forked from google-deepmind/deepmind-research
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathantennae_helpers.py
87 lines (70 loc) · 2.86 KB
/
antennae_helpers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
# Copyright 2021 DeepMind Technologies Limited.
#
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Helpers to pre-process Antennae galaxy images."""
import collections
import os
from astropy.io import fits
import numpy as np
from scipy import ndimage
import tensorflow.compat.v2 as tf
def norm_antennae_images(images, scale=1000):
return tf.math.asinh(images/scale)
def renorm_antennae(images):
median = np.percentile(images.numpy().flatten(), 50)
img_range = np.ptp(images.numpy().flatten())
return (images - median) / (img_range / 2)
def get_antennae_images(antennae_fits_dir):
"""Load the raw Antennae galaxy images."""
all_fits_files = [
os.path.join(antennae_fits_dir, f)
for f in os.listdir(antennae_fits_dir)
]
freq_mapping = {'red': 160, 'blue': 850}
paired_fits_files = collections.defaultdict(list)
for f in all_fits_files:
redshift = float(f[-8:-5])
paired_fits_files[redshift].append(f)
for redshift, files in paired_fits_files.items():
paired_fits_files[redshift] = sorted(
files, key=lambda f: freq_mapping[f.split('/')[-1].split('_')[0]])
print('Reading files:', paired_fits_files)
print('Redshifts:', sorted(paired_fits_files.keys()))
galaxy_views = collections.defaultdict(list)
for redshift in paired_fits_files:
for view_path in paired_fits_files[redshift]:
with open(view_path, 'rb') as f:
fits_data = fits.open(f)
galaxy_views[redshift].append(np.array(fits_data[0].data))
batched_images = []
for redshift in paired_fits_files:
img = tf.constant(np.array(galaxy_views[redshift]))
img = tf.transpose(img, (1, 2, 0))
img = tf.image.resize(img, size=(60, 60))
batched_images.append(img)
return tf.stack(batched_images)
def preprocess_antennae_images(antennae_images):
"""Pre-process the Antennae galaxy images into a reasonable range."""
rotated_antennae_images = [
ndimage.rotate(img, 10, reshape=True, cval=-1)[10:-10, 10:-10]
for img in antennae_images
]
rotated_antennae_images = [
np.clip(img, 0, 1e9) for img in rotated_antennae_images
]
rotated_antennae_images = tf.stack(rotated_antennae_images)
normed_antennae_images = norm_antennae_images(rotated_antennae_images)
normed_antennae_images = tf.clip_by_value(normed_antennae_images, 1, 4.5)
renormed_antennae_images = renorm_antennae(normed_antennae_images)
return renormed_antennae_images