ShengrenHou
/
Optimal-Energy-System-Scheduling-Combining-Mixed-Integer-Programming-and-Deep-Reinforcement-Learning
Public
generated from ShengrenHou/DRL-for-Energy-Systems-Optimal-Scheduling
-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathrandom_generator_more_battery.py
274 lines (256 loc) · 13.7 KB
/
random_generator_more_battery.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
# ------------------------------------------------------------------------
# Energy management environment for reinforcement learning agents developed by
# Hou Shengren, TU Delft, [email protected]
import numpy as np
import pandas as pd
import gym
from gym import spaces
from Parameters import battery_parameters,dg_parameters
class Constant:
MONTHS_LEN = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31]
MAX_STEP_HOURS = 24 * 30
class DataManager():
def __init__(self) -> None:
self.PV_Generation=[]
self.Prices=[]
self.Electricity_Consumption=[]
def add_pv_element(self,element):self.PV_Generation.append(element)
def add_price_element(self,element):self.Prices.append(element)
def add_electricity_element(self,element):self.Electricity_Consumption.append(element)
# get current time data based on given month day, and day_time
def get_pv_data(self,month,day,day_time):return self.PV_Generation[(sum(Constant.MONTHS_LEN[:month-1])+day-1)*24+day_time]
def get_price_data(self,month,day,day_time):return self.Prices[(sum(Constant.MONTHS_LEN[:month-1])+day-1)*24+day_time]
def get_electricity_cons_data(self,month,day,day_time):return self.Electricity_Consumption[(sum(Constant.MONTHS_LEN[:month-1])+day-1)*24+day_time]
# get series data for one episode
def get_series_pv_data(self,month,day): return self.PV_Generation[(sum(Constant.MONTHS_LEN[:month-1])+day-1)*24:(sum(Constant.MONTHS_LEN[:month-1])+day-1)*24+24]
def get_series_price_data(self,month,day):return self.Prices[(sum(Constant.MONTHS_LEN[:month-1])+day-1)*24:(sum(Constant.MONTHS_LEN[:month-1])+day-1)*24+24]
def get_series_electricity_cons_data(self,month,day):return self.Electricity_Consumption[(sum(Constant.MONTHS_LEN[:month-1])+day-1)*24:(sum(Constant.MONTHS_LEN[:month-1])+day-1)*24+24]
class DG():
def __init__(self,parameters):
self.name=parameters.keys()
self.a_factor=parameters['a']
self.b_factor=parameters['b']
self.c_factor=parameters['c']
self.power_output_max=parameters['power_output_max']
self.power_output_min=parameters['power_output_min']
self.ramping_up=parameters['ramping_up']
self.ramping_down=parameters['ramping_down']
self.last_step_output=None
def step(self,action_gen):
output_change=action_gen*self.ramping_up#
output=self.current_output+output_change
if output>0:
output=max(self.power_output_min,min(self.power_output_max,output))# meet the constrain
else:
output=0
self.current_output=output
def _get_cost(self,output):
if output<=0:
cost=0
else:
cost=(self.a_factor*pow(output,2)+self.b_factor*output+self.c_factor)
# print(cost)
return cost
def reset(self):
self.current_output=0
class Battery():
def __init__(self,parameters):
self.capacity=parameters['capacity']# 容量
self.max_soc=parameters['max_soc']# max soc 0.8
self.initial_capacity=parameters['initial_capacity']# initial soc 0.4
self.min_soc=parameters['min_soc']# 0.2
self.degradation=parameters['degradation']# degradation cost 0,
self.max_charge=parameters['max_charge']# max charge ability
self.max_discharge=parameters['max_discharge']# max discharge ability
self.efficiency=parameters['efficiency']# charge and discharge efficiency
def step(self,action_battery):
energy=action_battery*self.max_charge
updated_capacity=max(self.min_soc,min(self.max_soc,(self.current_capacity*self.capacity+energy)/self.capacity))
self.energy_change=(updated_capacity-self.current_capacity)*self.capacity# if charge, positive, if discharge, negative
self.current_capacity=updated_capacity# update capacity to current codition
def _get_cost(self,energy):# calculate the cost depends on the energy change
cost=energy**2*self.degradation
return cost
def SOC(self):
return self.current_capacity
def reset(self):
self.current_capacity=np.random.uniform(0.2,0.8)
class Grid():
def __init__(self):
self.on=True
if self.on:
self.exchange_ability=30
else:
self.exchange_ability=0
def _get_cost(self,current_price,energy_exchange):##energy if charge, will be positive, if discharge will be negative
return current_price*energy_exchange
def retrive_past_price(self):
result=[]
if self.day<1:
past_price=self.past_price# self.past price is fixed as the last days price
else:
past_price=self.price[24*(self.day-1):24*self.day]# get the price data of previous day
# print(past_price)
for item in past_price[(self.time-24)::]:# here if current time_step is 10, then the 10th data of past price is extrated to the result as the first value
result.append(item)
for item in self.price[24*self.day:(24*self.day+self.time)]:# continue to retrive data from the past and attend it to the result. as past price is change everytime.
