forked from Kyle1993/Amazon-Kaggle
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval_predict_fold.py
139 lines (108 loc) · 4.93 KB
/
eval_predict_fold.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import torch
from torch.autograd import Variable
import pickle
from Datahelper2 import *
from Model import *
from score_thresholds import *
import numpy
import os,sys
from gloable_parameter import *
torch.backends.cudnn.benchmark=True
def predict_fold(model_path,fold,batch_size,resize,gpu):
transform_num = 8
names = []
print('Predicting fold%d.mod' % fold)
model_name = os.path.join(model_path, 'fold%d.mod' % fold)
model = torch.load(model_name)
model.eval()
model.cuda(gpu)
predict_fold_np = []
for type in range(transform_num):
print('predicting with tpye ' + str(type) + '...')
res_list = []
dset_test = KaggleAmazonDataset_test(IMG_TEST_PATH, transform_type=type, resize=resize)
test_loader = DataLoader(dset_test, batch_size=batch_size, num_workers=6)
for step, (data, name) in enumerate(test_loader):
if type == 0:
names.extend(name)
data = Variable(data, volatile=True).cuda(gpu)
output = model(data)
res_list.append(output.cpu())
if (step + 1) % 10 == 0:
print('{} Fold{} Type {}: {}/61191 ({:.0f}%)'.format(model_path.split('/')[-1], fold, type,
batch_size * (step + 1),
100. * batch_size * (step + 1) / 61191))
res = torch.cat(res_list).data
predict_fold_np.append(res.numpy())
with open(os.path.join(model_path,'predict_fold%d_np.pkl'%fold),'wb') as f:
pickle.dump(predict_fold_np,f)
with open(os.path.join(model_path,'name_list.pkl'),'wb') as f:
pickle.dump(names,f)
def eval_fold(model_path,fold,batch_size,resize,validate_gpu):
transform_num = 8
with open('kdf.pkl', 'rb') as f:
kfold = pickle.load(f,encoding='latin1')
eval_np = [[],[],[],[],[]] #eval_np[k][i] : output on fold[k] type[i]
labels_np = [] # labels (train_len,17) : [fold0,fold1...fold4]
globals_labels_list = [] # merge all the labels (8*train_len,17)
globals_output_list = [] # merge all the output (8*train_len,17)
print(model_path.split('/')[-1]+' Validating fold%d.mod'%fold)
validate_index = kfold[fold][1]
model_name = os.path.join(model_path,'fold%d.mod'%fold)
model = torch.load(model_name)
model.eval()
model.cuda(validate_gpu)
# total_res = torch.zeros((validate_num, 17))
fold_output_list = []
fold_labels_list = []
eval_fold_np = []
for type in range(transform_num):
print('validating with tpye ' + str(type) + '...')
fold_type_output_list = []
dset_validate = AmazonDateset_validate(validate_index, IMG_TRAIN_PATH, IMG_EXT, LABEL_PATH, transform_type=type,resize=resize)
validate_loader = DataLoader(dset_validate, batch_size=batch_size, num_workers=6)
for step, (data, target) in enumerate(validate_loader):
data = Variable(data,volatile=True).cuda(validate_gpu)
output = model(data)
fold_type_output_list.append(output.cpu())
fold_output_list.append(output.cpu())
fold_labels_list.append(target)
# globals_labels_list.append(target)
# globals_output_list.append(output.data.cpu())
fold_type_output = torch.cat(fold_type_output_list).data
eval_fold_np.append(fold_type_output.numpy())
# eval_np[fold].append(fold_type_output.numpy())
# fold_output = torch.cat(fold_output_list)
# fold_labels = torch.cat(fold_labels_list)
# labels = torch.cat(labels_np)
fold_output = torch.cat(fold_output_list)
fold_labels = Variable(torch.cat(fold_labels_list))
loss = F.binary_cross_entropy(fold_output,fold_labels)
print(loss.data[0])
with open(os.path.join(model_path,'eval_fold%d_np.pkl'%fold),'wb') as f:
pickle.dump(eval_fold_np,f)
def merge_folds(model_path):
folds = 5
eval_np = [[],[],[],[],[]] #eval_np[k][i] : output on fold[k] type[i]
predict_np = [[],[],[],[],[]] # predict_np[k][i] : predict on fold[k] type[i]
for fold in range(folds):
with open(os.path.join(model_path,'predict_fold%d_np.pkl'%fold),'rb') as f:
predict_fold_np = pickle.load(f)
with open(os.path.join(model_path,'eval_fold%d_np.pkl'%fold),'rb') as f:
eval_fold_np = pickle.load(f)
predict_np[fold] = predict_fold_np
eval_np[fold] = eval_fold_np
with open(os.path.join(model_path,'validation_middleoutput_np.pkl'),'wb') as f:
pickle.dump(eval_np,f)
print('Validation Done!')
with open(os.path.join(model_path,'predict_np.pkl'),'wb') as f:
pickle.dump(predict_np,f)
print('Predict Done!')
if __name__=='__main__':
model_path = '../amazon2/vgg11'
gpu = 3
fold = 4
batch_size = 128
# predict_fold(model_path,fold,batch_size,224,gpu)
# eval_fold(model_path,fold,batch_size,224,gpu)
merge_folds(model_path)