-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathmain.py
179 lines (145 loc) · 6.8 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
from calendar import EPOCH
import os
import argparse
from tqdm import tqdm
import numpy as np
from datetime import datetime
import torch
import torch.nn as nn
import torch.utils.data
import torchvision.models as models
from torch.utils.tensorboard import SummaryWriter
from utils.tensor_utils import round_tensor
from geoguessr_dataset import GeoGuessrDataset
model_names = sorted(name for name in models.__dict__
if name.islower() and not name.startswith("__")
and callable(models.__dict__[name]))
parser = argparse.ArgumentParser(description='PyTorch GeoGuessr AI Training')
parser.add_argument('data', metavar='DIR',
help='path to dataset')
parser.add_argument('-a', '--arch', metavar='ARCH', default='resnet50',
choices=model_names,
help='model architecture: ' +
' | '.join(model_names) +
' (default: resnet50)')
parser.add_argument('-j', '--workers', default=4, type=int, metavar='N',
help='number of data loading workers (default: 4)')
parser.add_argument('--epochs', default=90, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('--checkpoint-step', default=1, type=int, metavar='N',
help='how often (in epochs) to save the model (default: 1)')
parser.add_argument('-b', '--batch-size', default=64, type=int,
metavar='N',
help='batch size (default: 64), this is the total '
'batch size of the GPU')
parser.add_argument('--lr', '--learning-rate', default=0.001, type=float,
metavar='LR', help='learning rate for optimizer', dest='lr')
parser.add_argument('-p', '--print-freq', default=10, type=int,
metavar='N', help='print frequency (default: 10)')
parser.add_argument('--resume', default='', type=str, metavar='PATH',
help='path to latest checkpoint (default: none)')
parser.add_argument('-e', '--evaluate', dest='evaluate', action='store_true',
help='evaluate model on validation set')
start_time = datetime.now().strftime('%Y-%m-%d-%H-%M-%S')
args = parser.parse_args()
def fwd_pass(model, data, targets, loss_function, optimizer, train=False):
data = data.cuda()
targets = targets.cuda()
if train:
model.zero_grad()
outputs = model(data)
matches = [(torch.where(i >= 0.5, 1, 0) == j).all() for i, j in zip(outputs, targets)]
acc = matches.count(True) / len(matches)
loss = loss_function(outputs.float(), targets)
if train:
loss.backward()
optimizer.step()
return acc, loss
def test(val_loader, model, loss_function, optimizer):
random = np.random.randint(len(val_loader))
model.eval()
acc = []
loss = []
for idx, sample in enumerate(val_loader):
if idx >= random and idx < random + 4:
data, targets = sample
with torch.no_grad():
val_acc, val_loss = fwd_pass(model, data, targets, loss_function, optimizer)
acc.append(val_acc)
loss.append(val_loss.cpu().numpy())
val_acc = np.mean(acc)
val_loss = np.mean(loss)
return val_acc, val_loss
def train(train_loader, val_loader, model, loss_function, optimizer, epochs, start_epoch=0):
with open(f'models/{start_time}/model.log', 'a') as f:
for epoch in range(start_epoch, epochs):
model.train()
train_acc = []
train_loss = []
for idx, sample in enumerate(tqdm(train_loader)):
data, target = sample
acc, loss = fwd_pass(model, data, target, loss_function, optimizer, train=True)
train_acc.append(acc)
train_loss.append(loss.cpu().detach().numpy())
acc = np.mean(train_acc)
loss = np.mean(train_loss)
val_acc, val_loss = test(val_loader, model, loss_function, optimizer)
# Add accuracy and loss to tensorboard
progress = len(train_loader) / idx
writer.add_scalar('Loss/train', loss, epoch)
writer.add_scalar('Accuracy/train', acc, epoch)
writer.add_scalar('Loss/test', val_loss, epoch)
writer.add_scalar('Accuracy/test', val_acc, epoch)
# Log Accuracy and Loss
log = f'model-{epoch}, Accuracy: {round(float(acc), 2)}, Loss: {round(float(loss), 4)}, Val Accuracy: {round(float(val_acc), 2)}, Val Loss: {round(float(val_loss), 4)}\n'
print(log, end='')
f.write(log)
if epoch % args.checkpoint_step == 0:
print('Saving model...')
torch.save({
'epoch': epoch,
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'loss': loss
}, f'models/{start_time}/model-{epoch}.pth')
def main():
global writer
writer = SummaryWriter(f'tensorboard/{start_time}')
os.makedirs(f'models/{start_time}', exist_ok=True)
traindir = os.path.join(args.data, 'train')
valdir = os.path.join(args.data, 'val')
train_dataset = GeoGuessrDataset(traindir)
val_dataset = GeoGuessrDataset(valdir)
train_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=args.batch_size, shuffle=True,
num_workers=args.workers, pin_memory=True)
val_loader = torch.utils.data.DataLoader(
val_dataset, batch_size=args.batch_size, shuffle=False,
num_workers=args.workers, pin_memory=True)
print("=> creating model '{}'".format(args.arch))
model = models.__dict__[args.arch](pretrained=False, progress=True, num_classes=142)
model = nn.Sequential(
model,
nn.Softmax(dim=0)
)
loss_function = nn.CrossEntropyLoss()
if torch.cuda.is_available():
print('Using GPU')
torch.device("cuda")
model = model.cuda()
loss_function = loss_function.cuda()
else:
print('Using CPU')
torch.device("cpu")
optimizer = torch.optim.Adam(model.parameters(), args.lr, weight_decay=1e-4)
start_epoch = 0
if not args.resume == '':
checkpoint = torch.load(args.resume)
model.load_state_dict(checkpoint['model_state_dict'])
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
start_epoch = checkpoint['epoch'] + 1
print(f'Resuming from epoch {start_epoch}')
EPOCHS = args.epochs
train(train_loader=train_loader, val_loader=val_loader, model=model, loss_function=loss_function, optimizer=optimizer, epochs=EPOCHS, start_epoch=start_epoch)
if __name__ == '__main__':
main()