-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
39 lines (35 loc) · 1.17 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
import numpy as np
import pandas as pd
from flask import Flask,request,jsonify,render_template
import joblib
app=Flask(__name__)
model=joblib.load("bmi.pkl")
@app.route('/')
def home():
return render_template('index.html')
@app.route('/predict',methods=['POST'])
def predict():
'''
For rendering results on HTML GUI
'''
int_features = [int(x) for x in request.form.values()]
final_features = [np.array(int_features)]
prediction = model.predict(final_features)
output = round(prediction[0], 2)
#print(output)
index_target=pd.Series(["Extremely Weak","Weak" ,"Normal" ,"Overweight","Obesity" ,"Extreme Obesity"])
result=index_target[output]
#result=list(result.values)
#result=str(result)
return render_template('index.html', prediction_text='Predicted BMI {}'.format(result))
@app.route('/predict_api',methods=['POST'])
def predict_api():
'''
For direct API calls trought request
'''
data = request.get_json(force=True)
prediction = model.predict([np.array(list(data.values()))])
output = prediction[0]
return jsonify(output)
if __name__ == "__main__":
app.run(debug=True)