forked from apache/mxnet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlstm.py
159 lines (143 loc) · 7.33 KB
/
lstm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
# pylint:skip-file
import sys
sys.path.insert(0, "../../python")
import mxnet as mx
import numpy as np
from collections import namedtuple
import time
import math
LSTMState = namedtuple("LSTMState", ["c", "h"])
LSTMParam = namedtuple("LSTMParam", ["i2h_weight", "i2h_bias",
"h2h_weight", "h2h_bias"])
LSTMModel = namedtuple("LSTMModel", ["rnn_exec", "symbol",
"init_states", "last_states", "forward_state", "backward_state",
"seq_data", "seq_labels", "seq_outputs",
"param_blocks"])
def lstm(num_hidden, indata, prev_state, param, seqidx, layeridx, dropout=0.):
"""LSTM Cell symbol"""
if dropout > 0.:
indata = mx.sym.Dropout(data=indata, p=dropout)
i2h = mx.sym.FullyConnected(data=indata,
weight=param.i2h_weight,
bias=param.i2h_bias,
num_hidden=num_hidden * 4,
name="t%d_l%d_i2h" % (seqidx, layeridx))
h2h = mx.sym.FullyConnected(data=prev_state.h,
weight=param.h2h_weight,
bias=param.h2h_bias,
num_hidden=num_hidden * 4,
name="t%d_l%d_h2h" % (seqidx, layeridx))
gates = i2h + h2h
slice_gates = mx.sym.SliceChannel(gates, num_outputs=4,
name="t%d_l%d_slice" % (seqidx, layeridx))
in_gate = mx.sym.Activation(slice_gates[0], act_type="sigmoid")
in_transform = mx.sym.Activation(slice_gates[1], act_type="tanh")
forget_gate = mx.sym.Activation(slice_gates[2], act_type="sigmoid")
out_gate = mx.sym.Activation(slice_gates[3], act_type="sigmoid")
next_c = (forget_gate * prev_state.c) + (in_gate * in_transform)
next_h = out_gate * mx.sym.Activation(next_c, act_type="tanh")
return LSTMState(c=next_c, h=next_h)
def bi_lstm_unroll(seq_len, input_size,
num_hidden, num_embed, num_label, dropout=0.):
embed_weight = mx.sym.Variable("embed_weight")
cls_weight = mx.sym.Variable("cls_weight")
cls_bias = mx.sym.Variable("cls_bias")
last_states = []
last_states.append(LSTMState(c = mx.sym.Variable("l0_init_c"), h = mx.sym.Variable("l0_init_h")))
last_states.append(LSTMState(c = mx.sym.Variable("l1_init_c"), h = mx.sym.Variable("l1_init_h")))
forward_param = LSTMParam(i2h_weight=mx.sym.Variable("l0_i2h_weight"),
i2h_bias=mx.sym.Variable("l0_i2h_bias"),
h2h_weight=mx.sym.Variable("l0_h2h_weight"),
h2h_bias=mx.sym.Variable("l0_h2h_bias"))
backward_param = LSTMParam(i2h_weight=mx.sym.Variable("l1_i2h_weight"),
i2h_bias=mx.sym.Variable("l1_i2h_bias"),
h2h_weight=mx.sym.Variable("l1_h2h_weight"),
h2h_bias=mx.sym.Variable("l1_h2h_bias"))
# embeding layer
data = mx.sym.Variable('data')
label = mx.sym.Variable('softmax_label')
embed = mx.sym.Embedding(data=data, input_dim=input_size,
weight=embed_weight, output_dim=num_embed, name='embed')
wordvec = mx.sym.SliceChannel(data=embed, num_outputs=seq_len, squeeze_axis=1)
forward_hidden = []
for seqidx in range(seq_len):
hidden = wordvec[seqidx]
next_state = lstm(num_hidden, indata=hidden,
prev_state=last_states[0],
param=forward_param,
