forked from scikit-learn/scikit-learn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdummy.py
708 lines (575 loc) · 24.1 KB
/
dummy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
# Author: Mathieu Blondel <[email protected]>
# Arnaud Joly <[email protected]>
# Maheshakya Wijewardena <[email protected]>
# License: BSD 3 clause
import warnings
import numpy as np
import scipy.sparse as sp
from .base import BaseEstimator, ClassifierMixin, RegressorMixin
from .base import MultiOutputMixin
from .utils import check_random_state
from .utils import deprecated
from .utils.validation import _num_samples
from .utils.validation import check_array
from .utils.validation import check_consistent_length
from .utils.validation import check_is_fitted, _check_sample_weight
from .utils.random import _random_choice_csc
from .utils.stats import _weighted_percentile
from .utils.multiclass import class_distribution
class DummyClassifier(MultiOutputMixin, ClassifierMixin, BaseEstimator):
"""DummyClassifier makes predictions that ignore the input features.
This classifier serves as a simple baseline to compare against other more
complex classifiers.
The specific behavior of the baseline is selected with the `strategy`
parameter.
All strategies make predictions that ignore the input feature values passed
as the `X` argument to `fit` and `predict`. The predictions, however,
typically depend on values observed in the `y` parameter passed to `fit`.
Note that the "stratified" and "uniform" strategies lead to
non-deterministic predictions that can be rendered deterministic by setting
the `random_state` parameter if needed. The other strategies are naturally
deterministic and, once fit, always return a the same constant prediction
for any value of `X`.
Read more in the :ref:`User Guide <dummy_estimators>`.
.. versionadded:: 0.13
Parameters
----------
strategy : {"most_frequent", "prior", "stratified", "uniform", \
"constant"}, default="prior"
Strategy to use to generate predictions.
* "most_frequent": the `predict` method always returns the most
frequent class label in the observed `y` argument passed to `fit`.
The `predict_proba` method returns the matching one-hot encoded
vector.
* "prior": the `predict` method always returns the most frequent
class label in the observed `y` argument passed to `fit` (like
"most_frequent"). ``predict_proba`` always returns the empirical
class distribution of `y` also known as the empirical class prior
distribution.
* "stratified": the `predict_proba` method randomly samples one-hot
vectors from a multinomial distribution parametrized by the empirical
class prior probabilities.
The `predict` method returns the class label which got probability
one in the one-hot vector of `predict_proba`.
Each sampled row of both methods is therefore independent and
identically distributed.
* "uniform": generates predictions uniformly at random from the list
of unique classes observed in `y`, i.e. each class has equal
probability.
* "constant": always predicts a constant label that is provided by
the user. This is useful for metrics that evaluate a non-majority
class.
.. versionchanged:: 0.24
The default value of `strategy` has changed to "prior" in version
0.24.
random_state : int, RandomState instance or None, default=None
Controls the randomness to generate the predictions when
``strategy='stratified'`` or ``strategy='uniform'``.
Pass an int for reproducible output across multiple function calls.
See :term:`Glossary <random_state>`.
constant : int or str or array-like of shape (n_outputs,), default=None
The explicit constant as predicted by the "constant" strategy. This
parameter is useful only for the "constant" strategy.
Attributes
----------
classes_ : ndarray of shape (n_classes,) or list of such arrays
Unique class labels observed in `y`. For multi-output classification
problems, this attribute is a list of arrays as each output has an
independent set of possible classes.
n_classes_ : int or list of int
Number of label for each output.
class_prior_ : ndarray of shape (n_classes,) or list of such arrays
Frequency of each class observed in `y`. For multioutput classification
problems, this is computed independently for each output.
n_outputs_ : int
Number of outputs.
n_features_in_ : `None`
Always set to `None`.
.. versionadded:: 0.24
.. deprecated:: 1.0
Will be removed in 1.0
sparse_output_ : bool
True if the array returned from predict is to be in sparse CSC format.
