-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGossipAgent.py
435 lines (386 loc) · 18.9 KB
/
GossipAgent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
import math
import numpy as np
import torch
import torch.nn.functional as F
import wandb
from torch.utils.data import DataLoader
from absl import logging, flags
from tqdm import tqdm
import pickle as pk
from policy import LinearCritic, LinearPolicy
from models import MnistMlp
from sklearn import metrics
from supervised_learner import nnBeta
FLAGS = flags.FLAGS
flags.DEFINE_string('beta_net', 'classify', help='')
flags.DEFINE_bool('oracle', True, help='')
flags.DEFINE_bool('vector_rp', True, help='')
flags.DEFINE_string('sldir', 'oracle', help='')
'''
scope: self
local_auc: my auc on my data -> MAMD
peer_auc: peer's auc on my data -> YAMD
other_auc: peer auc on their data -> YAYD
my_other_auc: my auc on their data -> MAYD
'''
class GossipAgent:
def __init__(self, aid, dataset, alpha=.5, sigma=.8, beta_num=11,
coord=[0,0], lr=1e-2, combine_grad=False, device='cpu', dummy=False, oracle_data=None,
dist=None, local_step_freq=1, missing=None):
# Agent metadata and hyper-parameters
self.id = aid
self.alpha = alpha
self.sigma = sigma
self.dist = dist
self.dumb = dummy
self.local_step_freq = local_step_freq
self.beta_lr = lr
self.default_lr = lr
self.classifier_lr = lr
self.decay = .98
self.dumb_cache = None
self.ob_history = 1
self.buffer = []
self.dataset = dataset
self.dataloader = DataLoader(self.dataset, batch_size=64, shuffle=True)
self.missing = torch.as_tensor(missing)
logging.debug(f'agent {self.id} data size {len(dataset)}')
logging.debug(f'agent {self.id} step per epoch {len(self.dataloader)}')
self.device = device
self.oracle_data = oracle_data
self.oracle_dataloader = DataLoader(oracle_data, batch_size=256, shuffle=False)
# Import agent model, both for prediction and beta policy
if FLAGS.beta_net == 'classify':
self.beta_num = beta_num # Number of discrete beta values to choose from
self.beta_policy = LinearPolicy(4*self.ob_history, beta_num).to(device)
self.beta_action = np.linspace(0, 1, beta_num)
self.beta_optimizer = torch.optim.Adam(self.beta_policy.parameters(), lr=lr)
elif FLAGS.beta_net == 'ddpg':
self.beta_policy = LinearPolicy(5*self.ob_history-1, 1).to(device)
self.beta_critic = LinearCritic(5*self.ob_history, 1).to(device)
self.beta_policy_optimizer = torch.optim.Adam(self.beta_policy.parameters(), lr=lr)
self.beta_critic_optimizer = torch.optim.Adam(self.beta_critic.parameters(), lr=lr)
elif FLAGS.beta_net.startswith('fix-'):
def _f(*args, **kwargs):
return float(FLAGS.beta_net.strip('fix-'))
self.beta_policy = _f
elif FLAGS.beta_net.startswith('cheat-') or FLAGS.beta_net.startswith("heuristic"):
def _f(*args, **kwargs):
return 0
self.beta_policy = _f
elif FLAGS.beta_net.startswith('pretrain-'):
model_name = FLAGS.sldir + '/' + FLAGS.beta_net.replace('pretrain-', '') + '.pkl'
with open(model_name,'rb') as fp:
self.beta_policy = pk.load(fp)
else:
raise Exception(FLAGS.beta_net)
self.model = MnistMlp().to(device)
self.optimizer = torch.optim.Adam(self.model.parameters(), lr=self.classifier_lr)
self.peer_model = MnistMlp().to(device)
# Model & Log Outputs
self.beta_fp = "./betas/agent_{}/".format(aid)
if FLAGS.beta_net == 'ddpg':
self.beta_critic_fp = "./beta-critic/agent_{}/".format(aid)
self.model_fp = "./models/agent_{}/".format(aid)
self.log_fp = "./logs/agent_{}/".format(aid)
if aid == 0:
with open(FLAGS.logdir + '/data.csv', 'w') as fp:
fp.write("")
# Allocate reward structures
self.MAMD = 0
self.loss = 0
self.peer_loss = 0
self.YAMDs = dict()
self.peer_ages = dict()
self.peer_idmap = dict()
self.combine_grad = combine_grad
self.MAMD_history = []
self.peer_id = None
def save_models(self, eps):
if FLAGS.beta_net == 'classify':
torch.save(self.beta_policy.state_dict(), self.beta_fp + "episode_{}.pt".format(eps))
