-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsupervised_learner.py
179 lines (157 loc) · 6.02 KB
/
supervised_learner.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, mean_absolute_error
from absl import flags, app
import pickle as pkl
FLAGS = flags.FLAGS
flags.DEFINE_string('postfix', '', help='')
flags.DEFINE_string('data', 'data', help='')
import torch
import torch.nn as nn
from torch.optim import Adam
class nnBeta(nn.Module):
def __init__(self, in_dim):
super().__init__()
self.net = nn.Sequential(
nn.Linear(in_dim, in_dim**2),
nn.Tanh(),
nn.Linear(in_dim**2, 1),
nn.Sigmoid()
)
def forward(self, x):
return self.net(x)
def predict(self, x):
return self.forward(torch.as_tensor(x).float())
class customLayer(nn.Module):
def __init__(self, in_dim):
super().__init__()
self.in_dim = in_dim
self.params = nn.Parameter(.5 * torch.ones(7))
self.bias = nn.Parameter(torch.zeros(2))
def forward(self, x):
accs = []
for i in range(self.in_dim):
for j in range(self.in_dim):
A1 = x[:, i] #perf gap on MD_i
A2 = x[:, j] #perf gap on MD_j
A3 = x[:, self.in_dim+i] #perf gap on YD_i
A4 = x[:, self.in_dim+j] #perf gap on YD_j
D1 = x[:, 2 * self.in_dim + i] # difference in freq for i
D2 = x[:, 2 * self.in_dim + j] # difference in freq for j
info = [A1,A2,A3,A4,D1,D2]
for k in range(len(info)):
accs.append(torch.tanh(info[k]*self.params[k] + self.bias[0]) * self.params[-1] + self.bias[1])
return torch.vstack(accs).permute(1, 0)
class customNNBeta(nn.Module):
def __init__(self, in_dim, num_labels):
super().__init__()
self.layer1 = customLayer(num_labels)
# self.layer2 = customLayer(num_labels)
def forward(self, x):
# print(x.size())
x = self.layer1(x)
# print(x.size())
# x = self.layer2(x)
# print(x.size())
return torch.sigmoid(x.sum(dim=1))
def predict(self, x):
return self.forward(torch.as_tensor(x).float())
class SLBetaModel:
def __init__(self, model, type="linear"):
self.model = model
self.type = type
def predict(self, val):
val = self.model.predict(val)
try:
val = val.cpu().detach().numpy()
except:
pass
if self.type == "logistic": val = self.sigmoid(val)
return np.clip(val,0,1)
def sigmoid(self, x):
try:
x = x.cpu().detach().numpy()
except:
pass
ex = np.exp(x)
return ex / (1 + ex)
def get_weights(self):
print(self.model.coef_)
print(self.model.intercept_)
def main(argv):
import random
random.seed(0)
np.random.seed(0)
df = pd.read_csv(FLAGS.logdir + '/' + FLAGS.data + '.csv', header=None)
X, y = df.iloc[:, 1:-1].to_numpy(), df.iloc[:, -1].to_numpy()
y = np.clip(y, 1e-8, 1-1e-8)
train_X, test_X, train_y, test_y = train_test_split(X, y, train_size=0.75)
# normal LR
print('Linear Regression')
model = LinearRegression().fit(train_X, train_y)
pred_y = model.predict(train_X)
pred_y = np.clip(pred_y, 0, 1)
print('train mse', mean_squared_error(train_y, pred_y))
print('train mae', mean_absolute_error(train_y, pred_y))
pred_y = model.predict(test_X)
pred_y = np.clip(pred_y, 0, 1)
print('test mse', mean_squared_error(test_y, pred_y))
print('test mae', mean_absolute_error(test_y, pred_y))
model = LinearRegression().fit(X,y)
# with open(FLAGS.logdir + f"/linear_{FLAGS.postfix}.pkl", 'wb') as fp:
# pkl.dump(SLBetaModel(model), fp)
# NN
print('NN')
model = customNNBeta(train_X.shape[1], 10)
optimizer = Adam(model.parameters(), lr=1e-3)
criterion = nn.MSELoss()
for epoch in range(1000):
pred_y = model(torch.from_numpy(train_X).float()).flatten()
loss = criterion(pred_y, torch.from_numpy(train_y).float())
optimizer.zero_grad()
loss.backward()
optimizer.step()
if epoch % 100 == 0:
print(epoch, loss.item())
pred_y = model.predict(torch.from_numpy(train_X).float()).detach().numpy().flatten()
pred_y = np.clip(pred_y, 0, 1)
print('train mse', mean_squared_error(train_y, pred_y))
print('train mae', mean_absolute_error(train_y, pred_y))
pred_y = model.predict(torch.from_numpy(test_X).float()).detach().numpy().flatten()
pred_y = np.clip(pred_y, 0, 1)
print('test mse', mean_squared_error(test_y, pred_y))
print('test mae', mean_absolute_error(test_y, pred_y))
model = customNNBeta(X.shape[1], 10)
optimizer = Adam(model.parameters(), lr=1e-3)
criterion = nn.MSELoss()
for epoch in range(1000):
pred_y = model(torch.from_numpy(X).float()).flatten()
loss = criterion(pred_y, torch.from_numpy(y).float())
optimizer.zero_grad()
loss.backward()
optimizer.step()
if epoch % 100 == 0:
print(epoch, loss.item())
with open(FLAGS.logdir + f"/neural_{FLAGS.postfix}.pkl", 'wb') as fp:
pkl.dump(SLBetaModel(model),fp)
'''
# log-odds-ratio
print('log-odd-ratio')
model = LinearRegression().fit(train_X, np.log(train_y / (1 - train_y)))
pred_y = model.predict(train_X)
pred_y = np.exp(pred_y) / (1 + np.exp(pred_y))
print('train mse', mean_squared_error(train_y, pred_y))
print('train mae', mean_absolute_error(train_y, pred_y))
pred_y = model.predict(test_X)
pred_y = np.exp(pred_y) / (1 + np.exp(pred_y))
print('test mse', mean_squared_error(test_y, pred_y))
print('test mae', mean_absolute_error(test_y, pred_y))
with open(FLAGS.logdir + f"/sl_{FLAGS.postfix}_log_odd.pkl", 'wb') as fp:
pkl.dump(SLBetaModel(model),fp)
'''
if __name__ == '__main__':
FLAGS = flags.FLAGS
flags.DEFINE_string('logdir', '.', help='')
app.run(main)