-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathttt_game.py
233 lines (195 loc) · 8.13 KB
/
ttt_game.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
import numpy as np
import Tkinter as tk
import copy
import pdb
import pickle
from board import Board
class Game:
def __init__(self, master, bot1, bot2, Q_learn=None, Q={}, alpha=0.3, gamma=0.9):
frame = tk.Frame()
frame.grid()
self.master = master
master.title("EENG5940 Q_learning_ttt Copyright(C) 2018 Daniel_Zhang")
self.bot1 = bot1
self.bot2 = bot2
self.current_bot = bot1
self.other_bot = bot2
self.empty_text = ""
self.board = Board()
self.buttons = [[None for _ in range(4)] for _ in range(4)]
for i in range(4):
for j in range(4):
self.buttons[i][j] = tk.Button(frame, height=1, width=2,text=self.empty_text,font='Helvetica -150 bold',command=lambda i=i, j=j: self.callback(self.buttons[i][j]))
self.buttons[i][j].grid(row=i, column=j)
self.reset_button = tk.Button(text="Try Again", command=self.reset,font='Helvetica -18 bold')
self.reset_button.grid(row=4)
self.Q_learn = Q_learn
self.Q_learn_or_not()
if self.Q_learn:
self.Q = Q
self.alpha = alpha
self.gamma = gamma
self.share_Q_with_players()
def Q_learn_or_not(self):
if self.Q_learn is None:
if isinstance(self.bot1, QPlayer) or isinstance(self.bot2, QPlayer):
self.Q_learn = True
def share_Q_with_players(self):
if isinstance(self.bot1, QPlayer):
self.bot1.Q = self.Q
if isinstance(self.bot2, QPlayer):
self.bot2.Q = self.Q
def callback(self, button):
if self.board.over():
pass
else:
if isinstance(self.current_player, HumanPlayer) and isinstance(self.other_player, HumanPlayer):
if self.empty(button):
move = self.get_move(button)
self.handle_move(move)
elif isinstance(self.current_player, HumanPlayer) and isinstance(self.other_player, ComputerPlayer):
computer_player = self.other_player
if self.empty(button):
human_move = self.get_move(button)
self.handle_move(human_move)
if not self.board.over():
computer_move = computer_player.get_move(self.board)
self.handle_move(computer_move)
def empty(self, button):
return button["text"] == self.empty_text
def get_move(self, button):
info = button.grid_info()
move = (int(info["row"]), int(info["column"]))
return move
def handle_move(self, move):
if self.Q_learn:
self.learn_Q(move)
i, j = move
self.buttons[i][j].configure(text=self.current_player.mark)
self.board.place_mark(move, self.current_player.mark)
if self.board.over():
self.declare_outcome()
else:
self.switch_players()
def declare_outcome(self):
if self.board.winner() is None:
print ("Tie!!!")
else:
print ("Game Gver. %s won!") % self.current_player.mark
def reset(self):
print ("New Game")
for i in range(4):
for j in range(4):
self.buttons[i][j].configure(text=self.empty_text)
self.board = Board(grid=np.ones((4,4))*np.nan)
self.current_player = self.bot1
self.other_player = self.bot2
self.play()
def switch_players(self):
if self.current_player == self.bot1:
self.current_player = self.bot2
self.other_player = self.bot1
else:
self.current_player = self.bot1
self.other_player = self.bot2
def play(self):
if isinstance(self.bot1, HumanPlayer) and isinstance(self.bot2, HumanPlayer):
pass
elif isinstance(self.bot1, HumanPlayer) and isinstance(self.bot2, ComputerPlayer):
pass
elif isinstance(self.bot1, ComputerPlayer) and isinstance(self.bot2, HumanPlayer):
first_computer_move = bot1.get_move(self.board)
self.handle_move(first_computer_move)
elif isinstance(self.bot1, ComputerPlayer) and isinstance(self.bot2, ComputerPlayer):
while not self.board.over():
self.play_turn()
def play_turn(self):
move = self.current_player.get_move(self.board)
self.handle_move(move)
def gameLearning(self, move):
state_key = QPlayer.updateQvalues(self.board, self.current_player.mark, self.Q)
next_board = self.board.get_next_board(move, self.current_player.mark)
reward = next_board.give_reward()
next_state_key = QPlayer.updateQvalues(next_board, self.other_player.mark, self.Q)
if next_board.over():
expected = reward
else:
next_Qs = self.Q[next_state_key]
if self.current_player.mark == "X":
expected = reward + (self.gamma * min(next_Qs.values()))
elif self.current_player.mark == "O":
expected = reward + (self.gamma * max(next_Qs.values()))
change = self.alpha * (expected - self.Q[state_key][move])
self.Q[state_key][move] += change
class Player(object):
def __init__(self, mark):
self.mark = mark
self.get_opponent_mark()
def get_opponent_mark(self):
if self.mark == 'X':
self.opponent_mark = 'O'
elif self.mark == 'O':
self.opponent_mark = 'X'
else:
print ("The player's mark must be either 'X' or 'O'.")
class HumanPlayer(Player):
pass
class ComputerPlayer(Player):
pass
class RandomPlayer(ComputerPlayer):
@staticmethod
def get_move(board):
moves = board.available_moves()
if moves:
return moves[np.random.choice(len(moves))]
class THandPlayer(ComputerPlayer):
def __init__(self, mark):
super(THandPlayer, self).__init__(mark=mark)
def get_move(self, board):
moves = board.available_moves()
if moves:
for move in moves:
if THandPlayer.next_move_winner(board, move, self.mark):
return move
elif THandPlayer.next_move_winner(board, move, self.opponent_mark):
return move
else:
return RandomPlayer.get_move(board)
@staticmethod
def next_move_winner(board, move, mark):
return board.get_next_board(move, mark).winner() == mark
class QPlayer(ComputerPlayer):
def __init__(self, mark, Q={}, epsilon=0.2):
super(QPlayer, self).__init__(mark=mark)
self.Q = Q
self.epsilon = epsilon
def get_move(self, board):
if np.random.uniform() < self.epsilon:
return RandomPlayer.get_move(board)
else:
state_key = QPlayer.updateQvalues(board, self.mark, self.Q)
Qs = self.Q[state_key]
print (Qs)
if self.mark == "X":
print (QPlayer.stochastic_argminmax(Qs, max))
return QPlayer.stochastic_argminmax(Qs, max)
elif self.mark == "O":
print (QPlayer.stochastic_argminmax(Qs, min))
return QPlayer.stochastic_argminmax(Qs, min)
@staticmethod
def updateQvalues(board, mark, Q):
default_Qvalue = 1.0
state_key = board.make_key(mark)
if Q.get(state_key) is None:
moves = board.available_moves()
Q[state_key] = {move: default_Qvalue for move in moves}
return state_key
@staticmethod
def stochastic_argminmax(Qs, min_or_max):
min_or_maxQ = min_or_max(Qs.values())
if Qs.values().count(min_or_maxQ) > 1:
best_options = [move for move in Qs.keys() if Qs[move] == min_or_maxQ]
move = best_options[np.random.choice(len(best_options))]
else:
move = min_or_max(Qs, key=Qs.get)
return move