-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsex_summary.html
374 lines (340 loc) · 142 KB
/
sex_summary.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta charset="utf-8">
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<meta name="generator" content="pandoc" />
<meta name="author" content="Shannon E. Ellis" />
<title>Summarizing Sex in the SRA</title>
<link href="data:text/css;charset=utf-8,pre%20%2Eoperator%2C%0Apre%20%2Eparen%20%7B%0Acolor%3A%20rgb%28104%2C%20118%2C%20135%29%0A%7D%0Apre%20%2Eliteral%20%7B%0Acolor%3A%20%23990073%0A%7D%0Apre%20%2Enumber%20%7B%0Acolor%3A%20%23099%3B%0A%7D%0Apre%20%2Ecomment%20%7B%0Acolor%3A%20%23998%3B%0Afont%2Dstyle%3A%20italic%0A%7D%0Apre%20%2Ekeyword%20%7B%0Acolor%3A%20%23900%3B%0Afont%2Dweight%3A%20bold%0A%7D%0Apre%20%2Eidentifier%20%7B%0Acolor%3A%20rgb%280%2C%200%2C%200%29%3B%0A%7D%0Apre%20%2Estring%20%7B%0Acolor%3A%20%23d14%3B%0A%7D%0A" rel="stylesheet" />
<script src="data:application/x-javascript;base64,dmFyIGhsanM9bmV3IGZ1bmN0aW9uKCl7ZnVuY3Rpb24gbShwKXtyZXR1cm4gcC5yZXBsYWNlKC8mL2dtLCImYW1wOyIpLnJlcGxhY2UoLzwvZ20sIiZsdDsiKX1mdW5jdGlvbiBmKHIscSxwKXtyZXR1cm4gUmVnRXhwKHEsIm0iKyhyLmNJPyJpIjoiIikrKHA/ImciOiIiKSl9ZnVuY3Rpb24gYihyKXtmb3IodmFyIHA9MDtwPHIuY2hpbGROb2Rlcy5sZW5ndGg7cCsrKXt2YXIgcT1yLmNoaWxkTm9kZXNbcF07aWYocS5ub2RlTmFtZT09IkNPREUiKXtyZXR1cm4gcX1pZighKHEubm9kZVR5cGU9PTMmJnEubm9kZVZhbHVlLm1hdGNoKC9ccysvKSkpe2JyZWFrfX19ZnVuY3Rpb24gaCh0LHMpe3ZhciBwPSIiO2Zvcih2YXIgcj0wO3I8dC5jaGlsZE5vZGVzLmxlbmd0aDtyKyspe2lmKHQuY2hpbGROb2Rlc1tyXS5ub2RlVHlwZT09Myl7dmFyIHE9dC5jaGlsZE5vZGVzW3JdLm5vZGVWYWx1ZTtpZihzKXtxPXEucmVwbGFjZSgvXG4vZywiIil9cCs9cX1lbHNle2lmKHQuY2hpbGROb2Rlc1tyXS5ub2RlTmFtZT09IkJSIil7cCs9IlxuIn1lbHNle3ArPWgodC5jaGlsZE5vZGVzW3JdKX19fWlmKC9NU0lFIFs2NzhdLy50ZXN0KG5hdmlnYXRvci51c2VyQWdlbnQpKXtwPXAucmVwbGFjZSgvXHIvZywiXG4iKX1yZXR1cm4gcH1mdW5jdGlvbiBhKHMpe3ZhciByPXMuY2xhc3NOYW1lLnNwbGl0KC9ccysvKTtyPXIuY29uY2F0KHMucGFyZW50Tm9kZS5jbGFzc05hbWUuc3BsaXQoL1xzKy8pKTtmb3IodmFyIHE9MDtxPHIubGVuZ3RoO3ErKyl7dmFyIHA9cltxXS5yZXBsYWNlKC9ebGFuZ3VhZ2UtLywiIik7aWYoZVtwXSl7cmV0dXJuIHB9fX1mdW5jdGlvbiBjKHEpe3ZhciBwPVtdOyhmdW5jdGlvbihzLHQpe2Zvcih2YXIgcj0wO3I8cy5jaGlsZE5vZGVzLmxlbmd0aDtyKyspe2lmKHMuY2hpbGROb2Rlc1tyXS5ub2RlVHlwZT09Myl7dCs9cy5jaGlsZE5vZGVzW3JdLm5vZGVWYWx1ZS5sZW5ndGh9ZWxzZXtpZihzLmNoaWxkTm9kZXNbcl0ubm9kZU5hbWU9PSJCUiIpe3QrPTF9ZWxzZXtpZihzLmNoaWxkTm9kZXNbcl0ubm9kZVR5cGU9PTEpe3AucHVzaCh7ZXZlbnQ6InN0YXJ0IixvZmZzZXQ6dCxub2RlOnMuY2hpbGROb2Rlc1tyXX0pO3Q9YXJndW1lbnRzLmNhbGxlZShzLmNoaWxkTm9kZXNbcl0sdCk7cC5wdXNoKHtldmVudDoic3RvcCIsb2Zmc2V0OnQsbm9kZTpzLmNoaWxkTm9kZXNbcl19KX19fX1yZXR1cm4gdH0pKHEsMCk7cmV0dXJuIHB9ZnVuY3Rpb24gayh5LHcseCl7dmFyIHE9MDt2YXIgej0iIjt2YXIgcz1bXTtmdW5jdGlvbiB1KCl7aWYoeS5sZW5ndGgmJncubGVuZ3RoKXtpZih5WzBdLm9mZnNldCE9d1swXS5vZmZzZXQpe3JldHVybih5WzBdLm9mZnNldDx3WzBdLm9mZnNldCk/eTp3fWVsc2V7cmV0dXJuIHdbMF0uZXZlbnQ9PSJzdGFydCI/eTp3fX1lbHNle3JldHVybiB5Lmxlbmd0aD95Ond9fWZ1bmN0aW9uIHQoRCl7dmFyIEE9IjwiK0Qubm9kZU5hbWUudG9Mb3dlckNhc2UoKTtmb3IodmFyIEI9MDtCPEQuYXR0cmlidXRlcy5sZW5ndGg7QisrKXt2YXIgQz1ELmF0dHJpYnV0ZXNbQl07QSs9IiAiK0Mubm9kZU5hbWUudG9Mb3dlckNhc2UoKTtpZihDLnZhbHVlIT09dW5kZWZpbmVkJiZDLnZhbHVlIT09ZmFsc2UmJkMudmFsdWUhPT1udWxsKXtBKz0nPSInK20oQy52YWx1ZSkrJyInfX1yZXR1cm4gQSsiPiJ9d2hpbGUoeS5sZW5ndGh8fHcubGVuZ3RoKXt2YXIgdj11KCkuc3BsaWNlKDAsMSlbMF07eis9bSh4LnN1YnN0cihxLHYub2Zmc2V0LXEpKTtxPXYub2Zmc2V0O2lmKHYuZXZlbnQ9PSJzdGFydCIpe3orPXQodi5ub2RlKTtzLnB1c2godi5ub2RlKX1lbHNle2lmKHYuZXZlbnQ9PSJzdG9wIil7dmFyIHAscj1zLmxlbmd0aDtkb3tyLS07cD1zW3JdO3orPSgiPC8iK3Aubm9kZU5hbWUudG9Mb3dlckNhc2UoKSsiPiIpfXdoaWxlKHAhPXYubm9kZSk7cy5zcGxpY2UociwxKTt3aGlsZShyPHMubGVuZ3RoKXt6Kz10KHNbcl0pO3IrK319fX1yZXR1cm4geittKHguc3Vic3RyKHEpKX1mdW5jdGlvbiBqKCl7ZnVuY3Rpb24gcSh4LHksdil7aWYoeC5jb21waWxlZCl7cmV0dXJufXZhciB1O3ZhciBzPVtdO2lmKHguayl7eC5sUj1mKHkseC5sfHxobGpzLklSLHRydWUpO2Zvcih2YXIgdyBpbiB4Lmspe2lmKCF4LmsuaGFzT3duUHJvcGVydHkodykpe2NvbnRpbnVlfWlmKHgua1t3XSBpbnN0YW5jZW9mIE9iamVjdCl7dT14Lmtbd119ZWxzZXt1PXguazt3PSJrZXl3b3JkIn1mb3IodmFyIHIgaW4gdSl7aWYoIXUuaGFzT3duUHJvcGVydHkocikpe2NvbnRpbnVlfXgua1tyXT1bdyx1W3JdXTtzLnB1c2gocil9fX1pZighdil7aWYoeC5iV0spe3guYj0iXFxiKCIrcy5qb2luKCJ8IikrIilcXHMifXguYlI9Zih5LHguYj94LmI6IlxcQnxcXGIiKTtpZigheC5lJiYheC5lVyl7eC5lPSJcXEJ8XFxiIn1pZih4LmUpe3guZVI9Zih5LHguZSl9fWlmKHguaSl7eC5pUj1mKHkseC5pKX1pZih4LnI9PT11bmRlZmluZWQpe3gucj0xfWlmKCF4LmMpe3guYz1bXX14LmNvbXBpbGVkPXRydWU7Zm9yKHZhciB0PTA7dDx4LmMubGVuZ3RoO3QrKyl7aWYoeC5jW3RdPT0ic2VsZiIpe3guY1t0XT14fXEoeC5jW3RdLHksZmFsc2UpfWlmKHguc3RhcnRzKXtxKHguc3RhcnRzLHksZmFsc2UpfX1mb3IodmFyIHAgaW4gZSl7aWYoIWUuaGFzT3duUHJvcGVydHkocCkpe2NvbnRpbnVlfXEoZVtwXS5kTSxlW3BdLHRydWUpfX1mdW5jdGlvbiBkKEIsQyl7aWYoIWouY2FsbGVkKXtqKCk7ai5jYWxsZWQ9dHJ1ZX1mdW5jdGlvbiBxKHIsTSl7Zm9yKHZhciBMPTA7TDxNLmMubGVuZ3RoO0wrKyl7aWYoKE0uY1tMXS5iUi5leGVjKHIpfHxbbnVsbF0pWzBdPT1yKXtyZXR1cm4gTS5jW0xdfX19ZnVuY3Rpb24gdihMLHIpe2lmKERbTF0uZSYmRFtMXS5lUi50ZXN0KHIpKXtyZXR1cm4gMX1pZihEW0xdLmVXKXt2YXIgTT12KEwtMSxyKTtyZXR1cm4gTT9NKzE6MH1yZXR1cm4gMH1mdW5jdGlvbiB3KHIsTCl7cmV0dXJuIEwuaSYmTC5pUi50ZXN0KHIpfWZ1bmN0aW9uIEsoTixPKXt2YXIgTT1bXTtmb3IodmFyIEw9MDtMPE4uYy5sZW5ndGg7TCsrKXtNLnB1c2goTi5jW0xdLmIpfXZhciByPUQubGVuZ3RoLTE7ZG97aWYoRFtyXS5lKXtNLnB1c2goRFtyXS5lKX1yLS19d2hpbGUoRFtyKzFdLmVXKTtpZihOLmkpe00ucHVzaChOLmkpfXJldHVybiBmKE8sTS5qb2luKCJ8IiksdHJ1ZSl9ZnVuY3Rpb24gcChNLEwpe3ZhciBOPURbRC5sZW5ndGgtMV07aWYoIU4udCl7Ti50PUsoTixFKX1OLnQubGFzdEluZGV4PUw7dmFyIHI9Ti50LmV4ZWMoTSk7cmV0dXJuIHI/W00uc3Vic3RyKEwsci5pbmRleC1MKSxyWzBdLGZhbHNlXTpbTS