forked from Alexandre-So/Workflow-snakemake-capture
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathSnakefile
529 lines (453 loc) · 18.9 KB
/
Snakefile
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
configfile: "config.yaml"
from snakemake.utils import min_version
import os
from os.path import sep
min_version("3.6.0")
#### Functions
#Here we are collecting the ids of the different sample. the pattern is : xxx_R1_001.fastq.gz. Files MUST be named this way. it will be usefull for the variant calling step, when all of these file will be merged to one file. Without this, snakemake won't be able to do it.
def joins(*path_list):
return sep.join(path_list)
sample_ids,suffixes, = glob_wildcards(joins(config["Raw_Fastq"],"/{sample}_R1{suff}fastq.gz"))
#### Main worwflow rule. Each rule able to run specific parts of the workflow with ease. just launch snakemake with a rule as a paramater in order to produce each of the output files associated. ex : snakemake calling_only
#Run the entire pipeline
rule all:
input:
"report.html"
message:
"The whole pipeline has been executed"
#Run only the steps necessary to perform a Variant Calling. will not generate the graphs
rule calling_only:
input:
"Variant_calling.vcf"
message:
"Variant calling done"
#Will only do the mapping step
rule mapping_only:
input:
bam=expand("cleaned_alignments/{sample}.bam" if config["clean_alignment"]!=0 else "rmduped_reads/{sample}.bam", sample=sample_ids) if config["remove_duplicates"]!=0 else expand("sorted_reads/{sample}.bam", sample=sample_ids),
bai=expand("rmduped_reads/{sample}.bam.bai", sample=sample_ids) if config["remove_duplicates"]!=0 else expand("sorted_reads/{sample}.bam.bai", sample=sample_ids),
message:
"Mapping done"
#WARNING : you !MUST! use the --nt option or all the resulting mapping files will be deleted. They are indeed marked as temp files.
rule raw_mapping_only:
input:
bam=expand("mapped_bam/{sample}.bam", sample=sample_ids)
message:
"Reads have been mapped against the reference genome and the resulting alignements have been converted to BAM files"
#Will only produce the steps necessary to create the graphs
rule diagnostic:
input:
"Mapping_stats.csv",
"outputDepthBySample.csv",
"outputDepthByRegion.csv"
message:
"The graphs have been created"
#Will create all the different indexes that the analyses needs.
rule required_index:
input:
expand("{genome}.bwt", genome=config["genome"]),
expand("{genome}.fai", genome=config["genome"]),
expand("{genome_p}.dict", genome_p=config["genome_prefix"])
message:
"All the required files related to the ref genome have been created"
#### General messages
# These messages will be print depending on the sucess or the failure of the pipeline
onsuccess:
print("\nWorkflow finished. If the entire workflow has been runned, a file named report.html has been generated and contains all the output informations.\n")
onerror:
print("An error occurred. You should read the readme file and see if everything have been setup the right way.")
#### Workflow
#Rename Create link to rename Raw_Fastq and basically remove everything after R1 or R2
rule rename:
input:
R1=expand(joins(config["Raw_Fastq"],"/{sample}_R1{suff}fastq.gz"),zip,sample=sample_ids,suff=suffixes),
R2=expand(joins(config["Raw_Fastq"],"/{sample}_R2{suff}fastq.gz"),zip,sample=sample_ids,suff=suffixes)
output:
R1=temp(expand(joins("renamed","{sample}_R1.fastq.gz"),sample=sample_ids)),
R2=temp(expand(joins("renamed","{sample}_R2.fastq.gz"),sample=sample_ids))
run:
for samp,e in enumerate(input.R1):
shell("ln -s ../"+input.R1[samp]+" "+output.R1[samp])
shell("ln -s ../"+input.R2[samp]+" "+output.R2[samp])
#Quality trimming of raw reads
rule read_cleaning:
input:
read=joins("renamed","/{sample}_R1{suff}fastq.gz"),
read2=joins("renamed","/{sample}_R2{suff}fastq.gz")
output:
R1=temp("trimmed_reads/{sample}_R1{suff}fastq.gz"),
R2=temp("trimmed_reads/{sample}_R2{suff}fastq.gz")
threads:
50
message:
"Cutadapt on {input}..."
priority:
20
log:
"logs/trimming/{sample}.log"
shell:
"cutadapt -q {config[Cutadapt][Quality_value]} -m {config[Cutadapt][min_length]} -a {config[Cutadapt][forward_adapter]} -A {config[Cutadapt][reverse_adapter]} -o {output.R1} -p {output.R2} {config[Cutadapt][options]} {input.read} {input.read2} > {log}"
#The bwt is necessary for BWA to run, so we build it.