Is automatically set to True if the input `y` is passed in sparse
format.
See Also
--------
DummyRegressor : Regressor that makes predictions using simple rules.
Examples
--------
>>> import numpy as np
>>> from sklearn.dummy import DummyClassifier
>>> X = np.array([-1, 1, 1, 1])
>>> y = np.array([0, 1, 1, 1])
>>> dummy_clf = DummyClassifier(strategy="most_frequent")
>>> dummy_clf.fit(X, y)
DummyClassifier(strategy='most_frequent')
>>> dummy_clf.predict(X)
array([1, 1, 1, 1])
>>> dummy_clf.score(X, y)
0.75
"""
def __init__(self, *, strategy="prior", random_state=None, constant=None):
self.strategy = strategy
self.random_state = random_state
self.constant = constant
def fit(self, X, y, sample_weight=None):
"""Fit the baseline classifier.
Parameters
----------
X : array-like of shape (n_samples, n_features)
Training data.
y : array-like of shape (n_samples,) or (n_samples, n_outputs)
Target values.
sample_weight : array-like of shape (n_samples,), default=None
Sample weights.
Returns
-------
self : object
Returns the instance itself.
"""
allowed_strategies = (
"most_frequent",
"stratified",
"uniform",
"constant",
"prior",
)
if self.strategy not in allowed_strategies:
raise ValueError(
"Unknown strategy type: %s, expected one of %s."
% (self.strategy, allowed_strategies)
)
self._strategy = self.strategy
if self._strategy == "uniform" and sp.issparse(y):
y = y.toarray()
warnings.warn(
"A local copy of the target data has been converted "
"to a numpy array. Predicting on sparse target data "
"with the uniform strategy would not save memory "
"and would be slower.",
UserWarning,
)
self.sparse_output_ = sp.issparse(y)
if not self.sparse_output_:
y = np.asarray(y)
y = np.atleast_1d(y)
if y.ndim == 1:
y = np.reshape(y, (-1, 1))
self.n_outputs_ = y.shape[1]
check_consistent_length(X, y)
if sample_weight is not None:
sample_weight = _check_sample_weight(sample_weight, X)
if self._strategy == "constant":
if self.constant is None:
raise ValueError(
"Constant target value has to be specified "
"when the constant strategy is used."
)
else:
constant = np.reshape(np.atleast_1d(self.constant), (-1, 1))
if constant.shape[0] != self.n_outputs_:
raise ValueError(
"Constant target value should have shape (%d, 1)."
% self.n_outputs_
)
(self.classes_, self.n_classes_, self.class_prior_) = class_distribution(
y, sample_weight
)
if self._strategy == "constant":
for k in range(self.n_outputs_):
if not any(constant[k][0] == c for c in self.classes_[k]):
# Checking in case of constant strategy if the constant
# provided by the user is in y.
err_msg = (
"The constant target value must be present in "
"the training data. You provided constant={}. "
"Possible values are: {}.".format(
self.constant, list(self.classes_[k])
)
)
raise ValueError(err_msg)
if self.n_outputs_ == 1:
self.n_classes_ = self.n_classes_[0]
self.classes_ = self.classes_[0]
self.class_prior_ = self.class_prior_[0]
return self
def predict(self, X):
"""Perform classification on test vectors X.
Parameters
----------
X : array-like of shape (n_samples, n_features)
Test data.
Returns
-------
y : array-like of shape (n_samples,) or (n_samples, n_outputs)
Predicted target values for X.
