union select '104377' union select '104378' union select '104383' union select '104384' union select '104385' union select '1299896' union select '1299897' union select '1299963' union select '1299965' union select '1435623' union select '1435624' union select '1435630' union select '1806883' union select '1806884' union select '1806890' union select '18867' union select '197884' union select '198187' union select '198188' union select '198189' union select '199351' union select '199352' union select '199353' union select '199622' union select '199707' union select '199708' union select '199709' union select '1998' union select '199816' union select '199817' union select '199931' union select '199937' union select '205326' union select '205707' union select '205778' union select '205779' union select '205780' union select '205781' union select '206277' union select '206313' union select '206764' union select '206765' union select '206766' union select '206771' union select '207780' union select '207792' union select '207800' union select '207820' union select '207891' union select '207892' union select '207893' union select '207895' union select '210671' union select '210672' union select '210673' union select '21102' union select '211535' union select '213482' union select '247516' union select '251856' union select '251857' union select '260333' union select '261257' union select '261258' union select '261962' union select '262076' union select '29046' union select '30131' union select '308607' union select '308609' union select '308612' union select '308613' union select '308962' union select '308963' union select '308964' union select '310063' union select '310065' union select '310066' union select '310067' union select '310422' union select '311353' union select '311354' union select '311734' union select '311735' union select '312311' union select '312312' union select '312313' union select '312748' union select '312749' union select '312750' union select '313982' union select '313987' union select '314076' union select '314077' union select '314203' union select '317173' union select '346568' union select '347739' union select '347972' union select '348000' union select '35208' union select '35296' union select '371001' union select '371254' union select '371506' union select '372007' union select '372274' union select '372614' union select '372945' union select '373293' union select '373731' union select '373748' union select '373749' union select '374176' union select '374177' union select '374938' union select '378288' union select '3827' union select '38454' union select '389182' union select '389183' union select '389184' union select '393442' union select '401965' union select '401968' union select '411434' union select '50166' union select '542702' union select '542704' union select '54552' union select '60245' union select '629055' union select '656757' union select '807349' union select '845488' union select '845489' union select '854925' union select '854927' union select '854984' union select '854986' union select '854988' union select '854990' union select '857169' union select '857171' union select '857183' union select '857187' union select '857189' union select '858804' union select '858806' union select '858810' union select '858812' union select '858813' union select '858815' union select '858817' union select '858819' union select '858821' union select '898687' union select '898689' union select '898690' union select '898692' union select '898719' union select '898721' union select '898723' union select '898725') t
union select 'ARB', c from (select '118463' c union select '108725' union select '153077' union select '153665' union select '153666' union select '153667' union select '153821' union select '153822' union select '153823' union select '153824' union select '1996253' union select '1996254' union select '199850' union select '199919' union select '200094' union select '200095' union select '200096' union select '205279' union select '205304' union select '205305' union select '2057151' union select '2057152' union select '2057158' union select '206256' union select '213431' union select '213432' union select '214354' union select '261209' union select '261301' union select '282755' union select '284531' union select '310139' union select '310140' union select '311379' union select '311380' union select '314073' union select '349199' union select '349200' union select '349201' union select '349483' union select '351761' union select '351762' union select '352001' union select '352274' union select '370704' union select '371247' union select '372651' union select '374024' union select '374279' union select '374612' union select '378276' union select '389185' union select '484824' union select '484828' union select '484855' union select '52175' union select '577776' union select '577785' union select '577787' union select '598024' union select '615856' union select '639536' union select '639537' union select '639539' union select '639543' union select '69749' union select '73494' union select '83515' union select '83818' union select '979480' union select '979482' union select '979485' union select '979487' union select '979492' union select '979494') t
union select 'COAGA', c from (select '27518' c union select '10594' union select '108911' union select '1116632' union select '1116634' union select '1116635' union select '1116639' union select '1537034' union select '1537038' union select '1537039' union select '1537045' union select '1656052' union select '1656055' union select '1656056' union select '1656061' union select '1656683' union select '1666332' union select '1666334' union select '1736469' union select '1736470' union select '1736472' union select '1736477' union select '1736478' union select '1737465' union select '1737466' union select '1737468' union select '1737471' union select '1737472' union select '1812189' union select '1813035' union select '1813037' union select '197622' union select '199314' union select '200348' union select '200349' union select '205253' union select '206714' union select '207569' union select '208316' union select '208558' union select '213169' union select '213299' union select '241162' union select '261096' union select '261097' union select '309362' union select '309952' union select '309953' union select '309955' union select '313406' union select '32968' union select '333833' union select '3521' union select '371917' union select '374131' union select '374583' union select '375035' union select '392451' union select '393522' union select '613391' union select '73137' union select '749196' union select '749198' union select '75635' union select '83929' union select '855811' union select '855812' union select '855816' union select '855818' union select '855820') t
union select 'COAGB', c from (select '2110605' c union select '237057' union select '69528' union select '8150' union select '163426' union select '1037042' union select '1037044' union select '1037045' union select '1037049' union select '1037179' union select '1037181' union select '1110708' union select '1114195' union select '1114197' union select '1114198' union select '1114202' union select '11289' union select '114934' union select '1232082' union select '1232084' union select '1232086' union select '1232088' union select '1241815' union select '1241823' union select '1245458' union select '1245688' union select '1313142' union select '1359733' union select '1359900' union select '1359967' union select '1360012' union select '1360432' union select '1361029' union select '1361038' union select '1361048' union select '1361226' union select '1361568' union select '1361574' union select '1361577' union select '1361607' union select '1361613' union select '1361615' union select '1361853' union select '1362024' union select '1362026' union select '1362027' union select '1362029' union select '1362030' union select '1362048' union select '1362052' union select '1362054' union select '1362055' union select '1362057' union select '1362059' union select '1362060' union select '1362061' union select '1362062' union select '1362063' union select '1362065' union select '1362067' union select '1362824' union select '1362831' union select '1362837' union select '1362935' union select '1362962' union select '1364430' union select '1364434' union select '1364435' union select '1364441' union select '1364445' union select '1364447' union select '1490491' union select '1490493' union select '15202' union select '152604' union select '154' union select '1549682' union select '1549683' union select '1598' union select '1599538' union select '1599542' union select '1599543' union select '1599549' union select '1599551' union select '1599553' union select '1599555' union select '1599557' union select '1656595' union select '1656599' union select '1656760' union select '1657991' union select '1658634' union select '1658637' union select '1658647' union select '1658659' union select '1658690' union select '1658692' union select '1658707' union select '1658717' union select '1658719' union select '1658720' union select '1659195' union select '1659197' union select '1659260' union select '1659263' union select '1723476' union select '1723478' union select '1798389' union select '1804730' union select '1804735' union select '1804737' union select '1804738' union select '1807809' union select '1856275' union select '1856278' union select '1857598' union select '1857949' union select '1927851' union select '1927855' union select '1927856' union select '1927862' union select '1927864' union select '1927866' union select '197597' union select '198349' union select '1992427' union select '1992428' union select '1997015' union select '1997017' union select '204429' union select '204431' union select '205791' union select '2059015' union select '2059017' union select '209081' union select '209082' union select '209083' union select '209084' union select '209086' union select '209087' union select '209088' union select '211763' union select '212123' union select '212124' union select '212155' union select '238722' union select '238727' union select '238729' union select '238730' union select '241112' union select '241113' union select '242501' union select '244230' union select '244231' union select '244239' union select '244240' union select '246018' union select '246019' union select '248140' union select '248141' union select '251272' union select '280611' union select '282479' union select '283855' union select '284458' union select '284534' union select '308351' union select '308769' union select '310710' union select '310713' union select '310723' union select '310732' union select '310733' union select '310734' union select '310739' union select '310741' union select '313410' union select '313732' union select '313733' union select '313734' union select '313735' union select '313737' union select '313738' union select '313739' union select '314013' union select '314279' union select '314280' union select '321208' union select '349308' union select '351111' union select '352081' union select '352102' union select '370743' union select '371679' union select '371810' union select '372012' union select '374319' union select '374320' union select '374638' union select '376834' union select '381158' union select '389189' union select '402248' union select '402249' union select '404141' union select '404142' union select '404143' union select '404144' union select '404146' union select '404147' union select '404148' union select '404259' union select '404260' union select '415379' union select '5224' union select '540217' union select '542824' union select '545076' union select '562130' union select '562550' union select '581236' union select '60819' union select '616862' union select '616912' union select '645887' union select '67031' union select '67108' union select '67109' union select '69646' union select '727382' union select '727383' union select '727384' union select '727559' union select '727560' union select '727562' union select '727563' union select '727564' union select '727565' union select '727566' union select '727567' union select '727568' union select '727718' union select '727719' union select '727722' union select '727723' union select '727724' union select '727725' union select '727726' union select '727727' union select '727728' union select '727729' union select '727730' union select '727778' union select '727831' union select '727832' union select '727834' union select '727838' union select '727851' union select '727859' union select '727860' union select '727861' union select '727878' union select '727880' union select '727881' union select '727882' union select '727883' union select '727884' union select '727888' union select '727892' union select '727920' union select '727922' union select '727926' union select '729968' union select '729969' union select '729970' union select '729971' union select '729972' union select '729973' union select '729974' union select '729976' union select '730002' union select '746573' union select '746574' union select '753111' union select '753112' union select '753113' union select '759595' union select '759596' union select '759597' union select '759598' union select '759599' union select '75960' union select '759600' union select '759601' union select '792060' union select '795798' union select '827000' union select '827001' union select '827003' union select '827069' union select '827099' union select '829884' union select '829885' union select '829886' union select '829888' union select '830698' union select '848335' union select '848339' union select '849297' union select '849298' union select '849299' union select '849300' union select '849301' union select '849312' union select '849313' union select '849317' union select '849333' union select '849337' union select '849338' union select '849339' union select '849340' union select '849341' union select '849342' union select '849344' union select '849699' union select '849702' union select '849710' union select '849712' union select '849715' union select '849718' union select '849722' union select '849726' union select '849764' union select '849770' union select '849776' union select '849814' union select '854228' union select '854232' union select '854235' union select '854236' union select '854238' union select '854239' union select '854241' union select '854242' union select '854245' union select '854247' union select '854248' union select '854249' union select '854252' union select '854253' union select '854255' union select '854256' union select '855288' union select '855290' union select '855292' union select '855296' union select '855298' union select '855300' union select '855302' union select '855304' union select '855306' union select '855308' union select '855312' union select '855314' union select '855316' union select '855318' union select '855320' union select '855322' union select '855324' union select '855326' union select '855328' union select '855332' union select '855334' union select '855336' union select '855338' union select '855340' union select '855342' union select '855344' union select '855346' union select '855348' union select '855350' union select '857253' union select '857255' union select '857257' union select '857259' union select '857261' union select '857645' union select '861356' union select '861358' union select '861360' union select '861362' union select '861363' union select '861364' union select '861365' union select '861366' union select '978713' union select '978715' union select '978717' union select '978718' union select '978719' union select '978720' union select '978721' union select '978722' union select '978723' union select '978725' union select '978727' union select '978733' union select '978735' union select '978736' union select '978737' union select '978738' union select '978740' union select '978741' union select '978744' union select '978745' union select '978746' union select '978747' union select '978755' union select '978757' union select '978759' union select '978761' union select '978777' union select '978778') t
union select 'COVIDVIRAL', c from (select '108766' c union select '1236627' union select '1236628' union select '1236632' union select '1298334' union select '1359269' union select '1359271' union select '1486197' union select '1486198' union select '1486200' union select '1486202' union select '1486203' union select '1487498' union select '1487500' union select '1863148' union select '1992160' union select '207406' union select '248109' union select '248110' union select '248112' union select '284477' union select '284640' union select '311368' union select '311369' union select '312817' union select '312818' union select '352007' union select '352337' union select '373772' union select '373773' union select '373774' union select '374642' union select '374643' union select '376293' union select '378671' union select '460132' union select '539485' union select '544400' union select '597718' union select '597722' union select '597729' union select '597730' union select '602770' union select '616129' union select '616131' union select '616133' union select '643073' union select '643074' union select '670026' union select '701411' union select '701413' union select '746645' union select '746647' union select '754738' union select '757597' union select '757598' union select '757599' union select '757600' union select '790286' union select '794610' union select '795742' union select '795743' union select '824338' union select '824876' union select '831868' union select '831870' union select '847330' union select '847741' union select '847745' union select '847749' union select '850455' union select '850457' union select '896790' union select '902312' union select '902313' union select '9344') t
union select 'DIURETIC', c from (select '392534' c union select '4109' union select '392464' union select '33770' union select '104220' union select '104222' union select '1112201' union select '132604' union select '1488537' union select '1546054' union select '1546056' union select '1719285' union select '1719286' union select '1719290' union select '1719291' union select '1727568' union select '1727569' union select '1727572' union select '1729520' union select '1729521' union select '1729523' union select '1729527' union select '1729528' union select '1808' union select '197417' union select '197418' union select '197419' union select '197730' union select '197731' union select '197732' union select '198369' union select '198370' union select '198371' union select '198372' union select '199610' union select '200801' union select '200809' union select '204154' union select '205488' union select '205489' union select '205490' union select '205732' union select '208076' union select '208078' union select '208080' union select '208081' union select '208082' union select '248657' union select '250044' union select '250660' union select '251308' union select '252484' union select '282452' union select '282486' union select '310429' union select '313988' union select '371157' union select '371158' union select '372280' union select '372281' union select '374168' union select '374368' union select '38413' union select '404018' union select '4603' union select '545041' union select '561969' union select '630032' union select '630035' union select '645036' union select '727573' union select '727574' union select '727575' union select '727845' union select '876422' union select '95600') t