result.append(item)
return result
class ESSEnv(gym.Env):
def __init__(self,**kwargs):
super(ESSEnv,self).__init__()
#parameters
self.data_manager=DataManager()
self._load_year_data()
self.episode_length=kwargs.get('episode_length',24)
self.month=None
self.day=None
# Control training set and validation set with reset function
self.TRAIN=True
self.current_time=None
self.battery_parameters=kwargs.get('battery_parameters',battery_parameters)
self.dg_parameters=kwargs.get('dg_parameters',dg_parameters)
self.penalty_coefficient=20#control soft penalty constrain
self.sell_coefficient=0.5# control sell benefits
# instant the components of the environment
self.grid=Grid()
self.battery1=Battery(self.battery_parameters)
self.battery2=Battery(self.battery_parameters)
self.battery3=Battery(self.battery_parameters)
self.dg1=DG(self.dg_parameters['gen_1'])
self.dg2=DG(self.dg_parameters['gen_2'])
self.dg3=DG(self.dg_parameters['gen_3'])
# define normalized action space
self.action_space=spaces.Box(low=-1,high=1,shape=(6,),dtype=np.float32)# seems here doesn't used
self.state_space=spaces.Box(low=0,high=1,shape=(9,),dtype=np.float32)
self.Length_max=24
self.Price_max=max(self.data_manager.Prices)
self.Netload_max = max(self.data_manager.Electricity_Consumption)
self.SOC_max=self.battery1.max_soc
self.DG1_max=self.dg1.power_output_max
self.DG2_max=self.dg2.power_output_max
self.DG3_max=self.dg3.power_output_max
def reset(self):
self.month=np.random.randint(1,13)# here we choose 12 month
if self.TRAIN:
self.day=np.random.randint(1,21)
else:
self.day=np.random.randint(21,Constant.MONTHS_LEN[self.month-1])
self.current_time=0
self.battery1.reset()
self.battery2.reset()
self.battery3.reset()
self.dg1.reset()
self.dg2.reset()
self.dg3.reset()
return self._build_state()
def _build_state(self):
soc1=self.battery1.SOC()/self.SOC_max
soc2=self.battery2.SOC()/self.SOC_max
soc3 = self.battery3.SOC() / self.SOC_max
dg1_output=self.dg1.current_output/self.DG1_max
dg2_output=self.dg2.current_output/self.DG2_max
dg3_output=self.dg3.current_output/self.DG3_max
time_step=self.current_time/(self.Length_max-1)
electricity_demand=self.data_manager.get_electricity_cons_data(self.month,self.day,self.current_time)
pv_generation=self.data_manager.get_pv_data(self.month,self.day,self.current_time)
price=self.data_manager.get_price_data(self.month,self.day,self.current_time)/self.Price_max
net_load=(electricity_demand-pv_generation)/self.Netload_max
obs=np.concatenate((np.float32(time_step),np.float32(price),np.float32(soc1),np.float32(soc2),np.float32(soc3),np.float32(net_load),np.float32(dg1_output),np.float32(dg2_output),np.float32(dg3_output)),axis=None)
return obs
def step(self,action):# state transition here current_obs--take_action--get reward-- get_finish--next_obs
## here we want to put take action into each components
current_obs=self._build_state()
self.battery1.step(action[0])# here execute the state-transition part, battery.current_capacity also changed
self.battery2.step(action[1])
self.battery3.step(action[2])
self.dg1.step(action[3])
self.dg2.step(action[4])
self.dg3.step(action[5])
current_output=np.array((self.dg1.current_output,self.dg2.current_output,self.dg3.current_output,-self.battery1.energy_change,-self.battery2.energy_change,-self.battery3.energy_change))#truely corresonding to the result
self.current_output=current_output
actual_production=sum(current_output)
netload=current_obs[5]*self.Netload_max
price=current_obs[1]*self.Price_max
unbalance=actual_production-netload
reward=0
excess_penalty=0
deficient_penalty=0
sell_benefit=0
buy_cost=0
self.excess=0
self.shedding=0
# logic here is: if unbalance >0 then it is production excess, so the excessed output should sold to power grid to get benefits
if unbalance>=0:# it is now in excess condition
