Sung-Hoiank
/
Attention-Graph-Convolution-Network-for-Image-Segmentation-in-Big-SAR-Imagery-Data
Public
forked from mafeimf/Attention-Graph-Convolution-Network-for-Image-Segmentation-in-Big-SAR-Imagery-Data
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerate_gt.py
49 lines (44 loc) · 1.49 KB
/
generate_gt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
# coding: utf-8
#本方法修改Attention GCN网络,CNN提取特征
from __future__ import division
from __future__ import print_function
import os
import glob
import time
import random
import argparse
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.autograd import Variable
import shutil
from utils9 import accuracy
from models9 import GAT, SpGAT,CNN_fea,GCN
import os
import utils9
from torch import nn
from torch.autograd import Variable
from torch.optim import RMSprop
from torch.optim import Adam
from torchvision import transforms
from torchvision.utils import make_grid
import torch.utils.data as data
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.image as image
import sklearn
from skimage.segmentation import slic,mark_boundaries
from skimage import io
from skimage import data,color,morphology,measure
from skimage.feature import local_binary_pattern
def generate_gt_shanxipucheng():
gt_original=image.imread('./GT.jpg')
#gt_original=image.imread('../../datasets/fangchenggang/ground_truth2.jpg')
out_GT=np.zeros((gt_original.shape[0],gt_original.shape[1]),dtype="uint8")+1
out_GT[(gt_original[:,:,0]>=200) *( gt_original[:,:,1]>=200)*(gt_original[:,:,2]<=50)]=1
out_GT[(gt_original[:,:,0]>=200) *( gt_original[:,:,1]<=50)*(gt_original[:,:,2]<=50)]=0
np.save('gt_numerical_shanxipucheng.npy',out_GT)
#np.save('gt_numerical_fangchenggang.npy',out_GT)
generate_gt_shanxipucheng()