elif FLAGS.beta_net == 'ddpg':
torch.save(self.beta_policy.state_dict(), self.beta_fp + "episode_{}.pt".format(eps))
torch.save(self.beta_critic.state_dict(), self.beta_critic_fp + "episode_{}.pt".format(eps))
torch.save(self.model.state_dict(), self.model_fp + "episode_{}.pt".format(eps))
def calculate_total_reward(self):
return self.MAMD + self.calculate_rpeer()
def calculate_rpeer(self):
result = 0
denom = 0
for key in self.YAMDs.keys():
scale = (self.sigma ** self.peer_ages[key])
denom += scale
result += self.YAMDs[key]*scale
if denom == 0:
if not FLAGS.vector_rp:
return 0
return result / denom
def calculate_rpeer_vec(self):
result = 0
denom = 0
for key in self.YAMDs.keys():
scale = (self.sigma ** self.peer_ages[key])
denom += scale
result += self.YAMDs[key]*scale
if denom == 0:
if not FLAGS.vector_rp:
return 0
return result / denom
def evaluate(self, model, dataloader, vector=False):
# TODO: add option to sample from dataset to evaluate model
model.eval()
loss = 0
labels = []
preds = []
if self.dumb and model == self.model and self.dumb_cache is not None:
auc, loss = self.dumb_cache
return auc, loss
with torch.set_grad_enabled(self.combine_grad):
found = set()
for data, label in tqdm(dataloader, desc=f"{self.id} Evaluating", leave=False):
pred = model(data.to(self.device))
loss += torch.nn.functional.cross_entropy(pred, label.to(self.device))
labels.append(label)
preds.append(pred)
labels.append(self.missing)
labels = torch.cat(labels)
preds = torch.argmax(torch.cat(preds), dim=1)
preds = torch.cat([preds, ((self.missing + 1) % FLAGS.num_class).to(self.device)])
auc = metrics.f1_score(labels.cpu().numpy(), preds.detach().cpu().numpy(),
average = None if vector else 'macro')
if model is self.model:
self.MAMD_history.append(auc)
if self.dumb and model == self.model and self.dumb_cache is None:
self.dumb_cache = (auc, loss)
return auc, loss
def decay_lr(self):
self.classifier_lr *= self.decay
self.classifier_lr = max(self.classifier_lr, self.default_lr/100)
self.optimizer = torch.optim.Adam(self.model.parameters(), lr=self.classifier_lr)
def local_step(self, steps=1, model=None):
# Train `steps` local step on the model
total_loss = 0
if model is None:
model = self.model
optim = self.optimizer
else:
lr = self.classifier_lr * self.decay if FLAGS.decay_lr else self.classifier_lr
optim = torch.optim.Adam(model.parameters(), lr=lr)
if not self.dumb:
model.train()
for i, (data, label) in tqdm(enumerate(self.dataloader), total=steps, desc=f"{self.id} Training", leave=False):
if i >= steps:
break
pred = model(data.to(self.device))
loss = torch.nn.functional.cross_entropy(pred, label.to(self.device))
total_loss += loss.item()
optim.zero_grad()
loss.backward()
optim.step()
return total_loss / steps
def update_YAMDs(self, oid, pacc):
# Update YAMDs
for pid in self.peer_ages.keys():
self.peer_ages[pid] += 1
self.YAMDs[oid] = pacc
self.peer_ages[oid] = 0
def stage1_comm_model(self, other):
# logging.debug('stage 1')
# Evaluate yourself
self.MAMD, self.loss = self.evaluate(self.model, self.dataloader, vector=FLAGS.vector_rp)
other.MAMD, other.loss = other.evaluate(other.model, other.dataloader, vector=FLAGS.vector_rp)
self.YAYD = other.MAMD
other.YAYD = self.MAMD
self.other_dist = other.dist
other.other_dist = self.dist
# Transmit and receive models to start interaction
# Make a copy of the other's model
self.peer_model.load_state_dict(other.model.state_dict())
other.peer_model.load_state_dict(self.model.state_dict())
self.peer_id = other.id
other.peer_id = self.id
def stage2_eval_peer(self, other):
# logging.debug('stage 2')
# Evaluate peer model locally (to compute accuracy & gradient)
self.YAMD, self.peer_loss = self.evaluate(self.peer_model, self.dataloader, vector=FLAGS.vector_rp)
other.YAMD, other.peer_loss = other.evaluate(other.peer_model, other.dataloader, vector=FLAGS.vector_rp)