union select 'HCQ', c from (select '1116758' c union select '1116760' union select '1117346' union select '1117351' union select '1117353' union select '1117531' union select '197474' union select '197796' union select '202317' union select '213378' union select '226388' union select '2393' union select '249663' union select '250175' union select '261104' union select '370656' union select '371407' union select '5521' union select '755624' union select '755625' union select '756408' union select '979092' union select '979094') t
union select 'ILI', c from (select '1441526' c union select '1441527' union select '1441530' union select '1535218' union select '1535242' union select '1535247' union select '1657973' union select '1657974' union select '1657976' union select '1657979' union select '1657980' union select '1657981' union select '1657982' union select '1658131' union select '1658132' union select '1658135' union select '1658139' union select '1658141' union select '1923319' union select '1923332' union select '1923333' union select '1923338' union select '1923345' union select '1923347' union select '2003754' union select '2003755' union select '2003757' union select '2003766' union select '2003767' union select '351141' union select '352056' union select '612865' union select '72435' union select '727708' union select '727711' union select '727714' union select '727715' union select '895760' union select '895764') t
union select 'INTERFERON', c from (select '120608' c union select '1650893' union select '1650894' union select '1650896' union select '1650922' union select '1650940' union select '1651307' union select '1721323' union select '198360' union select '207059' union select '351270' union select '352297' union select '378926' union select '403986' union select '72257' union select '731325' union select '731326' union select '731328' union select '731330' union select '860244') t
union select 'SIANES', c from (select '106517' c union select '1087926' union select '1188478' union select '1234995' union select '1242617' union select '1249681' union select '1301259' union select '1313988' union select '1373737' union select '1486837' union select '1535224' union select '1535226' union select '1535228' union select '1535230' union select '1551393' union select '1551395' union select '1605773' union select '1666776' union select '1666777' union select '1666797' union select '1666798' union select '1666800' union select '1666814' union select '1666821' union select '1666823' union select '1718899' union select '1718900' union select '1718902' union select '1718906' union select '1718907' union select '1718909' union select '1718910' union select '1730193' union select '1730194' union select '1730196' union select '1732667' union select '1732668' union select '1732674' union select '1788947' union select '1808216' union select '1808217' union select '1808219' union select '1808222' union select '1808223' union select '1808224' union select '1808225' union select '1808234' union select '1808235' union select '1862110' union select '198383' union select '199211' union select '199212' union select '199775' union select '2050125' union select '2057964' union select '206967' union select '206970' union select '206972' union select '207793' union select '207901' union select '210676' union select '210677' union select '238082' union select '238083' union select '238084' union select '240606' union select '259859' union select '284397' union select '309710' union select '311700' union select '311701' union select '311702' union select '312674' union select '319864' union select '372528' union select '372922' union select '375623' union select '376856' union select '377135' union select '377219' union select '377483' union select '379133' union select '404091' union select '404092' union select '404136' union select '422410' union select '446503' union select '48937' union select '584528' union select '584530' union select '6130' union select '631205' union select '68139' union select '6960' union select '71535' union select '828589' union select '828591' union select '830752' union select '859437' union select '8782' union select '884675' union select '897073' union select '897077' union select '998210' union select '998211') t
union select 'SICARDIAC', c from (select '7442' c union select '1009216' union select '1045470' union select '1049182' union select '1049184' union select '1052767' union select '106686' union select '106779' union select '106780' union select '1087043' union select '1087047' union select '1090087' union select '1114874' union select '1114880' union select '1114888' union select '11149' union select '1117374' union select '1232651' union select '1232653' union select '1234563' union select '1234569' union select '1234571' union select '1234576' union select '1234578' union select '1234579' union select '1234581' union select '1234584' union select '1234585' union select '1234586' union select '1251018' union select '1251022' union select '1292716' union select '1292731' union select '1292740' union select '1292751' union select '1292887' union select '1299137' union select '1299141' union select '1299145' union select '1299879' union select '1300092' union select '1302755' union select '1305268' union select '1305269' union select '1307224' union select '1358843' union select '1363777' union select '1363785' union select '1363786' union select '1363787' union select '1366958' union select '141848' union select '1490057' union select '1542385' union select '1546216' union select '1546217' union select '1547926' union select '1548673' union select '1549386' union select '1549388' union select '1593738' union select '1658178' union select '1660013' union select '1660014' union select '1660016' union select '1661387' union select '1666371' union select '1666372' union select '1666374' union select '1721536' union select '1743862' union select '1743869' union select '1743871' union select '1743877' union select '1743879' union select '1743938' union select '1743941' union select '1743950' union select '1743953' union select '1745276' union select '1789858' union select '1791839' union select '1791840' union select '1791842' union select '1791854' union select '1791859' union select '1791861' union select '1812167' union select '1812168' union select '1812170' union select '1870205' union select '1870207' union select '1870225' union select '1870230' union select '1870232' union select '1939322' union select '198620' union select '198621' union select '198786' union select '198787' union select '198788' union select '1989112' union select '1989117' union select '1991328' union select '1991329' union select '1999003' union select '1999006' union select '1999007' union select '1999012' union select '204395' union select '204843' union select '209217' union select '2103181' union select '2103182' union select '2103184' union select '211199' union select '211200' union select '211704' union select '211709' union select '211712' union select '211714' union select '211715' union select '212343' union select '212770' union select '212771' union select '212772' union select '212773' union select '238217' union select '238218' union select '238219' union select '238230' union select '238996' union select '238997' union select '238999' union select '239000' union select '239001' union select '241033' union select '242969' union select '244284' union select '245317' union select '247596' union select '247940' union select '260687' union select '309985' union select '309986' union select '309987' union select '310011' union select '310012' union select '310013' union select '310116' union select '310117' union select '310127' union select '310132' union select '311705' union select '312395' union select '312398' union select '313578' union select '313967' union select '314175' union select '347930' union select '351701' union select '351702' union select '351982' union select '359907' union select '3616' union select '3628' union select '372029' union select '372030' union select '372031' union select '373368' union select '373369' union select '373370' union select '373372' union select '373375' union select '374283' union select '374570' union select '376521' union select '377281' union select '379042' union select '387789' union select '392099' union select '393309' union select '3992' union select '404093' union select '477358' union select '477359' union select '52769' union select '542391' union select '542655' union select '542674' union select '562501' union select '562502' union select '562592' union select '584580' union select '584582' union select '584584' union select '584588' union select '602511' union select '603259' union select '603276' union select '603915' union select '617785' union select '669267' union select '672683' union select '672685' union select '672891' union select '692479' union select '700414' union select '704955' union select '705163' union select '705164' union select '705170' union select '727310' union select '727316' union select '727345' union select '727347' union select '727373' union select '727386' union select '727410' union select '727842' union select '727843' union select '727844' union select '746206' union select '746207' union select '7512' union select '8163' union select '827706' union select '864089' union select '880658' union select '8814' union select '883806' union select '891437' union select '891438') t
) t
-- Remdesivir defined separately since many sites will have custom codes (optional)
insert into #med_map
select 'REMDESIVIR', 'RxNorm', 'RxNorm:2284718'
union select 'REMDESIVIR', 'RxNorm', 'RxNorm:2284960'
union select 'REMDESIVIR', 'Custom', 'ACT|LOCAL:REMDESIVIR'
-- Use the concept_dimension to get an expanded list of medication codes (optional)
-- Uncomment the query below to run this as part of the script.