"""
check_is_fitted(self)
# numpy random_state expects Python int and not long as size argument
# under Windows
n_samples = _num_samples(X)
rs = check_random_state(self.random_state)
n_classes_ = self.n_classes_
classes_ = self.classes_
class_prior_ = self.class_prior_
constant = self.constant
if self.n_outputs_ == 1:
# Get same type even for self.n_outputs_ == 1
n_classes_ = [n_classes_]
classes_ = [classes_]
class_prior_ = [class_prior_]
constant = [constant]
# Compute probability only once
if self._strategy == "stratified":
proba = self.predict_proba(X)
if self.n_outputs_ == 1:
proba = [proba]
if self.sparse_output_:
class_prob = None
if self._strategy in ("most_frequent", "prior"):
classes_ = [np.array([cp.argmax()]) for cp in class_prior_]
elif self._strategy == "stratified":
class_prob = class_prior_
elif self._strategy == "uniform":
raise ValueError(
"Sparse target prediction is not "
"supported with the uniform strategy"
)
elif self._strategy == "constant":
classes_ = [np.array([c]) for c in constant]
y = _random_choice_csc(n_samples, classes_, class_prob, self.random_state)
else:
if self._strategy in ("most_frequent", "prior"):
y = np.tile(
[
classes_[k][class_prior_[k].argmax()]
for k in range(self.n_outputs_)
],
[n_samples, 1],
)
elif self._strategy == "stratified":
y = np.vstack(
[
classes_[k][proba[k].argmax(axis=1)]
for k in range(self.n_outputs_)
]
).T
elif self._strategy == "uniform":
ret = [
classes_[k][rs.randint(n_classes_[k], size=n_samples)]
for k in range(self.n_outputs_)
]
y = np.vstack(ret).T
elif self._strategy == "constant":
y = np.tile(self.constant, (n_samples, 1))
if self.n_outputs_ == 1:
y = np.ravel(y)
return y
def predict_proba(self, X):
"""
Return probability estimates for the test vectors X.
Parameters
----------
X : array-like of shape (n_samples, n_features)
Test data.
Returns
-------
P : ndarray of shape (n_samples, n_classes) or list of such arrays
Returns the probability of the sample for each class in
the model, where classes are ordered arithmetically, for each
output.
"""
check_is_fitted(self)
# numpy random_state expects Python int and not long as size argument
# under Windows
n_samples = _num_samples(X)
rs = check_random_state(self.random_state)
n_classes_ = self.n_classes_
classes_ = self.classes_
class_prior_ = self.class_prior_
constant = self.constant
if self.n_outputs_ == 1:
# Get same type even for self.n_outputs_ == 1
n_classes_ = [n_classes_]
classes_ = [classes_]
class_prior_ = [class_prior_]
constant = [constant]
P = []
for k in range(self.n_outputs_):
if self._strategy == "most_frequent":
ind = class_prior_[k].argmax()
out = np.zeros((n_samples, n_classes_[k]), dtype=np.float64)
out[:, ind] = 1.0
elif self._strategy == "prior":
out = np.ones((n_samples, 1)) * class_prior_[k]
elif self._strategy == "stratified":
out = rs.multinomial(1, class_prior_[k], size=n_samples)
out = out.astype(np.float64)
elif self._strategy == "uniform":
out = np.ones((n_samples, n_classes_[k]), dtype=np.float64)
out /= n_classes_[k]
elif self._strategy == "constant":
ind = np.where(classes_[k] == constant[k])
out = np.zeros((n_samples, n_classes_[k]), dtype=np.float64)
out[:, ind] = 1.0
P.append(out)
if self.n_outputs_ == 1:
P = P[0]
return P
def predict_log_proba(self, X):
"""
Return log probability estimates for the test vectors X.
Parameters
----------
X : {array-like, object with finite length or shape}
Training data.
Returns
-------
P : ndarray of shape (n_samples, n_classes) or list of such arrays
Returns the log probability of the sample for each class in
the model, where classes are ordered arithmetically for each
output.
"""
proba = self.predict_proba(X)
if self.n_outputs_ == 1:
return np.log(proba)
else:
return [np.log(p) for p in proba]
def _more_tags(self):
return {
"poor_score": True,
"no_validation": True,
"_xfail_checks": {
"check_methods_subset_invariance": "fails for the predict method",
"check_methods_sample_order_invariance": "fails for the predict method",
},
}
def score(self, X, y, sample_weight=None):
"""Return the mean accuracy on the given test data and labels.