def stage3_comm_aucs(self, other):
# logging.debug('stage 3')
# Transmit and receive model accuracies
self.MAYD = other.YAMD
other.MAYD = self.YAMD
self.update_YAMDs(other.id, self.MAYD)
other.update_YAMDs(self.id, other.MAYD)
def stage4_comm_rpeer(self, other):
# logging.debug('stage 4')
# Communicate rpeer values
self.other_rpeer = other.calculate_rpeer()
other.other_rpeer = self.calculate_rpeer()
def stage5_local_updates(self, other):
logging.debug('stage 5')
if not self.dumb:
self.stage5_helper()
if not other.dumb:
other.stage5_helper()
def eval_beta(self, beta):
state = self.model.state_dict()
peer_state = self.peer_model.state_dict()
for layer in state:
state[layer] = state[layer] * beta + peer_state[layer] * (1 - beta)
composite_model = MnistMlp().to(self.device)
composite_model.load_state_dict(state)
# Take a local step with the composite model
# self.local_step(self.local_step_freq, model=composite_model)
# Compute and return AUC on oracle dataset
return self.evaluate(composite_model, self.oracle_dataloader)[0]
def get_state(self):
if not FLAGS.vector_rp:
return [self.id, self.MAMD, self.YAMD, self.calculate_rpeer(), self.other_rpeer]
else:
#Vector state is: concat(my_auc_on_my_data - your_auc_on_my_data, \
#my_auc_on_your_data - your_auc_on_your_data, my_dist-your_dist)
return [self.id] \
+ list(self.MAMD - self.YAMD) \
+ list(self.YAYD - self.MAYD) \
+ list(self.dist - self.other_dist) \
+ [self.classifier_lr]
def stage5_helper(self):
"""Given results of first 4 stages, update local model"""
# Calculate beta value
if len(self.buffer) < self.ob_history-1:
action = torch.rand(1).squeeze(0) / 10
elif not FLAGS.vector_rp:
if self.ob_history > 1:
x = torch.concat([torch.tensor(ob) for ob, _ in self.buffer[-self.ob_history+1:]])
x = torch.concat([x, torch.tensor((self.MAMD, self.YAMD, self.calculate_rpeer(), self.other_rpeer))]).float().to(self.device)
else:
x = torch.concat([torch.tensor((self.MAMD, self.YAMD, self.calculate_rpeer(), self.other_rpeer))]).float().to(self.device)
action = self.beta_policy(x)
if FLAGS.beta_net == 'classify':
prob = action.detach().cpu().numpy()
prob /= sum(prob)
beta = np.random.choice(self.beta_action, p=prob)
elif FLAGS.beta_net == 'ddpg':
beta = action.item()
# beta = torch.tensor(1, device=self.device).float()
elif FLAGS.beta_net == 'heuristic':
# beta = .5*(1+self.calculate_rpeer()-self.other_rpeer)
# beta = float(beta.mean())
beta = .5 + .1 * (sum(self.MAMD - self.YAMD) + sum(self.MAYD - self.YAYD))
elif FLAGS.beta_net == 'heuristic-2':
beta = .5 + .1005 * (sum(self.MAMD - self.YAMD) + sum(self.MAYD - self.YAYD))
elif FLAGS.beta_net == 'heuristic-3':
beta = .5 + .1 * (sum(self.MAMD - self.YAMD) + sum(self.MAYD - self.YAYD))
beta -= .05 * sum(abs(self.dist - self.other_dist))
elif FLAGS.beta_net.startswith('cheat-'):
step = float(FLAGS.beta_net.strip('cheat-'))
n = math.floor(1 / step) + 1
candidate = np.arange(n) * step
look_ahead = list(map(self.eval_beta, candidate.tolist()))
beta = candidate[np.argmax(look_ahead)]
# beta = max(candidate, key=lambda b: self.eval_beta(b))
# Append state, beta onto "data.csv" for future regression
with open(FLAGS.logdir + '/data.csv', 'a') as fp:
state = self.get_state()
state.append(beta)
s = ",".join(map(str, state)) + "\n"
fp.write(s)
elif FLAGS.beta_net.startswith('pretrain-'):
state = np.array(self.get_state())[1:].reshape(1, -1)
beta = self.beta_policy.predict(state) # TODO test to make sure this is correct
if torch.is_tensor(beta):
beta = beta.detach().cpu().item()
else:
beta = float(beta)
logging.debug(f'agent {self.id} beta {beta}')
else:
beta = self.beta_policy()
logging.debug(f'agent {self.id} beta {beta}')
beta = np.clip(beta, 0, 1)
# Calculate gradient of peer model on local data (already done in stage 2)
# Combine models
# Approach 1: combine gradients with beta-weight
#assert not self.combine_grad
if self.combine_grad:
