forked from vlegoy/rcATT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrcATT_cmd.py
224 lines (209 loc) · 9.12 KB
/
rcATT_cmd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
#!/usr/bin/python
##########################################################
# INTRODUCTION #
##########################################################
# rcATT is a tool to prediction tactics and techniques
# from the ATT&CK framework, using multilabel text
# classification and post processing.
# Interface: command-line
# Version: 1.00
# Author: Valentine Legoy
# Date: 2019_10_22
import sys
import getopt
import joblib
import json
from shutil import copyfile
from colorama import init, Fore, Back, Style
from operator import itemgetter
import classification_tools.preprocessing as prp
import classification_tools.postprocessing as pop
import classification_tools.save_results as sr
import classification_tools as clt
#ignore Warnings, does not prevent the display of error
import warnings
warnings.simplefilter('ignore')
init(convert=True)
def correct_file(input_file, feedbacks, output_file):
"""
Correct results output by rcATT and save it in a file.
"""
with open(input_file) as f:
data = json.load(f)
report = data["description"]
title = data["name"]
date = data["published"][0:10]
ttps = feedbacks.split(",")
if output_file!='':
save_stix_file(report, title, date, ttps, output_file)
else:
save_stix_file(report, title, date, ttps, input_file)
def save_stix_file(report, title, date, ttps, output_file):
"""
Save prediction in a JSON file under STIX format
"""
if(date == ''):
date = "1970-01-01"
references = []
for key in ttps:
if key in clt.ALL_TTPS:
references.append(clt.STIX_IDENTIFIERS[clt.ALL_TTPS.index(key)])
file_to_save = sr.save_results_in_file(report, title, date, references)
copyfile(file_to_save, output_file)
def save_train_set(input_file):
"""
Save JSON file output by rcATT to training set.
"""
with open(input_file) as f:
data = json.load(f)
refs = data["object_refs"]
references = []
for refid in range(len(clt.STIX_IDENTIFIERS)):
if clt.STIX_IDENTIFIERS[refid] in refs:
references.append(clt.ALL_TTPS[refid])
sr.save_to_train_set(data["description"], references)
def predict(report_to_predict_file, output_file, title, date):
"""
Predict tactics and techniques from a report in a txt file.
"""
# parse text from file
report_to_predict = ""
with open(report_to_predict_file, 'r', newline = '', encoding = 'ISO-8859-1') as filetoread:
data = filetoread.read()
report_to_predict = prp.remove_u(data)
# load postprocessingand min-max confidence score for both tactics and techniques predictions
parameters = joblib.load("classification_tools/data/configuration.joblib")
min_prob_tactics = parameters[2][0]
max_prob_tactics = parameters[2][1]
min_prob_techniques = parameters[3][0]
max_prob_techniques = parameters[3][1]
pred_tactics, predprob_tactics, pred_techniques, predprob_techniques = clt.predict(report_to_predict, parameters)
# change decision value into confidence score to display
for i in range(len(predprob_tactics[0])):
conf = (predprob_tactics[0][i] - min_prob_tactics) / (max_prob_tactics - min_prob_tactics)
if conf < 0:
conf = 0.0
elif conf > 1:
conf = 1.0
predprob_tactics[0][i] = conf*100
for j in range(len(predprob_techniques[0])):
conf = (predprob_techniques[0][j] - min_prob_techniques) / (max_prob_techniques - min_prob_techniques)
if conf < 0:
conf = 0.0
elif conf > 1:
conf = 1.0
predprob_techniques[0][j] = conf*100
#prepare results to display
ttps = []
to_print_tactics = []
to_print_techniques = []
for ta in range(len(pred_tactics[0])):
if pred_tactics[0][ta] == 1:
ttps.append(clt.CODE_TACTICS[ta])
to_print_tactics.append([1, clt.NAME_TACTICS[ta], predprob_tactics[0][ta]])
else:
to_print_tactics.append([0, clt.NAME_TACTICS[ta], predprob_tactics[0][ta]])
for te in range(len(pred_techniques[0])):
if pred_techniques[0][te] == 1:
ttps.append(clt.CODE_TECHNIQUES[te])
to_print_techniques.append([1, clt.NAME_TECHNIQUES[te], predprob_techniques[0][te]])
else:
to_print_techniques.append([0, clt.NAME_TECHNIQUES[te], predprob_techniques[0][te]])
to_print_tactics = sorted(to_print_tactics, key = itemgetter(2), reverse = True)
to_print_techniques = sorted(to_print_techniques, key = itemgetter(2), reverse = True)
print("Predictions for the given report are : ")