In multi-label classification, this is the subset accuracy
which is a harsh metric since you require for each sample that
each label set be correctly predicted.
Parameters
----------
X : None or array-like of shape (n_samples, n_features)
Test samples. Passing None as test samples gives the same result
as passing real test samples, since DummyClassifier
operates independently of the sampled observations.
y : array-like of shape (n_samples,) or (n_samples, n_outputs)
True labels for X.
sample_weight : array-like of shape (n_samples,), default=None
Sample weights.
Returns
-------
score : float
Mean accuracy of self.predict(X) wrt. y.
"""
if X is None:
X = np.zeros(shape=(len(y), 1))
return super().score(X, y, sample_weight)
# TODO: Remove in 1.2
# mypy error: Decorated property not supported
@deprecated( # type: ignore
"`n_features_in_` is deprecated in 1.0 and will be removed in 1.2."
)
@property
def n_features_in_(self):
check_is_fitted(self)
return None
class DummyRegressor(MultiOutputMixin, RegressorMixin, BaseEstimator):
"""Regressor that makes predictions using simple rules.
This regressor is useful as a simple baseline to compare with other
(real) regressors. Do not use it for real problems.
Read more in the :ref:`User Guide <dummy_estimators>`.
.. versionadded:: 0.13
Parameters
----------
strategy : {"mean", "median", "quantile", "constant"}, default="mean"
Strategy to use to generate predictions.
* "mean": always predicts the mean of the training set
* "median": always predicts the median of the training set
* "quantile": always predicts a specified quantile of the training set,
provided with the quantile parameter.
* "constant": always predicts a constant value that is provided by
the user.
constant : int or float or array-like of shape (n_outputs,), default=None
The explicit constant as predicted by the "constant" strategy. This
parameter is useful only for the "constant" strategy.
quantile : float in [0.0, 1.0], default=None
The quantile to predict using the "quantile" strategy. A quantile of
0.5 corresponds to the median, while 0.0 to the minimum and 1.0 to the
maximum.
Attributes
----------
constant_ : ndarray of shape (1, n_outputs)
Mean or median or quantile of the training targets or constant value
given by the user.
n_features_in_ : `None`
Always set to `None`.
.. versionadded:: 0.24
.. deprecated:: 1.0
Will be removed in 1.0
n_outputs_ : int
Number of outputs.
See Also
--------
DummyClassifier: Classifier that makes predictions using simple rules.
Examples
--------
>>> import numpy as np
>>> from sklearn.dummy import DummyRegressor
>>> X = np.array([1.0, 2.0, 3.0, 4.0])
>>> y = np.array([2.0, 3.0, 5.0, 10.0])
>>> dummy_regr = DummyRegressor(strategy="mean")
>>> dummy_regr.fit(X, y)
DummyRegressor()
>>> dummy_regr.predict(X)
array([5., 5., 5., 5.])
>>> dummy_regr.score(X, y)
0.0
"""
def __init__(self, *, strategy="mean", constant=None, quantile=None):
self.strategy = strategy
self.constant = constant
self.quantile = quantile
def fit(self, X, y, sample_weight=None):
"""Fit the random regressor.
Parameters
----------
X : array-like of shape (n_samples, n_features)
Training data.
y : array-like of shape (n_samples,) or (n_samples, n_outputs)
Target values.
sample_weight : array-like of shape (n_samples,), default=None
Sample weights.
Returns
-------
self : object
Fitted estimator.
"""
allowed_strategies = ("mean", "median", "quantile", "constant")
if self.strategy not in allowed_strategies:
raise ValueError(
"Unknown strategy type: %s, expected one of %s."
