-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathServer.py
103 lines (87 loc) · 3.07 KB
/
Server.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
import argparse
import io
from flask_cors import *
import numpy as np
from numpy import array
import flask as flask
from flask import request
import torch
import torch.nn.functional as F
from PIL import Image
from torch import nn
from torchvision import transforms as T
from torchvision.models import resnet50
from torch.autograd import Variable
from configs import set_cfg_from_file
from model import model_factory
import cv2
import base64
from InversePerspective import PerspectiveTransform
app = flask.Flask(__name__)
CORS(app)
model = None
use_gpu = False
palette = array([1,60])
#palette = np.random.randint(0, 256, (256, 3), dtype=np.uint8)
print(palette)
def load_model():
global model
model = model_factory['bisenetplus'](2,aux_mode='pred')
model.load_state_dict(torch.load('./bsp.pth', map_location='cpu'), strict=False)
model.eval()
def parse_args():
parse = argparse.ArgumentParser()
parse.add_argument('--configs', dest='configs', type=str,
default='./configs/default.py',)
return parse.parse_args()
def prepare_image(image,traget_size):
if image.mode != 'RGB':
image = image.convert("RGB")
image = T.Resize(traget_size)(image)
image = T.ToTensor()(image)
image = T.Normalize([0.485,0.456,0.406],[0.229,0.224,0.225])(image)
#add Batchsize
image = image[None]
if use_gpu:
image = image.cuda()
return Variable(image,volatile=True)
@app.route("/predict",methods = ["POST","GET"])
def predict():
data = {'success':False}
img = request.form.get('img')
useConfig= request.form.get('useConfig')
if img:
# 解码图像数据
img = base64.b64decode(img.encode('ascii'))
image_data = np.fromstring(img, np.uint8)
image_data = cv2.imdecode(image_data, cv2.IMREAD_COLOR)
cv2.imwrite('./terminal/1.png', image_data)
image = Image.open('./terminal/1.png')
image = prepare_image(image, traget_size=(512, 1024))
out = model(image).squeeze().detach().cpu().numpy()
pred = palette[out]
cv2.imwrite('./res/res.png', pred)
data["success"] = True
if useConfig == 'True':
camera_angle = int(request.form.get('camera_angle'))
inside_angle = int(request.form.get('inside_angle'))
height = int(request.form.get('height'))
originH = int(request.form.get('originH'))
originW = int(request.form.get('originW'))
space = PerspectiveTransform(camera_angle,inside_angle,height,originH,originW)
else:
args = parse_args()
cfg = set_cfg_from_file(args.configs)
camera_angle = cfg.camera_angle
inside_angle = cfg.inside_angle
height = cfg.height
originH = cfg.originH
originW = cfg.originW
space = PerspectiveTransform(camera_angle,inside_angle,height,originH,originW)
data["Space"]=space[0]
data["Cany"]=space[1]
return flask.jsonify(data)
if __name__ == '__main__':
print("loading model and start the server")
load_model()
app.run()