if unbalance<=self.grid.exchange_ability:
sell_benefit=self.grid._get_cost(price,unbalance)*self.sell_coefficient #sell money to grid is little [0.029,0.1]
else:
sell_benefit=self.grid._get_cost(price,self.grid.exchange_ability)*self.sell_coefficient
self.excess=unbalance-self.grid.exchange_ability
excess_penalty=self.excess*self.penalty_coefficient
else:# unbalance <0, its load shedding model, in this case, deficient penalty is used
if abs(unbalance)<=self.grid.exchange_ability:
buy_cost=self.grid._get_cost(price,abs(unbalance))
else:
buy_cost=self.grid._get_cost(price,self.grid.exchange_ability)
self.shedding=abs(unbalance)-self.grid.exchange_ability
deficient_penalty=self.shedding*self.penalty_coefficient
battery1_cost=self.battery1._get_cost(self.battery1.energy_change)# we set it as 0 this time
battery2_cost=self.battery2._get_cost(self.battery2.energy_change)
battery3_cost = self.battery3._get_cost(self.battery3.energy_change)
dg1_cost=self.dg1._get_cost(self.dg1.current_output)
dg2_cost=self.dg2._get_cost(self.dg2.current_output)
dg3_cost=self.dg3._get_cost(self.dg3.current_output)
reward=-(battery1_cost+battery2_cost+battery3_cost+dg1_cost+dg2_cost+dg3_cost+excess_penalty+
deficient_penalty-sell_benefit+buy_cost)/2e3
self.operation_cost=battery1_cost+battery2_cost+battery3_cost+dg1_cost+dg2_cost+dg3_cost+buy_cost-sell_benefit+(self.shedding+self.excess)*self.penalty_coefficient
self.unbalance=unbalance
self.real_unbalance=self.shedding+self.excess
final_step_outputs=[self.dg1.current_output,self.dg2.current_output,self.dg3.current_output,self.battery1.current_capacity,self.battery2.current_capacity,self.battery3.current_capacity]
self.current_time+=1
finish=(self.current_time==self.episode_length)
if finish:
self.final_step_outputs=final_step_outputs
self.current_time=0
next_obs=self.reset()
else:
next_obs=self._build_state()
return current_obs,next_obs,float(reward),finish
def render(self, current_obs, next_obs, reward, finish):
print('day={},hour={:2d}, state={}, next_state={}, reward={:.4f}, terminal={}\n'.format(self.day,self.current_time, current_obs, next_obs, reward, finish))
def _load_year_data(self):
'''this private function is used to load the electricity consumption, pv generation and related prices in a year as
a one hour resolution, with the cooperation of class DataProcesser and then all these data are stored in data processor'''
pv_df=pd.read_csv('data/PV.csv',sep=';')
#hourly price data for a year
price_df=pd.read_csv('data/Prices.csv',sep=';')
# mins electricity consumption data for a year
electricity_df=pd.read_csv('data/H4.csv',sep=';')
pv_data=pv_df['P_PV_'].apply(lambda x: x.replace(',','.')).to_numpy(dtype=float)
price=price_df['Price'].apply(lambda x:x.replace(',','.')).to_numpy(dtype=float)
electricity=electricity_df['Power'].apply(lambda x:x.replace(',','.')).to_numpy(dtype=float)
# netload=electricity-pv_data
for element in pv_data:
self.data_manager.add_pv_element(element*100)
for element in price:
element/=10
if element<=0.5:
element=0.5
self.data_manager.add_price_element(element)
for i in range(0,electricity.shape[0],60):
element=electricity[i:i+60]
self.data_manager.add_electricity_element(sum(element)*300)
if __name__ == '__main__':
env=ESSEnv()
env.TRAIN=False
rewards=[]
env.reset()
tem_action=[0.1,0.1,0.1,0.1,0.1,0.1]
for _ in range (240):
print(f'current month is {env.month}, current day is {env.day}, current time is {env.current_time}')
current_obs,next_obs,reward,finish=env.step(tem_action)
env.render(current_obs,next_obs,reward,finish)
current_obs=next_obs
rewards.append(reward)
# print(f'total reward{sum(rewards)}')
## after debug, it could work now.