-- Change "\ACT\Medications\%" to the root path of medications in your ontology.
-- This will pull in additional medications based on your existing mappings.
-- It will find paths corresponding to concepts already in the #med_map table,
-- and then find all the concepts corresponding to child paths.
-- WARNING: This query might take several minutes to run. If it is taking more
-- than an hour, then stop the query and contact us about alternative approaches.
/*
select concept_path, concept_cd
into #med_paths
from concept_dimension
where concept_path like '\ACT\Medications\%'
and concept_cd in (select concept_cd from observation_fact)
alter table #med_paths add primary key (concept_path)
insert into #med_map
select distinct m.med_class, 'Expand', d.concept_cd
from #med_map m
inner join concept_dimension c
on m.local_med_code = c.concept_cd
inner join #med_paths d
on d.concept_path like c.concept_path+'%'
where not exists (
select *
from #med_map t
where t.med_class = m.med_class and t.local_med_code = d.concept_cd
)
*/
--##############################################################################
--### Most sites will not have to modify any SQL beyond this point.
--### However, review the queries to see if you need to customize them
--### for special logic, privacy, etc.
--##############################################################################
--******************************************************************************
--******************************************************************************
--*** Define the COVID cohort (COVID postive test + admitted)
--******************************************************************************
--******************************************************************************
--------------------------------------------------------------------------------
-- Create the list of COVID-19 positive patients.
-- Use the earliest date where the patient is known to be COVID positive,
-- for example, a COVID positive test result.
--------------------------------------------------------------------------------
create table #covid_pos_patients (
patient_num int not null,
covid_pos_date date not null
)
alter table #covid_pos_patients add primary key (patient_num, covid_pos_date)
insert into #covid_pos_patients
select patient_num, cast(min(start_date) as date) covid_pos_date
from observation_fact f
inner join #code_map m
on f.concept_cd = m.local_code and m.code = 'covidpos'
group by patient_num
--------------------------------------------------------------------------------
-- Create a list of dates when patients were inpatient starting one week
-- before their COVID pos date.
--------------------------------------------------------------------------------
create table #admissions (
patient_num int not null,
admission_date date not null,
discharge_date date not null
)
alter table #admissions add primary key (patient_num, admission_date, discharge_date)
insert into #admissions
select distinct v.patient_num, cast(start_date as date), cast(isnull(end_date,GetDate()) as date)
from visit_dimension v
inner join #covid_pos_patients p
on v.patient_num=p.patient_num
and v.start_date >= dateadd(dd,-7,p.covid_pos_date)
inner join #code_map m
on v.inout_cd = m.local_code and m.code = 'inpatient'
--------------------------------------------------------------------------------
-- Get the list of patients who will be the covid cohort.
-- These will be patients who had an admission between 7 days before and
-- 14 days after their covid positive test date.
--------------------------------------------------------------------------------
create table #covid_cohort (
patient_num int not null,
admission_date date,
severe int,
severe_date date,
death_date date
)
alter table #covid_cohort add primary key (patient_num)
insert into #covid_cohort
select p.patient_num, min(admission_date) admission_date, 0, null, null
from #covid_pos_patients p
inner join #admissions a
on p.patient_num = a.patient_num
and a.admission_date <= dateadd(dd,14,covid_pos_date)
group by p.patient_num
--******************************************************************************
--******************************************************************************
--*** Determine which patients had severe disease or died
--******************************************************************************
--******************************************************************************
--------------------------------------------------------------------------------
-- Flag the patients who had severe disease anytime since admission.
--------------------------------------------------------------------------------
create table #severe_patients (
patient_num int not null,
severe_date date
)
-- Get a list of patients with severe codes
-- WARNING: This query might take a few minutes to run.
insert into #severe_patients
select f.patient_num, min(start_date) start_date
from observation_fact f
inner join #covid_cohort c
on f.patient_num = c.patient_num and f.start_date >= c.admission_date
cross apply #config x
where
-- Any PaCO2 or PaO2 lab test
f.concept_cd in (select local_lab_code from #lab_map where loinc in ('2019-8','2703-7'))
-- Any severe medication
or f.concept_cd in (select local_med_code from #med_map where med_class in ('SIANES','SICARDIAC'))
-- Acute respiratory distress syndrome (diagnosis)
or f.concept_cd in (code_prefix_icd10cm+'J80', code_prefix_icd9cm+'518.82')
-- Ventilator associated pneumonia (diagnosis)
or f.concept_cd in (code_prefix_icd10cm+'J95.851', code_prefix_icd9cm+'997.31')
-- Insertion of endotracheal tube (procedure)
or f.concept_cd in (code_prefix_icd10pcs+'0BH17EZ', code_prefix_icd9proc+'96.04')
-- Invasive mechanical ventilation (procedure)
or f.concept_cd like code_prefix_icd10pcs+'5A09[345]%'
or f.concept_cd like code_prefix_icd9proc+'96.7[012]'
group by f.patient_num
-- Update the covid_cohort table to flag severe patients
update c
set c.severe = 1, c.severe_date = s.severe_date
from #covid_cohort c
inner join (
select patient_num, min(severe_date) severe_date
from #severe_patients
group by patient_num
) s on c.patient_num = s.patient_num
--------------------------------------------------------------------------------
-- Add death dates to patients who have died.
--------------------------------------------------------------------------------
if exists (select * from #config where death_data_accurate = 1)
begin
-- Get the death date from the patient_dimension table.
update c
set c.death_date = (
case when p.death_date > isnull(severe_date,admission_date)
then p.death_date
else isnull(severe_date,admission_date) end)
from #covid_cohort c
inner join patient_dimension p
on p.patient_num = c.patient_num
where p.death_date is not null or p.vital_status_cd in ('Y')
-- Check that there aren't more recent facts for the deceased patients.
update c
set c.death_date = d.death_date
from #covid_cohort c
inner join (
select p.patient_num, max(f.start_date) death_date
from #covid_cohort p
inner join observation_fact f
on f.patient_num = p.patient_num
where p.death_date is not null and f.start_date > p.death_date
group by p.patient_num
) d on c.patient_num = d.patient_num
end
--******************************************************************************
--******************************************************************************
--*** Precompute some temp tables
--******************************************************************************
--******************************************************************************
--------------------------------------------------------------------------------
-- Create a list of dates since the first case.
--------------------------------------------------------------------------------
create table #date_list (
d date not null
)
alter table #date_list add primary key (d)
;with n as (
select 0 n union all select 1 union all select 2 union all select 3 union all select 4
union all select 5 union all select 6 union all select 7 union all select 8 union all select 9
)
insert into #date_list
select d
from (
select isnull(cast(dateadd(dd,a.n+10*b.n+100*c.n,p.s) as date),'1/1/2020') d
from (select min(admission_date) s from #covid_cohort) p
cross join n a cross join n b cross join n c
) l
where d<=GetDate()
--------------------------------------------------------------------------------
-- Create a table with patient demographics.