rule bwa_build_bwt:
input:
genome=expand("{genome}", genome=config["genome"])
output:
"{genome}.bwt"
log:
"logs/index/bwa.log"
message:
"Building bwt for {input}"
shell:
"bwa index {input} > {log}"
#The genome also need to be indexed by samtools
rule samtools_faidx:
input:
genome=expand("{genome}", genome=config["genome"])
output:
"{genome}.fai"
log:
"logs/index/samtools.log"
message:
"Indexing {input}..."
shell:
"samtools faidx {input} > {log}"
#Raw mapping, with conversion to Bam file with samtools.
rule bwa_map:
input:
genome=expand("{genome}", genome=config["genome"]),
bwt=expand("{genome}.bwt", genome=config["genome"]),
#read=expand("trimmed_reads/{{sample}}_{pair}_001.fastq.gz", pair=["R1", "R2"])
read=expand("trimmed_reads/{{sample}}_{pair}.fastq.gz", pair=["R1", "R2"]) if config["trimming"]!=0 else expand("renamed/{{sample}}_{pair}.fastq.gz", pair=["R1", "R2"])
output:
temp("mapped_bam/{sample}.bam")
log:
"logs/mapping/{sample}.log"
params:
rg="@RG\\tID:{sample}\\tPL:ILLUMINA\\tSM:{sample}"
message:
"Raw mapping with {input.read}..."
shell:
"bwa mem -t {config[BWA][t]} {config[BWA][options]} -R '{params.rg}' {input.genome} {input.read} 2> {log} | samtools view -Sb - > {output} "
#Sorting reads with Picard. Will be the last step before variant calling if rmdup is set to false.
rule picard_sort:
input:
"mapped_bam/{sample}.bam"
output:
"sorted_reads/{sample}.bam"
log:
"logs/sorting/{sample}.log"
message:
"Sorting {input}..."
shell:
"java -Xmx4g -jar {config[software_reps][picard]} "
"SortSam I={input} "
"O={output} "
"SO=coordinate "
"VALIDATION_STRINGENCY=SILENT "
"2> {log}"
#Clean Alignment by keeping only primary alignment, properly paired and unique
rule clean_alignment:
input:
bam="rmduped_reads/{sample}.bam" if config["remove_duplicates"]!=0 else "sorted_reads/{sample}.bam"
output:
temp("cleaned_alignments/{sample}.bam"),
shell:
"samtools view -b -F 0x100 -f 0x02 -q 1 {input.bam} >{output}"
#Remove duplicates from sorted reads. Can be diseable in the config file.
rule picard_rmdup:
input:
bam="sorted_reads/{sample}.bam"
output:
temp("rmduped_reads/{sample}.bam"),
log:
log1="logs/picard_rmdup/{sample}.log",
log2="logs/picard_rmdup/{sample}.log2"
message:
"Removing duplicates in {input}..."
shell:
"java -jar -Xmx2g {config[software_reps][picard]} "
"MarkDuplicates "
"I={input} "
"O={output} "
"VALIDATION_STRINGENCY=SILENT "
"MAX_FILE_HANDLES_FOR_READ_ENDS_MAP=1000 "
"REMOVE_DUPLICATES=TRUE "
"M={log.log1} "
"2> {log.log2}"
#Index the bam file. Will index the sorted reads or the rmduped reads depending if rmdup is enable or not.
rule samtools_index:
input:
"{sample}.bam"
output:
"{sample}.bam.bai"
message:
"Indexing {input}..."
priority:
10
shell:
"samtools index {input}"
#Create genome dictionary with Picard
rule picard_dict:
input:
genome=expand("{genome}", genome=config["genome"])
output:
expand("{genome_p}.dict", genome_p=config["genome_prefix"])
message:
"Creating dictionary for {input}..."
shell:
"java -jar {config[software_reps][picard]} "
"CreateSequenceDictionary "
"R={input} "
"O={output}"
#The variant calling is done in 3 steps.
#VC - Step 1 : Create one gvcf file for each sample.