% (self.strategy, allowed_strategies)
)
y = check_array(y, ensure_2d=False, input_name="y")
if len(y) == 0:
raise ValueError("y must not be empty.")
if y.ndim == 1:
y = np.reshape(y, (-1, 1))
self.n_outputs_ = y.shape[1]
check_consistent_length(X, y, sample_weight)
if sample_weight is not None:
sample_weight = _check_sample_weight(sample_weight, X)
if self.strategy == "mean":
self.constant_ = np.average(y, axis=0, weights=sample_weight)
elif self.strategy == "median":
if sample_weight is None:
self.constant_ = np.median(y, axis=0)
else:
self.constant_ = [
_weighted_percentile(y[:, k], sample_weight, percentile=50.0)
for k in range(self.n_outputs_)
]
elif self.strategy == "quantile":
if self.quantile is None or not np.isscalar(self.quantile):
raise ValueError(
"Quantile must be a scalar in the range [0.0, 1.0], but got %s."
% self.quantile
)
percentile = self.quantile * 100.0
if sample_weight is None:
self.constant_ = np.percentile(y, axis=0, q=percentile)
else:
self.constant_ = [
_weighted_percentile(y[:, k], sample_weight, percentile=percentile)
for k in range(self.n_outputs_)
]
elif self.strategy == "constant":
if self.constant is None:
raise TypeError(
"Constant target value has to be specified "
"when the constant strategy is used."
)
self.constant = check_array(
self.constant,
accept_sparse=["csr", "csc", "coo"],
ensure_2d=False,
ensure_min_samples=0,
)
if self.n_outputs_ != 1 and self.constant.shape[0] != y.shape[1]:
raise ValueError(
"Constant target value should have shape (%d, 1)." % y.shape[1]
)
self.constant_ = self.constant
self.constant_ = np.reshape(self.constant_, (1, -1))
return self
def predict(self, X, return_std=False):
"""Perform classification on test vectors X.
Parameters
----------
X : array-like of shape (n_samples, n_features)
Test data.
return_std : bool, default=False
Whether to return the standard deviation of posterior prediction.
All zeros in this case.
.. versionadded:: 0.20
Returns
-------
y : array-like of shape (n_samples,) or (n_samples, n_outputs)
Predicted target values for X.
y_std : array-like of shape (n_samples,) or (n_samples, n_outputs)
Standard deviation of predictive distribution of query points.
"""
check_is_fitted(self)
n_samples = _num_samples(X)
y = np.full(
(n_samples, self.n_outputs_),
self.constant_,
dtype=np.array(self.constant_).dtype,
)
y_std = np.zeros((n_samples, self.n_outputs_))
if self.n_outputs_ == 1:
y = np.ravel(y)
y_std = np.ravel(y_std)
return (y, y_std) if return_std else y
def _more_tags(self):
return {"poor_score": True, "no_validation": True}
def score(self, X, y, sample_weight=None):
"""Return the coefficient of determination R^2 of the prediction.
The coefficient R^2 is defined as `(1 - u/v)`, where `u` is the
residual sum of squares `((y_true - y_pred) ** 2).sum()` and `v` is the
total sum of squares `((y_true - y_true.mean()) ** 2).sum()`. The best
possible score is 1.0 and it can be negative (because the model can be
arbitrarily worse). A constant model that always predicts the expected
value of y, disregarding the input features, would get a R^2 score of
0.0.
Parameters
----------
X : None or array-like of shape (n_samples, n_features)
Test samples. Passing None as test samples gives the same result
as passing real test samples, since `DummyRegressor`
operates independently of the sampled observations.
y : array-like of shape (n_samples,) or (n_samples, n_outputs)
True values for X.
sample_weight : array-like of shape (n_samples,), default=None
Sample weights.
Returns
-------
score : float
R^2 of `self.predict(X)` wrt. y.
"""
if X is None:
X = np.zeros(shape=(len(y), 1))
return super().score(X, y, sample_weight)
# TODO: Remove in 1.2
# mypy error: Decorated property not supported
@deprecated( # type: ignore
"`n_features_in_` is deprecated in 1.0 and will be removed in 1.2."
)
@property
def n_features_in_(self):
check_is_fitted(self)
return None