--------------------------------------------------------------------------------
create table #Demographics_temp (
patient_num int,
sex varchar(10),
age_group varchar(20),
race varchar(30)
)
-- Get patients' sex
insert into #Demographics_temp (patient_num, sex)
select patient_num, m.code
from patient_dimension p
inner join #code_map m
on p.sex_cd = m.local_code
and m.code in ('male','female')
where patient_num in (select patient_num from #covid_cohort)
-- Get patients' age
insert into #Demographics_temp (patient_num, age_group)
select patient_num,
(case
when age_in_years_num between 0 and 2 then '00to02'
when age_in_years_num between 3 and 5 then '03to05'
when age_in_years_num between 6 and 11 then '06to11'
when age_in_years_num between 12 and 17 then '12to17'
when age_in_years_num between 18 and 25 then '18to25'
when age_in_years_num between 26 and 49 then '26to49'
when age_in_years_num between 50 and 69 then '50to69'
when age_in_years_num between 70 and 79 then '70to79'
when age_in_years_num >= 80 then '80plus'
else 'other' end) age
from patient_dimension
where patient_num in (select patient_num from #covid_cohort)
-- Get patients' race(s)
-- (race from patient_dimension)
insert into #Demographics_temp (patient_num, race)
select p.patient_num, m.code
from #config x
cross join patient_dimension p
inner join #code_map m
on p.race_cd = m.local_code
where p.patient_num in (select patient_num from #covid_cohort)
and x.include_race = 1
and (
(x.race_in_fact_table = 0 and m.code in ('american_indian','asian','black','hawaiian_pacific_islander','white'))
or
(x.hispanic_in_fact_table = 0 and m.code in ('hispanic_latino'))
)
-- (race from observation_fact)
insert into #Demographics_temp (patient_num, race)
select f.patient_num, m.code
from #config x
cross join observation_fact f
inner join #code_map m
on f.concept_cd = m.local_code
where f.patient_num in (select patient_num from #covid_cohort)
and x.include_race = 1
and (
(x.race_in_fact_table = 1 and m.code in ('american_indian','asian','black','hawaiian_pacific_islander','white'))
or
(x.hispanic_in_fact_table = 1 and m.code in ('hispanic_latino'))
)
-- Make sure every patient has a sex, age_group, and race
insert into #Demographics_temp (patient_num, sex, age_group, race)
select patient_num, 'other', null, null
from #covid_cohort
where patient_num not in (select patient_num from #Demographics_temp where sex is not null)
union all
select patient_num, null, 'other', null
from #covid_cohort
where patient_num not in (select patient_num from #Demographics_temp where age_group is not null)
union all
select patient_num, null, null, 'other'
from #covid_cohort
where patient_num not in (select patient_num from #Demographics_temp where race is not null)
--******************************************************************************
--******************************************************************************
--*** Create data tables
--******************************************************************************
--******************************************************************************
--------------------------------------------------------------------------------
-- Create DailyCounts table.
--------------------------------------------------------------------------------
create table #DailyCounts (
siteid varchar(50) not null,
calendar_date date not null,
cumulative_patients_all int,
cumulative_patients_severe int,
cumulative_patients_dead int,
num_patients_in_hospital_on_this_date int,
num_patients_in_hospital_and_severe_on_this_date int
)
alter table #DailyCounts add primary key (calendar_date)
insert into #DailyCounts
select '' siteid, d.*,
(select count(distinct c.patient_num)
from #admissions p
inner join #covid_cohort c
on p.patient_num=c.patient_num
where p.admission_date>=c.admission_date
and p.admission_date<=d.d and p.discharge_date>=d.d
) num_patients_in_hospital_on_this_date,
(select count(distinct c.patient_num)
from #admissions p
inner join #covid_cohort c
on p.patient_num=c.patient_num
where p.admission_date>=c.admission_date
and p.admission_date<=d.d and p.discharge_date>=d.d
and c.severe_date<=d.d
) num_patients_in_hospital_and_severe_on_this_date
from (
select d.d,
sum(case when c.admission_date<=d.d then 1 else 0 end) cumulative_patients_all,
sum(case when c.severe_date<=d.d then 1 else 0 end) cumulative_patients_severe,
sum(case when c.death_date<=d.d then 1 else 0 end) cumulative_patients_dead
from #date_list d
cross join #covid_cohort c
group by d.d
) d
-- Set cumulative_patients_dead = -999 if you do not have accurate death data.
update #DailyCounts
set cumulative_patients_dead = -999
where exists (select * from #config where death_data_accurate = 0)
--------------------------------------------------------------------------------
-- Create ClinicalCourse table.
--------------------------------------------------------------------------------
create table #ClinicalCourse (
siteid varchar(50) not null,
days_since_admission int not null,
num_patients_all_still_in_hospital int,
num_patients_ever_severe_still_in_hospital int
)
alter table #ClinicalCourse add primary key (days_since_admission)
insert into #ClinicalCourse
select '' siteid, days_since_admission,
count(*),
sum(severe)
from (
select distinct datediff(dd,c.admission_date,d.d) days_since_admission,
c.patient_num, severe
from #date_list d
inner join #admissions p
on p.admission_date<=d.d and p.discharge_date>=d.d
inner join #covid_cohort c
on p.patient_num=c.patient_num and p.admission_date>=c.admission_date
) t
group by days_since_admission
--------------------------------------------------------------------------------
-- Create Demographics table.
--------------------------------------------------------------------------------
create table #Demographics (
siteid varchar(50) not null,
sex varchar(10) not null,
age_group varchar(20) not null,
race varchar(30) not null,
num_patients_all int,
num_patients_ever_severe int
)
alter table #Demographics add primary key (sex, age_group, race)
insert into #Demographics
select '' siteid, sex, age_group, race, count(*), sum(severe)
from #covid_cohort c
inner join (
select patient_num, sex from #Demographics_temp where sex is not null
union all
select patient_num, 'all' from #covid_cohort
) s on c.patient_num=s.patient_num
inner join (
select patient_num, age_group from #Demographics_temp where age_group is not null
union all
select patient_num, 'all' from #covid_cohort
) a on c.patient_num=a.patient_num
inner join (
select patient_num, race from #Demographics_temp where race is not null
union all
select patient_num, 'all' from #covid_cohort
) r on c.patient_num=r.patient_num
group by sex, age_group, race
-- Set counts = -999 if not including race.
update #Demographics
set num_patients_all = -999, num_patients_ever_severe = -999
where exists (select * from #config where include_race = 0)
--------------------------------------------------------------------------------
-- Create Labs table.