seqidx=seqidx, layeridx=0, dropout=dropout)
hidden = next_state.h
last_states[0] = next_state
forward_hidden.append(hidden)
backward_hidden = []
for seqidx in range(seq_len):
k = seq_len - seqidx - 1
hidden = wordvec[k]
next_state = lstm(num_hidden, indata=hidden,
prev_state=last_states[1],
param=backward_param,
seqidx=k, layeridx=1,dropout=dropout)
hidden = next_state.h
last_states[1] = next_state
backward_hidden.insert(0, hidden)
hidden_all = []
for i in range(seq_len):
hidden_all.append(mx.sym.Concat(*[forward_hidden[i], backward_hidden[i]], dim=1))
hidden_concat = mx.sym.Concat(*hidden_all, dim=0)
pred = mx.sym.FullyConnected(data=hidden_concat, num_hidden=num_label,
weight=cls_weight, bias=cls_bias, name='pred')
label = mx.sym.transpose(data=label)
label = mx.sym.Reshape(data=label, target_shape=(0,))
sm = mx.sym.SoftmaxOutput(data=pred, label=label, name='softmax')
return sm
def bi_lstm_inference_symbol(input_size, seq_len,
num_hidden, num_embed, num_label, dropout=0.):
seqidx = 0
embed_weight=mx.sym.Variable("embed_weight")
cls_weight = mx.sym.Variable("cls_weight")
cls_bias = mx.sym.Variable("cls_bias")
last_states = [LSTMState(c = mx.sym.Variable("l0_init_c"), h = mx.sym.Variable("l0_init_h")),
LSTMState(c = mx.sym.Variable("l1_init_c"), h = mx.sym.Variable("l1_init_h"))]
forward_param = LSTMParam(i2h_weight=mx.sym.Variable("l0_i2h_weight"),
i2h_bias=mx.sym.Variable("l0_i2h_bias"),
h2h_weight=mx.sym.Variable("l0_h2h_weight"),
h2h_bias=mx.sym.Variable("l0_h2h_bias"))
backward_param = LSTMParam(i2h_weight=mx.sym.Variable("l1_i2h_weight"),
i2h_bias=mx.sym.Variable("l1_i2h_bias"),
h2h_weight=mx.sym.Variable("l1_h2h_weight"),
h2h_bias=mx.sym.Variable("l1_h2h_bias"))
data = mx.sym.Variable("data")
embed = mx.sym.Embedding(data=data, input_dim=input_size,
weight=embed_weight, output_dim=num_embed, name='embed')
wordvec = mx.sym.SliceChannel(data=embed, num_outputs=seq_len, squeeze_axis=1)
forward_hidden = []
for seqidx in range(seq_len):
next_state = lstm(num_hidden, indata=wordvec[seqidx],
prev_state=last_states[0],
param=forward_param,
seqidx=seqidx, layeridx=0, dropout=0.0)
hidden = next_state.h
last_states[0] = next_state
forward_hidden.append(hidden)
backward_hidden = []
for seqidx in range(seq_len):
k = seq_len - seqidx - 1
next_state = lstm(num_hidden, indata=wordvec[k],
prev_state=last_states[1],
param=backward_param,
seqidx=k, layeridx=1, dropout=0.0)
hidden = next_state.h
last_states[1] = next_state
backward_hidden.insert(0, hidden)
hidden_all = []
for i in range(seq_len):
hidden_all.append(mx.sym.Concat(*[forward_hidden[i], backward_hidden[i]], dim=1))
hidden_concat = mx.sym.Concat(*hidden_all, dim=0)
fc = mx.sym.FullyConnected(data=hidden_concat, num_hidden=num_label,
weight=cls_weight, bias=cls_bias, name='pred')
sm = mx.sym.SoftmaxOutput(data=fc, name='softmax')
output = [sm]
for state in last_states:
output.append(state.c)
output.append(state.h)
return mx.sym.Group(output)