rule GATK_raw_calling:
input:
bam="cleaned_alignments/{sample}.bam" if config["clean_alignment"]!=0 else "rmduped_reads/{sample}.bam" if config["remove_duplicates"]!=0 else "sorted_reads/{sample}.bam",
bai="cleaned_alignments/{sample}.bam.bai" if config["clean_alignment"]!=0 else "rmduped_reads/{sample}.bam.bai" if config["remove_duplicates"]!=0 else "sorted_reads/{sample}.bam.bai",
genome=expand("{genome}", genome=config["genome"]),
dictionary=expand("{genome_p}.dict", genome_p=config["genome_prefix"]),
index_genome=expand("{genome}.fai", genome=config["genome"])
output:
"Raw_calling/{sample}.g.vcf",
priority:
10
log:
normal_log="logs/Raw_calling/logs/{sample}.log",
error_log="logs/Raw_calling/error/{sample}.err"
params:
intervals="-L "+config[bed_file]+"" if config["bed_file"]!="" else ""
message:
"Proceding raw GVCF calling on {input.bam}"
shell:
"java -Xmx4g -jar {config[software_reps][GATK]} "
"-ploidy {config[GATK][ploidy]} "
"--emitRefConfidence GVCF "
"-T HaplotypeCaller "
"-R {input.genome} "
"-I {input.bam} "
"{params.intervals}"
"--genotyping_mode DISCOVERY "
"{config[GATK][option]}"
"-o {output} "
"> {log.error_log} "
"2> {log.normal_log}"
#VC - Step 1.bis : The following steps needs a list of the gvcf files to merge. This list is created here. The dictionary created at the begining
rule GATK_file_list:
input:
expand("Raw_calling/{sample}.g.vcf", sample=sample_ids)
output:
temp("fileList.list")
priority:
10
message:
"Creating the list of input files for GATK"
shell:
"ls Raw_calling/*.vcf > {output}"
#VC - Step 2 : Merge all the GVCF files.
rule GATK_merge:
input:
listing="fileList.list",
genome=expand("{genome}", genome=config["genome"]),
dictionary=expand("{genome_p}.dict", genome_p=config["genome_prefix"]),
index_genome=expand("{genome}.fai", genome=config["genome"])
output:
vcf=temp("merged_raw_calling.g.vcf"),
vcf_idx=temp("merged_raw_calling.g.vcf.idx")
priority:
10
log:
normal_log="logs/Merging_GVCF/Merging_GVCF.log",
error_log="logs/Merging_GVCF/Merging_GVCF.err"
message:
"Merging GVCFs files..."
shell:
"java -Xmx4g -jar {config[software_reps][GATK]} "
"-T CombineGVCFs "
"-R {input.genome} "
"--variant {input.listing} "
"-o {output.vcf} "
"> {log.error_log} "
"2> {log.normal_log}"
#VC - Step 3 : Convert the resulting gvcf file to a vcf file. End of the variant calling.
rule GATK_final_calling:
input:
merged_gvcf="merged_raw_calling.g.vcf",
merged_gvcf_idx="merged_raw_calling.g.vcf.idx",
genome=expand("{genome}", genome=config["genome"]),
dictionary=expand("{genome_p}.dict", genome_p=config["genome_prefix"]),
index_genome=expand("{genome}.fai", genome=config["genome"])
output:
"Variant_calling.vcf"
priority:
10
log:
normal_log="logs/Final_calling/Variant_calling.log",
error_log="logs/Final_calling/error/Variant_calling.err"
message:
"Proceding variant calling..."
shell:
"java -Xmx4g -jar {config[software_reps][GATK]} "
"-T GenotypeGVCFs "
"-R {input.genome} "
"--sample_ploidy 2 "
"--variant {input.merged_gvcf} "
"-o {output} "
"> {log.error_log}"
"2> {log.normal_log}"
#Create the list of bam files needed for the graphs.
rule BAM_file_list:
input:
expand("rmduped_reads/{sample}.bam", sample=sample_ids) if config["remove_duplicates"]!=0 else expand("sorted_reads/{sample}.bam", sample=sample_ids),
output:
temp("bamList.list")
message:
"Creating the bam files list"
shell:
"ls rmduped_reads/*.bam > bamList.list" if config["remove_duplicates"]!=0 else "ls sorted_reads/*.bam > bamList.list"
#Compute the depth of sequencing for each position in the targeted Bed. Is used as an input for the graphs.
rule samtools_depth:
input:
"bamList.list"
output:
temp("samtools_depth.csv")
priority:
0
message:
"analyzing the depth of the bam files..."
shell:
"samtools depth -aa -b {config[bed_file]} -f {input} > {output}"
rule depth_by_sample:
input:
listing="bamList.list",
depth="samtools_depth.csv"
output:
"depth_by_sample_n4_s1_i5.pdf",
"depth_by_sample_n4_s1_i5.jpg",
"outputDepthBySample.csv"
log:
"logs/graphes/depth_by_sample.log"
priority:
0
message:
"Creating depth by sample graph..."