--------------------------------------------------------------------------------
create table #Labs (
siteid varchar(50) not null,
loinc varchar(20) not null,
days_since_admission int not null,
units varchar(20),
num_patients_all int,
mean_value_all float,
stdev_value_all float,
mean_log_value_all float,
stdev_log_value_all float,
num_patients_ever_severe int,
mean_value_ever_severe float,
stdev_value_ever_severe float,
mean_log_value_ever_severe float,
stdev_log_value_ever_severe float
)
alter table #Labs add primary key (loinc, days_since_admission)
insert into #Labs
select '' siteid, loinc, days_since_admission, lab_units,
count(*),
avg(val),
isnull(stdev(val),0),
avg(logval),
isnull(stdev(logval),0),
sum(severe),
(case when sum(severe)=0 then -999 else avg(case when severe=1 then val else null end) end),
(case when sum(severe)=0 then -999 else isnull(stdev(case when severe=1 then val else null end),0) end),
(case when sum(severe)=0 then -999 else avg(case when severe=1 then logval else null end) end),
(case when sum(severe)=0 then -999 else isnull(stdev(case when severe=1 then logval else null end),0) end)
from (
select loinc, lab_units, patient_num, severe, days_since_admission,
avg(val) val,
avg(log(val+0.5)) logval -- natural log (ln), not log base 10
from (
select l.loinc, l.lab_units, f.patient_num, p.severe,
datediff(dd,p.admission_date,f.start_date) days_since_admission,
f.nval_num*l.scale_factor val
from observation_fact f
inner join #covid_cohort p
on f.patient_num=p.patient_num
inner join #lab_map l
on f.concept_cd=l.local_lab_code
where l.local_lab_code is not null
and f.nval_num is not null
and f.nval_num >= 0
and f.start_date >= p.admission_date
and l.loinc not in ('2019-8','2703-7')
) t
group by loinc, lab_units, patient_num, severe, days_since_admission
) t
group by loinc, days_since_admission, lab_units
--------------------------------------------------------------------------------
-- Create Diagnosis table.
-- * Select all ICD9 and ICD10 codes.
-- * Note that just the left 3 characters of the ICD codes should be used.
-- * Customize this query if your ICD codes do not have a prefix.
--------------------------------------------------------------------------------
create table #Diagnoses (
siteid varchar(50) not null,
icd_code_3chars varchar(10) not null,
icd_version int not null,
num_patients_all_before_admission int,
num_patients_all_since_admission int,
num_patients_ever_severe_before_admission int,
num_patients_ever_severe_since_admission int
)
alter table #Diagnoses add primary key (icd_code_3chars, icd_version)
insert into #Diagnoses
select '' siteid, icd_code_3chars, icd_version,
sum(before_admission),
sum(since_admission),
sum(severe*before_admission),
sum(severe*since_admission)
from (
-- ICD9
select distinct p.patient_num, p.severe, 9 icd_version,
left(substring(f.concept_cd, len(code_prefix_icd9cm)+1, 999), 3) icd_code_3chars,
(case when f.start_date <= dateadd(dd,-15,p.admission_date) then 1 else 0 end) before_admission,
(case when f.start_date >= p.admission_date then 1 else 0 end) since_admission
from #config x
cross join observation_fact f
inner join #covid_cohort p
on f.patient_num=p.patient_num
and f.start_date >= dateadd(dd,-365,p.admission_date)
where concept_cd like code_prefix_icd9cm+'%' and code_prefix_icd9cm<>''
-- ICD10
union all
select distinct p.patient_num, p.severe, 10 icd_version,
left(substring(f.concept_cd, len(code_prefix_icd10cm)+1, 999), 3) icd_code_3chars,
(case when f.start_date <= dateadd(dd,-15,p.admission_date) then 1 else 0 end) before_admission,
(case when f.start_date >= p.admission_date then 1 else 0 end) since_admission
from #config x
cross join observation_fact f
inner join #covid_cohort p
on f.patient_num=p.patient_num
and f.start_date >= dateadd(dd,-365,p.admission_date)
where concept_cd like code_prefix_icd10cm+'%' and code_prefix_icd10cm<>''
) t
group by icd_code_3chars, icd_version
--------------------------------------------------------------------------------
-- Create Medications table.
--------------------------------------------------------------------------------
create table #Medications (
siteid varchar(50) not null,
med_class varchar(20) not null,
num_patients_all_before_admission int,
num_patients_all_since_admission int,
num_patients_ever_severe_before_admission int,
num_patients_ever_severe_since_admission int
)
alter table #Medications add primary key (med_class)
insert into #Medications
select '' siteid, med_class,
sum(before_admission),
sum(since_admission),
sum(severe*before_admission),
sum(severe*since_admission)
from (
select distinct p.patient_num, p.severe, m.med_class,
(case when f.start_date <= dateadd(dd,-15,p.admission_date) then 1 else 0 end) before_admission,
(case when f.start_date >= p.admission_date then 1 else 0 end) since_admission
from observation_fact f
inner join #covid_cohort p
on f.patient_num=p.patient_num
and f.start_date >= dateadd(dd,-365,p.admission_date)
inner join #med_map m
on f.concept_cd = m.local_med_code
) t
group by med_class
--******************************************************************************
--******************************************************************************
--*** Obfuscate as needed (optional)
--******************************************************************************
--******************************************************************************
--------------------------------------------------------------------------------
-- Blur counts by adding a small random number.
