forked from apache/mxnet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsort_io.py
239 lines (197 loc) · 8.05 KB
/
sort_io.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
# pylint: disable=C0111,too-many-arguments,too-many-instance-attributes,too-many-locals,redefined-outer-name,fixme
# pylint: disable=superfluous-parens, no-member, invalid-name
from __future__ import print_function
import sys
sys.path.insert(0, "../../python")
import numpy as np
import mxnet as mx
# The interface of a data iter that works for bucketing
#
# DataIter
# - default_bucket_key: the bucket key for the default symbol.
#
# DataBatch
# - provide_data: same as DataIter, but specific to this batch
# - provide_label: same as DataIter, but specific to this batch
# - bucket_key: the key for the bucket that should be used for this batch
def default_read_content(path):
with open(path) as ins:
content = ins.read()
content = content.replace('\n', ' <eos> ').replace('. ', ' <eos> ')
return content
def default_build_vocab(path):
content = default_read_content(path)
content = content.split(' ')
words = set([x for x in content if len(x) > 0])
words = [x for x in words]
words = sorted(words)
the_vocab = {}
idx = 1 # 0 is left for zero-padding
the_vocab[' '] = 0 # put a dummy element here so that len(vocab) is correct
for word in words:
if len(word) == 0:
continue
if not word in the_vocab:
the_vocab[word] = idx
idx += 1
return the_vocab
def default_text2id(sentence, the_vocab):
words = sentence.split(' ')
words = [the_vocab[w] for w in words if len(w) > 0]
return words
def default_gen_buckets(sentences, batch_size, the_vocab):
len_dict = {}
max_len = -1
for sentence in sentences:
words = default_text2id(sentence, the_vocab)
lw = len(words)
if lw == 0:
continue
if lw > max_len:
max_len = lw
if lw in len_dict:
len_dict[lw] += 1
else:
len_dict[lw] = 1
print(len_dict)
tl = 0
buckets = []
for l, n in len_dict.items(): # TODO: There are better heuristic ways to do this
if n + tl >= batch_size:
buckets.append(l)
tl = 0
else:
tl += n
if tl > 0:
buckets.append(max_len)
return buckets
class SimpleBatch(object):
def __init__(self, data_names, data, label_names, label, bucket_key):
self.data = data
self.label = label
self.data_names = data_names
self.label_names = label_names
self.bucket_key = bucket_key
self.pad = 0
self.index = None # TODO: what is index?
@property
def provide_data(self):
return [(n, x.shape) for n, x in zip(self.data_names, self.data)]
@property
def provide_label(self):
return [(n, x.shape) for n, x in zip(self.label_names, self.label)]
class DummyIter(mx.io.DataIter):
"A dummy iterator that always return the same batch, used for speed testing"
def __init__(self, real_iter):
super(DummyIter, self).__init__()
self.real_iter = real_iter
self.provide_data = real_iter.provide_data
self.provide_label = real_iter.provide_label
self.batch_size = real_iter.batch_size
for batch in real_iter:
self.the_batch = batch
break
def __iter__(self):
return self
def next(self):
return self.the_batch
class BucketSentenceIter(mx.io.DataIter):
def __init__(self, path, vocab, buckets, batch_size,
init_states, data_name='data', label_name='label',
seperate_char=' <eos> ', text2id=None, read_content=None):
super(BucketSentenceIter, self).__init__()
if text2id is None:
self.text2id = default_text2id
else:
self.text2id = text2id
if read_content is None:
self.read_content = default_read_content
else:
self.read_content = read_content
content = self.read_content(path)
sentences = content.split(seperate_char)
if len(buckets) == 0:
buckets = default_gen_buckets(sentences, batch_size, vocab)
print(buckets)
self.vocab_size = len(vocab)
self.data_name = data_name
self.label_name = label_name
buckets.sort()
self.buckets = buckets
self.data = [[] for _ in buckets]
# pre-allocate with the largest bucket for better memory sharing
self.default_bucket_key = max(buckets)
for sentence in sentences:
sentence = self.text2id(sentence, vocab)
if len(sentence) == 0:
continue
for i, bkt in enumerate(buckets):
if bkt >= len(sentence):
self.data[i].append(sentence)
break
# we just ignore the sentence it is longer than the maximum
# bucket size here
# convert data into ndarrays for better speed during training
data = [np.zeros((len(x), buckets[i])) for i, x in enumerate(self.data)]
for i_bucket in range(len(self.buckets)):
for j in range(len(self.data[i_bucket])):
sentence = self.data[i_bucket][j]
data[i_bucket][j, :len(sentence)] = sentence
self.data = data
# Get the size of each bucket, so that we could sample
# uniformly from the bucket
bucket_sizes = [len(x) for x in self.data]
print("Summary of dataset ==================")
for bkt, size in zip(buckets, bucket_sizes):
print("bucket of len %3d : %d samples" % (bkt, size))
self.batch_size = batch_size
self.make_data_iter_plan()
self.init_states = init_states
self.init_state_arrays = [mx.nd.zeros(x[1]) for x in init_states]
self.provide_data = [('data', (batch_size, self.default_bucket_key))] + init_states
self.provide_label = [('softmax_label', (self.batch_size, self.default_bucket_key))]
def make_data_iter_plan(self):
"make a random data iteration plan"
# truncate each bucket into multiple of batch-size
bucket_n_batches = []
for i in range(len(self.data)):
bucket_n_batches.append(len(self.data[i]) / self.batch_size)
self.data[i] = self.data[i][:int(bucket_n_batches[i]*self.batch_size)]
bucket_plan = np.hstack([np.zeros(n, int)+i for i, n in enumerate(bucket_n_batches)])
np.random.shuffle(bucket_plan)
bucket_idx_all = [np.random.permutation(len(x)) for x in self.data]
self.bucket_plan = bucket_plan
self.bucket_idx_all = bucket_idx_all
self.bucket_curr_idx = [0 for x in self.data]
self.data_buffer = []
self.label_buffer = []
for i_bucket in range(len(self.data)):
data = np.zeros((self.batch_size, self.buckets[i_bucket]))
label = np.zeros((self.batch_size, self.buckets[i_bucket]))
self.data_buffer.append(data)
self.label_buffer.append(label)
def __iter__(self):
init_state_names = [x[0] for x in self.init_states]
for i_bucket in self.bucket_plan:
data = self.data_buffer[i_bucket]
label = self.label_buffer[i_bucket]
i_idx = self.bucket_curr_idx[i_bucket]
idx = self.bucket_idx_all[i_bucket][i_idx:i_idx+self.batch_size]
self.bucket_curr_idx[i_bucket] += self.batch_size
data[:] = self.data[i_bucket][idx]
for k in range(len(data)):
label[k] = sorted(data[k])
#count = len(data[k]) / 2
#for j in range(count):
# data[j+count] = data[j]
#label[:, :-1] = data[:, 1:]
#label[:, -1] = 0
data_all = [mx.nd.array(data)] + self.init_state_arrays
label_all = [mx.nd.array(label)]
data_names = ['data'] + init_state_names
label_names = ['softmax_label']
data_batch = SimpleBatch(data_names, data_all, label_names, label_all,
self.buckets[i_bucket])
yield data_batch
def reset(self):
self.bucket_curr_idx = [0 for x in self.data]