shell:
"perl {config[depth_by_sample][path]} -l {input.listing} -b {config[bed_file]} -g -n {config[depth_by_sample][interval_size]} -s {config[depth_by_sample][sorting_col]} -i {config[depth_by_sample][number_of_interval]} > {log}"
rule depth_by_region:
input:
listing="bamList.list",
depth="samtools_depth.csv"
output:
"depth_by_region_n4_s1_i5.pdf",
"depth_by_region_n4_s1_i5.jpg",
"outputDepthByRegion.csv"
log:
"logs/graphes/depth_by_region.log"
priority:
0
message:
"Creating depth by region graph"
shell:
"perl {config[depth_by_region][path]} -l {input.listing} -b {config[bed_file]} -g -n {config[depth_by_region][interval_size]} -s {config[depth_by_region][sorting_col]} -i {config[depth_by_region][number_of_interval]} > {log} "
rule mapping_trimming_stats:
input:
listing="bamList.list",
bams=expand("mapped_bam/{sample}.bam", sample=sample_ids)
output:
"Mapping_stats.csv",
"graphe_mapping.pdf",
"graphe_mapping.jpg"
log:
"logs/graphes/mapping_trimming.log"
priority:
0
message:
"Creating mapping/trimming graph..."
shell:
"perl {config[mapping_trimming_stats][path]} -r data/Raw_reads -rb mapped_bam -pb rmduped_reads -b {config[bed_file]} -g" if config["remove_duplicates"]!=0 else "perl {config[mapping_trimming_stats][path]} -r data/Raw_reads -rb mapped_bam -b {config[bed_file]} -g > {log} 2>> {log}"
#Create the report...
rule report:
input:
VC="Variant_calling.vcf",
DS="depth_by_sample_n4_s1_i5.jpg",
DR="depth_by_region_n4_s1_i5.jpg",
GM="graphe_mapping.jpg",
file_mapping="Mapping_stats.csv",
file_DBsample="outputDepthBySample.csv",
file_DBregion="outputDepthByRegion.csv"
output:
"report.html"
message:
"Creating the report..."
run:
from snakemake.utils import report
report("""
Report of the Capture data analyses workflow
============================================
.. section-numbering::
This report has been generated at the end of the capture data analyses workflow. You will find here some data related to some steps of the analyses. All of the included graphs are followed by a link that able the user to see the datas that have been used in order to create it.
.. contents:: Table of Contents
Parameters of the analyses
--------------------------
Cutadapt : trimming
~~~~~~~~~~~~~~~~~~~
- Quality cutoff : {config[Cutadapt][Quality_value]}
- Minimum read length : {config[Cutadapt][min_length]}
- Forward adapter : {config[Cutadapt][forward_adapter]}
- Reverse adapter : {config[Cutadapt][reverse_adapter]}
- Additional option : {config[Cutadapt][options]}
Mapping
~~~~~~~
- Additional options : {config[BWA][options]}
Variant calling : GATK
~~~~~~~~~~~~~~~~~~~~~~
- Ploidy : {config[GATK][ploidy]}
- Additional option : {config[GATK][option]}
General informations about mapping
----------------------------------
.. |date| date::
.. |time| date:: %H:%M
.. footer:: This document was generated on |date| at |time|. Author : Alexandre Soriano (INRA) : [email protected]
Reads were mapped to *{config[genome]}* using BWA MEM in paired-end mode. After that they have been sorted using picard-tools.
The remove duplicate option was set to **{config[remove_duplicates]}**
The trimming option was set to **{config[trimming]}**
.. figure:: graphe_mapping.jpg
:alt: Descriptions of mapping results
Number of reads depending of the different steps of the mapping.
Detailed data for this figure can be found `here (file) <{input.file_mapping}>`_ or in the `Detailed mapping stats`_ paragraph.
Informations about depth of sequencing
--------------------------------------
Depth analyses depending of the sample
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. figure:: depth_by_sample_n4_s1_i5.jpg
:alt: depth depending of different samples
Number of regions having a depth included in different intervals for each sample.
Detailed data for this figure can be found `In this place (file) <{input.file_DBsample}>`_ or in the `Detailed Depth by sample stats`_ part.
Depth analyses depending of targeted regions
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. figure:: depth_by_region_n4_s1_i5.jpg
:alt: depth depending of targeted regions
Number of targets having a depth included in different intervals for each region.
Detailed data for this figure can be found `there (file) <{input.file_DBregion}>`_ or in the `Detailed Depth by region stats`_ part.
Informations about Variant calling
----------------------------------
The file resulting of the Variant calling step can be found `here <{input.VC}>`_ .
Detailed informations of the different graphs
---------------------------------------------
Detailed mapping stats
~~~~~~~~~~~~~~~~~~~~~~
.. csv-table::
:file: {input.file_mapping}
:delim: U+0009
Detailed Depth by sample stats
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. csv-table::
:file: {input.file_DBsample}
:delim: U+0009
Detailed Depth by region stats
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. csv-table::
:file: {input.file_DBregion}
:delim: U+0009
""", output[0])
#Created by Alexandre Soriano - 2017 - [email protected]