--------------------------------------------------------------------------------
if exists (select * from #config where obfuscation_blur > 0)
begin
declare @obfuscation_blur int
select @obfuscation_blur = obfuscation_blur from #config
update #DailyCounts
set cumulative_patients_all = cumulative_patients_all + FLOOR(ABS(BINARY_CHECKSUM(NEWID())/2147483648.0)*(@obfuscation_blur*2+1)) - @obfuscation_blur,
cumulative_patients_severe = cumulative_patients_severe + FLOOR(ABS(BINARY_CHECKSUM(NEWID())/2147483648.0)*(@obfuscation_blur*2+1)) - @obfuscation_blur,
cumulative_patients_dead = cumulative_patients_dead + FLOOR(ABS(BINARY_CHECKSUM(NEWID())/2147483648.0)*(@obfuscation_blur*2+1)) - @obfuscation_blur,
num_patients_in_hospital_on_this_date = num_patients_in_hospital_on_this_date + FLOOR(ABS(BINARY_CHECKSUM(NEWID())/2147483648.0)*(@obfuscation_blur*2+1)) - @obfuscation_blur,
num_patients_in_hospital_and_severe_on_this_date = num_patients_in_hospital_and_severe_on_this_date + FLOOR(ABS(BINARY_CHECKSUM(NEWID())/2147483648.0)*(@obfuscation_blur*2+1)) - @obfuscation_blur
update #ClinicalCourse
set num_patients_all_still_in_hospital = num_patients_all_still_in_hospital + FLOOR(ABS(BINARY_CHECKSUM(NEWID())/2147483648.0)*(@obfuscation_blur*2+1)) - @obfuscation_blur,
num_patients_ever_severe_still_in_hospital = num_patients_ever_severe_still_in_hospital + FLOOR(ABS(BINARY_CHECKSUM(NEWID())/2147483648.0)*(@obfuscation_blur*2+1)) - @obfuscation_blur
update #Demographics
set num_patients_all = num_patients_all + FLOOR(ABS(BINARY_CHECKSUM(NEWID())/2147483648.0)*(@obfuscation_blur*2+1)) - @obfuscation_blur,
num_patients_ever_severe = num_patients_ever_severe + FLOOR(ABS(BINARY_CHECKSUM(NEWID())/2147483648.0)*(@obfuscation_blur*2+1)) - @obfuscation_blur
update #Labs
set num_patients_all = num_patients_all + FLOOR(ABS(BINARY_CHECKSUM(NEWID())/2147483648.0)*(@obfuscation_blur*2+1)) - @obfuscation_blur,
num_patients_ever_severe = num_patients_ever_severe + FLOOR(ABS(BINARY_CHECKSUM(NEWID())/2147483648.0)*(@obfuscation_blur*2+1)) - @obfuscation_blur
update #Diagnoses
set num_patients_all_before_admission = num_patients_all_before_admission + FLOOR(ABS(BINARY_CHECKSUM(NEWID())/2147483648.0)*(@obfuscation_blur*2+1)) - @obfuscation_blur,
num_patients_all_since_admission = num_patients_all_since_admission + FLOOR(ABS(BINARY_CHECKSUM(NEWID())/2147483648.0)*(@obfuscation_blur*2+1)) - @obfuscation_blur,
num_patients_ever_severe_before_admission = num_patients_ever_severe_before_admission + FLOOR(ABS(BINARY_CHECKSUM(NEWID())/2147483648.0)*(@obfuscation_blur*2+1)) - @obfuscation_blur,
num_patients_ever_severe_since_admission = num_patients_ever_severe_since_admission + FLOOR(ABS(BINARY_CHECKSUM(NEWID())/2147483648.0)*(@obfuscation_blur*2+1)) - @obfuscation_blur
update #Medications
set num_patients_all_before_admission = num_patients_all_before_admission + FLOOR(ABS(BINARY_CHECKSUM(NEWID())/2147483648.0)*(@obfuscation_blur*2+1)) - @obfuscation_blur,
num_patients_all_since_admission = num_patients_all_since_admission + FLOOR(ABS(BINARY_CHECKSUM(NEWID())/2147483648.0)*(@obfuscation_blur*2+1)) - @obfuscation_blur,
num_patients_ever_severe_before_admission = num_patients_ever_severe_before_admission + FLOOR(ABS(BINARY_CHECKSUM(NEWID())/2147483648.0)*(@obfuscation_blur*2+1)) - @obfuscation_blur,
num_patients_ever_severe_since_admission = num_patients_ever_severe_since_admission + FLOOR(ABS(BINARY_CHECKSUM(NEWID())/2147483648.0)*(@obfuscation_blur*2+1)) - @obfuscation_blur
end
--------------------------------------------------------------------------------
-- Mask small counts with "-99".
--------------------------------------------------------------------------------
if exists (select * from #config where obfuscation_small_count_mask > 0)
begin
declare @obfuscation_small_count_mask int
select @obfuscation_small_count_mask = obfuscation_small_count_mask from #config
update #DailyCounts
set cumulative_patients_all = (case when cumulative_patients_all<@obfuscation_small_count_mask then -99 else cumulative_patients_all end),
cumulative_patients_severe = (case when cumulative_patients_severe<@obfuscation_small_count_mask then -99 else cumulative_patients_severe end),
cumulative_patients_dead = (case when cumulative_patients_dead<@obfuscation_small_count_mask then -99 else cumulative_patients_dead end),
num_patients_in_hospital_on_this_date = (case when num_patients_in_hospital_on_this_date<@obfuscation_small_count_mask then -99 else num_patients_in_hospital_on_this_date end),
num_patients_in_hospital_and_severe_on_this_date = (case when num_patients_in_hospital_and_severe_on_this_date<@obfuscation_small_count_mask then -99 else num_patients_in_hospital_and_severe_on_this_date end)
update #ClinicalCourse
set num_patients_all_still_in_hospital = (case when num_patients_all_still_in_hospital<@obfuscation_small_count_mask then -99 else num_patients_all_still_in_hospital end),
num_patients_ever_severe_still_in_hospital = (case when num_patients_ever_severe_still_in_hospital<@obfuscation_small_count_mask then -99 else num_patients_ever_severe_still_in_hospital end)
update #Demographics
set num_patients_all = (case when num_patients_all<@obfuscation_small_count_mask then -99 else num_patients_all end),
num_patients_ever_severe = (case when num_patients_ever_severe<@obfuscation_small_count_mask then -99 else num_patients_ever_severe end)
update #Labs
set num_patients_all=-99, mean_value_all=-99, stdev_value_all=-99, mean_log_value_all=-99, stdev_log_value_all=-99
where num_patients_all<@obfuscation_small_count_mask
update #Labs
set num_patients_ever_severe=-99, mean_value_ever_severe=-99, stdev_value_ever_severe=-99, mean_log_value_ever_severe=-99, stdev_log_value_ever_severe=-99
where num_patients_ever_severe<@obfuscation_small_count_mask
update #Diagnoses
set num_patients_all_before_admission = (case when num_patients_all_before_admission<@obfuscation_small_count_mask then -99 else num_patients_all_before_admission end),
num_patients_all_since_admission = (case when num_patients_all_since_admission<@obfuscation_small_count_mask then -99 else num_patients_all_since_admission end),
num_patients_ever_severe_before_admission = (case when num_patients_ever_severe_before_admission<@obfuscation_small_count_mask then -99 else num_patients_ever_severe_before_admission end),
num_patients_ever_severe_since_admission = (case when num_patients_ever_severe_since_admission<@obfuscation_small_count_mask then -99 else num_patients_ever_severe_since_admission end)
update #Medications
set num_patients_all_before_admission = (case when num_patients_all_before_admission<@obfuscation_small_count_mask then -99 else num_patients_all_before_admission end),
num_patients_all_since_admission = (case when num_patients_all_since_admission<@obfuscation_small_count_mask then -99 else num_patients_all_since_admission end),
num_patients_ever_severe_before_admission = (case when num_patients_ever_severe_before_admission<@obfuscation_small_count_mask then -99 else num_patients_ever_severe_before_admission end),
num_patients_ever_severe_since_admission = (case when num_patients_ever_severe_since_admission<@obfuscation_small_count_mask then -99 else num_patients_ever_severe_since_admission end)
end
--------------------------------------------------------------------------------
-- To protect obfuscated demographics breakdowns, keep individual sex, age,
-- and race breakdowns, set combinations and the total count to -999.
--------------------------------------------------------------------------------
if exists (select * from #config where obfuscation_demographics = 1)
begin
update #Demographics
set num_patients_all = -999, num_patients_ever_severe = -999
where (case sex when 'all' then 1 else 0 end)
+(case race when 'all' then 1 else 0 end)
+(case age_group when 'all' then 1 else 0 end)<>2
end
--------------------------------------------------------------------------------
-- Delete small counts.