self.optimizer.zero_grad()
self.loss.backward()
self.peer_loss.backward()
for local_param, peer_param in zip(self.model.parameters(), self.peer_model.parameters()):
if local_param.grad == None: continue
if peer_param.grad == None: continue
local_param.grad = local_param.grad * beta + peer_param.grad * (1 - beta)
local_param.grad = torch.clip(local_param.grad, -1, 1)
self.optimizer.step() # 1-step of learning from gradient
# Approach 2: combine model parameters with beta-weight
else:
state = self.model.state_dict()
peer_state = self.peer_model.state_dict()
for layer in state:
state[layer] = state[layer] * beta + peer_state[layer] * (1 - beta)
self.model.load_state_dict(state)
'''Update beta network'''
# train beta using self.calculate_total_reward()
#reward = self.evaluate(self.model, self.oracle_dataloader)[0]
reward = self.alpha * self.MAMD + (1 - self.alpha) * self.calculate_rpeer()
self.buffer.append(((self.MAMD, self.YAMD, self.calculate_rpeer(), self.other_rpeer, beta), reward))
if FLAGS.beta_net == 'classify':
beta_id = np.where(self.beta_action == beta)[0]
logging.debug('beta id {} beta {}'.format(beta_id, beta))
action_onehot = F.one_hot(torch.tensor(beta_id), self.beta_num).to(self.device)
beta_loss = -torch.sum(torch.log(torch.clip(action_onehot * action, 1e-10, 1.0)) * reward)
self.beta_optimizer.zero_grad()
beta_loss.backward()
self.beta_optimizer.step()
# log data
if FLAGS.wandb and not self.dumb:
wandb.log({f'comm/beta-{self.id}-{self.peer_id}': beta,
f'comm_loss/beta_loss-{self.id}-{self.peer_id}': beta_loss,
f'comm_r/reward_{self.id}': reward}, commit=False)
elif FLAGS.beta_net == 'ddpg':
logging.debug('agent {} peer beta {}'.format(self.id, beta))
logging.debug(f'agent {self.id} MAMD {self.MAMD:.5f} MAYD {self.MAYD:.5f} r_feedback(self) {self.calculate_rpeer():.5f} r_feedback(other) {self.other_rpeer:.5f}')
def _concat_ob(obs):
# X, y
return torch.concat([torch.tensor(ob) for ob, _ in obs]).float().to(self.device), obs[-1][1]
def _sample_obs(sample_size):
batch_idx = np.random.choice(len(self.buffer)-self.ob_history+1, size=min(len(self.buffer)-self.ob_history+1, sample_size), replace=False)
batch = [_concat_ob(self.buffer[idx:idx+self.ob_history]) for idx in batch_idx]
batch_x = torch.stack([b[0] for b in batch]).float()
batch_y = torch.tensor([b[1] for b in batch]).float().to(self.device)
return batch_x, batch_y
# Update actor
if len(self.buffer) >= self.ob_history:
for _ in range(5):
batch_size = 8
batch_x, batch_y = _sample_obs(batch_size)
action = self.beta_policy(batch_x[:, :-1])
beta_loss = -self.beta_critic.actor_forward(batch_x[:, :-1], action).mean()
logging.debug('agent {} beta action {} beta loss {:.5f}'.format(self.id, action[-1].item(), beta_loss.item()))
self.beta_policy_optimizer.zero_grad()
beta_loss.backward()
self.beta_policy_optimizer.step()
# Update critic
if len(self.buffer) >= self.ob_history:
for _ in range(5):
batch_size = 16
batch_x, batch_y = _sample_obs(batch_size)
reward_pred = self.beta_critic(batch_x).flatten()
beta_critic_loss = F.mse_loss(reward_pred, batch_y)
logging.debug('agent {} critic loss {:.5f}'.format(self.id, beta_critic_loss.item()))
self.beta_critic_optimizer.zero_grad()
beta_critic_loss.backward()
self.beta_critic_optimizer.step()
# log data
if FLAGS.wandb and not self.dumb:
wandb.log({f'comm/beta-{self.id}-{self.peer_id}': beta,
f'comm_loss/beta_loss-{self.id}-{self.peer_id}': beta_loss.item(),
f'comm_loss/beta_critic_loss-{self.id}-{self.peer_id}': beta_critic_loss.item(),
f'comm_r/reward_{self.id}': reward}, commit=False)
else:
# log data
if FLAGS.wandb and not self.dumb:
logging.debug('agent {} peer beta {}'.format(self.id, beta))
logging.debug('{} {} {} {}'.format(self.MAMD, self.YAMD, self.calculate_rpeer(), self.other_rpeer))
if FLAGS.wandb:
wandb.log({f'comm/beta-{self.id}-{self.peer_id}': beta}, commit=False)