forked from PaddlePaddle/PaddleNLP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata.py
168 lines (145 loc) · 5.5 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
The file_reader converts raw corpus to input.
"""
import os
import numpy as np
import paddle
from paddlenlp.datasets import MapDataset
# We use "\002" to separate sentence characters and sequence labels,
# for example: 除\002了\002他\002续\002任\002十\002二\002届\002政\002协\002委\002员
# p-B\002p-I\002r-B\002v-B\002v-I\002m-B\002m-I\002m-I\002ORG-B\002ORG-I\002n-B\002n-I\002
CHAR_DELIMITER = "\002"
def load_dataset(datafiles):
def read(data_path):
with open(data_path, 'r', encoding='utf-8') as fp:
if "infer" in data_path:
next(fp)
for line in fp:
line = line.strip()
if "infer" in data_path:
words = list(line)
yield [words]
else:
words, labels = line.split("\t")
words = words.split(CHAR_DELIMITER)
labels = labels.split(CHAR_DELIMITER)
assert len(words) == len(
labels), "The word %s is not match with the label %s" % (
words, labels)
yield [words, labels]
if isinstance(datafiles, str):
return MapDataset(list(read(datafiles)))
elif isinstance(datafiles, list) or isinstance(datafiles, tuple):
return [MapDataset(list(read(datafile))) for datafile in datafiles]
def load_vocab(dict_path):
"""
Load vocab from file
"""
vocab = {}
reverse = None
with open(dict_path, "r", encoding='utf8') as fin:
for i, line in enumerate(fin):
terms = line.strip("\n").split("\t")
if len(terms) == 2:
if reverse == None:
reverse = True if terms[0].isdigit() else False
if reverse:
value, key = terms
else:
key, value = terms
elif len(terms) == 1:
key, value = terms[0], i
else:
raise ValueError("Error line: %s in file: %s" %
(line, dict_path))
vocab[key] = value
return vocab
def normalize_token(token, normlize_vocab):
"""Normalize text from DBC case to SBC case"""
if normlize_vocab:
token = normlize_vocab.get(token, token)
return token
def convert_tokens_to_ids(tokens,
vocab,
oov_replace_token=None,
normlize_vocab=None):
"""convert tokens to token indexs"""
token_ids = []
oov_replace_token = vocab.get(
oov_replace_token) if oov_replace_token else None
for token in tokens:
token = normalize_token(token, normlize_vocab)
token_id = vocab.get(token, oov_replace_token)
token_ids.append(token_id)
return token_ids
def convert_example(example,
max_seq_len,
word_vocab,
label_vocab=None,
normlize_vocab=None):
if len(example) == 2:
tokens, labels = example
else:
tokens, labels = example[0], None
tokens = tokens[:max_seq_len]
token_ids = convert_tokens_to_ids(
tokens,
word_vocab,
oov_replace_token="OOV",
normlize_vocab=normlize_vocab)
length = len(token_ids)
if labels is not None:
labels = labels[:max_seq_len]
label_ids = convert_tokens_to_ids(
labels, label_vocab, oov_replace_token="O")
return token_ids, length, label_ids
else:
return token_ids, length
def parse_result(words, preds, lengths, word_vocab, label_vocab):
""" parse padding result """
batch_out = []
id2word_dict = dict(zip(word_vocab.values(), word_vocab.keys()))
id2label_dict = dict(zip(label_vocab.values(), label_vocab.keys()))
for sent_index in range(len(lengths)):
sent = [
id2word_dict[index]
for index in words[sent_index][:lengths[sent_index]]
]
tags = [
id2label_dict[index]
for index in preds[sent_index][:lengths[sent_index]]
]
sent_out = []
tags_out = []
parital_word = ""
for ind, tag in enumerate(tags):
# for the first word
if parital_word == "":
parital_word = sent[ind]
tags_out.append(tag.split('-')[0])
continue
# for the beginning of word
if tag.endswith("-B") or (tag == "O" and tags[ind - 1] != "O"):
sent_out.append(parital_word)
tags_out.append(tag.split('-')[0])
parital_word = sent[ind]
continue
parital_word += sent[ind]
# append the last word, except for len(tags)=0
if len(sent_out) < len(tags_out):
sent_out.append(parital_word)
batch_out.append([sent_out, tags_out])
return batch_out