--------------------------------------------------------------------------------
if exists (select * from #config where obfuscation_small_count_delete = 1)
begin
declare @obfuscation_small_count_delete int
select @obfuscation_small_count_delete = obfuscation_small_count_mask from #config
delete from #DailyCounts where cumulative_patients_all<@obfuscation_small_count_delete
delete from #ClinicalCourse where num_patients_all_still_in_hospital<@obfuscation_small_count_delete
delete from #Labs where num_patients_all<@obfuscation_small_count_delete
delete from #Diagnoses where num_patients_all_before_admission<@obfuscation_small_count_delete and num_patients_all_since_admission<@obfuscation_small_count_delete
delete from #Medications where num_patients_all_before_admission<@obfuscation_small_count_delete and num_patients_all_since_admission<@obfuscation_small_count_delete
end
--******************************************************************************
--******************************************************************************
--*** Finish up
--******************************************************************************
--******************************************************************************
--------------------------------------------------------------------------------
-- Set the siteid to a unique value for your institution.
-- * Make sure you are not using another institution's siteid.
-- * The siteid must be no more than 20 letters or numbers.
-- * It must start with a letter.
-- * It cannot have any blank spaces or special characters.
--------------------------------------------------------------------------------
update #DailyCounts set siteid = (select siteid from #config)
update #ClinicalCourse set siteid = (select siteid from #config)
update #Demographics set siteid = (select siteid from #config)
update #Labs set siteid = (select siteid from #config)
update #Diagnoses set siteid = (select siteid from #config)
update #Medications set siteid = (select siteid from #config)
--------------------------------------------------------------------------------
-- OPTION #1: View the data as tables.
-- * Make sure everything looks reasonable.
-- * Copy into Excel, convert dates into YYYY-MM-DD format, save in csv format.
--------------------------------------------------------------------------------
if exists (select * from #config where output_as_columns = 1)
begin
select * from #DailyCounts order by calendar_date
select * from #ClinicalCourse order by days_since_admission
select * from #Demographics order by sex, age_group, race
select * from #Labs order by loinc, days_since_admission
select * from #Diagnoses order by num_patients_all_since_admission desc, num_patients_all_before_admission desc
select * from #Medications order by num_patients_all_since_admission desc, num_patients_all_before_admission desc
end
--------------------------------------------------------------------------------
-- OPTION #2: View the data as csv strings.
-- * Copy and paste to a text file, save it FileName.csv.
-- * Make sure it is not saved as FileName.csv.txt.
--------------------------------------------------------------------------------
if exists (select * from #config where output_as_csv = 1)
begin
-- DailyCounts
select s DailyCountsCSV
from (
select 0 i, 'siteid,calendar_date,cumulative_patients_all,cumulative_patients_severe,cumulative_patients_dead,'
+'num_patients_in_hospital_on_this_date,num_patients_in_hospital_and_severe_on_this_date' s
union all
select row_number() over (order by calendar_date) i,
siteid
+','+convert(varchar(50),calendar_date,23) --YYYY-MM-DD
+','+cast(cumulative_patients_all as varchar(50))
+','+cast(cumulative_patients_severe as varchar(50))
+','+cast(cumulative_patients_dead as varchar(50))
+','+cast(num_patients_in_hospital_on_this_date as varchar(50))
+','+cast(num_patients_in_hospital_and_severe_on_this_date as varchar(50))
from #DailyCounts
union all select 9999999, '' --Add a blank row to make sure the last line in the file with data ends with a line feed.
) t
order by i
-- ClinicalCourse
select s ClinicalCourseCSV
from (
select 0 i, 'siteid,days_since_admission,num_patients_all_still_in_hospital,num_patients_ever_severe_still_in_hospital' s
union all
select row_number() over (order by days_since_admission) i,
siteid
+','+cast(days_since_admission as varchar(50))
+','+cast(num_patients_all_still_in_hospital as varchar(50))
+','+cast(num_patients_ever_severe_still_in_hospital as varchar(50))
from #ClinicalCourse
union all select 9999999, '' --Add a blank row to make sure the last line in the file with data ends with a line feed.
) t
order by i
-- Demographics
select s DemographicsCSV
from (
select 0 i, 'siteid,sex,age_group,race,num_patients_all,num_patients_ever_severe' s
union all
select row_number() over (order by sex, age_group, race) i,
siteid
+','+cast(sex as varchar(50))
+','+cast(age_group as varchar(50))
+','+cast(race as varchar(50))
+','+cast(num_patients_all as varchar(50))
+','+cast(num_patients_ever_severe as varchar(50))
from #Demographics
union all select 9999999, '' --Add a blank row to make sure the last line in the file with data ends with a line feed.
) t
order by i
-- Labs
select s LabsCSV
from (
select 0 i, 'siteid,loinc,days_since_admission,units,'
+'num_patients_all,mean_value_all,stdev_value_all,mean_log_value_all,stdev_log_value_all,'
+'num_patients_ever_severe,mean_value_ever_severe,stdev_value_ever_severe,mean_log_value_ever_severe,stdev_log_value_ever_severe' s
union all
select row_number() over (order by loinc, days_since_admission) i,
siteid
+','+cast(loinc as varchar(50))
+','+cast(days_since_admission as varchar(50))
+','+cast(units as varchar(50))
+','+cast(num_patients_all as varchar(50))
+','+cast(mean_value_all as varchar(50))
+','+cast(stdev_value_all as varchar(50))
+','+cast(mean_log_value_all as varchar(50))
+','+cast(stdev_log_value_all as varchar(50))
+','+cast(num_patients_ever_severe as varchar(50))
+','+cast(mean_value_ever_severe as varchar(50))
+','+cast(stdev_value_ever_severe as varchar(50))
+','+cast(mean_log_value_ever_severe as varchar(50))
+','+cast(stdev_log_value_ever_severe as varchar(50))
from #Labs
union all select 9999999, '' --Add a blank row to make sure the last line in the file with data ends with a line feed.
) t
order by i
-- Diagnoses
select s DiagnosesCSV
from (
select 0 i, 'siteid,icd_code_3chars,icd_version,'
+'num_patients_all_before_admission,num_patients_all_since_admission,'
+'num_patients_ever_severe_before_admission,num_patients_ever_severe_since_admission' s
union all
select row_number() over (order by num_patients_all_since_admission desc, num_patients_all_before_admission desc) i,
siteid
+','+cast(icd_code_3chars as varchar(50))
+','+cast(icd_version as varchar(50))
+','+cast(num_patients_all_before_admission as varchar(50))
+','+cast(num_patients_all_since_admission as varchar(50))
+','+cast(num_patients_ever_severe_before_admission as varchar(50))
+','+cast(num_patients_ever_severe_since_admission as varchar(50))
from #Diagnoses
union all select 9999999, '' --Add a blank row to make sure the last line in the file with data ends with a line feed.
) t