print("Tactics :")
for tpta in to_print_tactics:
if tpta[0] == 1:
print(Fore.YELLOW + '' + tpta[1] + " : " + str(tpta[2]) + "% confidence")
else:
print(Fore.CYAN + '' + tpta[1] + " : " + str(tpta[2]) + "% confidence")
print(Style.RESET_ALL)
print("Techniques :")
for tpte in to_print_techniques:
if tpte[0] == 1:
print(Fore.YELLOW + '' + tpte[1] + " : "+str(tpte[2])+"% confidence")
else:
print(Fore.CYAN + '' + tpte[1] + " : "+str(tpte[2])+"% confidence")
print(Style.RESET_ALL)
if output_file != '':
save_stix_file(report_to_predict, title, date, ttps, output_file)
print("Results saved in " + output_file)
def main(argv):
input_file = ''
output_file = ''
added_file = 0
added_feedback = ''
title = ''
date = ''
pred = 0
try:
opts, args = getopt.getopt(argv,"htapf:i:o:n:d:",["help","train","add-to-training","predict","feedback=","input-file=","output-file=","report-title=","publishing-date="])
except getopt.GetoptError:
print('Python app to extract Att&ck tactics and techniques from cyber threat reports')
print('type: <app.py -h> or <app.py --help> to see how to use this tool')
sys.exit(2)
for opt, arg in opts:
if opt in ("-h", "--help"):
print(" ")
print(Fore.RED+" d8888 88888888888 88888888888 ")
print(" d88888 888 888 ")
print(" d88P888 888 888 ")
print(" 888d888 .d8888b d88P 888 888 888 ")
print(" 888P\" d88P\" d88P 888 888 888 ")
print(" 888 888 d88P 888 888 888 ")
print(" 888 Y88b. d8888888888 888 888 ")
print(" 888 \"Y8888P d88P 888 888 888 ")
print(Style.RESET_ALL)
print(' rcATT is a python tool to predict ATT&CK tactics and techniques from cyber threat reports. Tactics and techniques displayed in yellow are predicted as included in the report. The percentage displayed next to the name of the tactic/technique is the likelihood of this tactic/technique of being in the report. If the tactic/technique is indicated as not being in the report, despite the displayed likelihood, it is due to the post-processing in our model. If you disagree with the prediction, you can correct these results and save them to the training set to improve it.')
print(' ')
print(' Commands : ')
print(' \t-t --train\t : petrain the tool with the newly added reports')
print(' \t-p --predict\t : predict TTPs for report in the input file')
print(' \t-f --feedback\t : change the results given by the tool in a previously output json file by a list of given TTPs')
print(' \t-a --add-to-training\t : add a json file output by the tool to the training set')
print(' \t-i --input-file\t : input file: .txt for --predict, .json for --feedback and --add-to-training (required)')
print(' \t-o --output-file\t : output file: json for --predict (if not given no results will be saved) and --feedback (if not given, changes will be saved in the input file)')
print(' \t-n --report-title\t : title of the report to add to the json file')
print(' \t-d --publishing-date\t : publishing date of the report to add to the json file (use the YYYY-MM-DD format)')
print(' ')
print(' Examples:')
print(' \trcATT_cmd.py --train')
print(' \trcATT_cmd.py -p -i input.txt -o input.json -n title -d 1970-01-01')
print(' \trcATT_cmd.py -f TA0005,TA0003 -i input.json -o output.json')
print(' \trcATT_cmd.py -a -i output.json')
sys.exit()
elif opt in ("-t", "--train"):
print('Retraining the tool. This will take some time...')
clt.train(True)
print('Training finished!')
sys.exit()
elif opt in ("-f", "--feedback"):
added_feedback = arg
elif opt in ("-a", "--add-to-training"):
added_file = 1
elif opt in ("-p", "--predict"):
pred = 1
elif opt in ("-i", "--input-file"):
input_file = arg
elif opt in ("-o", "--output-file"):
output_file = arg
elif opt in ("-n", "--report-title"):
title = arg
elif opt in ("-d", "--publishing-date"):
date = arg
if input_file != '' and pred != 0:
predict(input_file, output_file, title, date)
if added_feedback != '' and input_file != '':
print("Adding changes to selected results...")
correct_file(input_file, added_feedback, output_file)
if output_file != '':
print("Change added and saved in " + output_file)
else:
print("Change added and saved in " + input_file)
if added_file == 1 and input_file != '':
print('Adding the file to the training set...')
save_train_set(input_file)
print(input_file + ' added to the training set!')
if __name__ == "__main__":
main(sys.argv[1:])