5zdWJzdHIoTCksIiIsdHJ1ZV19ZnVuY3Rpb24geihOLHIpe3ZhciBMPUUuY0k/clswXS50b0xvd2VyQ2FzZSgpOnJbMF07dmFyIE09Ti5rW0xdO2lmKE0mJk0gaW5zdGFuY2VvZiBBcnJheSl7cmV0dXJuIE19cmV0dXJuIGZhbHNlfWZ1bmN0aW9uIEYoTCxQKXtMPW0oTCk7aWYoIVAuayl7cmV0dXJuIEx9dmFyIHI9IiI7dmFyIE89MDtQLmxSLmxhc3RJbmRleD0wO3ZhciBNPVAubFIuZXhlYyhMKTt3aGlsZShNKXtyKz1MLnN1YnN0cihPLE0uaW5kZXgtTyk7dmFyIE49eihQLE0pO2lmKE4pe3grPU5bMV07cis9JzxzcGFuIGNsYXNzPSInK05bMF0rJyI+JytNWzBdKyI8L3NwYW4+In1lbHNle3IrPU1bMF19Tz1QLmxSLmxhc3RJbmRleDtNPVAubFIuZXhlYyhMKX1yZXR1cm4gcitMLnN1YnN0cihPLEwubGVuZ3RoLU8pfWZ1bmN0aW9uIEooTCxNKXtpZihNLnNMJiZlW00uc0xdKXt2YXIgcj1kKE0uc0wsTCk7eCs9ci5rZXl3b3JkX2NvdW50O3JldHVybiByLnZhbHVlfWVsc2V7cmV0dXJuIEYoTCxNKX19ZnVuY3Rpb24gSShNLHIpe3ZhciBMPU0uY04/JzxzcGFuIGNsYXNzPSInK00uY04rJyI+JzoiIjtpZihNLnJCKXt5Kz1MO00uYnVmZmVyPSIifWVsc2V7aWYoTS5lQil7eSs9bShyKStMO00uYnVmZmVyPSIifWVsc2V7eSs9TDtNLmJ1ZmZlcj1yfX1ELnB1c2goTSk7QSs9TS5yfWZ1bmN0aW9uIEcoTixNLFEpe3ZhciBSPURbRC5sZW5ndGgtMV07aWYoUSl7eSs9SihSLmJ1ZmZlcitOLFIpO3JldHVybiBmYWxzZX12YXIgUD1xKE0sUik7aWYoUCl7eSs9SihSLmJ1ZmZlcitOLFIpO0koUCxNKTtyZXR1cm4gUC5yQn12YXIgTD12KEQubGVuZ3RoLTEsTSk7aWYoTCl7dmFyIE89Ui5jTj8iPC9zcGFuPiI6IiI7aWYoUi5yRSl7eSs9SihSLmJ1ZmZlcitOLFIpK099ZWxzZXtpZihSLmVFKXt5Kz1KKFIuYnVmZmVyK04sUikrTyttKE0pfWVsc2V7eSs9SihSLmJ1ZmZlcitOK00sUikrT319d2hpbGUoTD4xKXtPPURbRC5sZW5ndGgtMl0uY04/Ijwvc3Bhbj4iOiIiO3krPU87TC0tO0QubGVuZ3RoLS19dmFyIHI9RFtELmxlbmd0aC0xXTtELmxlbmd0aC0tO0RbRC5sZW5ndGgtMV0uYnVmZmVyPSIiO2lmKHIuc3RhcnRzKXtJKHIuc3RhcnRzLCIiKX1yZXR1cm4gUi5yRX1pZih3KE0sUikpe3Rocm93IklsbGVnYWwifX12YXIgRT1lW0JdO3ZhciBEPVtFLmRNXTt2YXIgQT0wO3ZhciB4PTA7dmFyIHk9IiI7dHJ5e3ZhciBzLHU9MDtFLmRNLmJ1ZmZlcj0iIjtkb3tzPXAoQyx1KTt2YXIgdD1HKHNbMF0sc1sxXSxzWzJdKTt1Kz1zWzBdLmxlbmd0aDtpZighdCl7dSs9c1sxXS5sZW5ndGh9fXdoaWxlKCFzWzJdKTtpZihELmxlbmd0aD4xKXt0aHJvdyJJbGxlZ2FsIn1yZXR1cm57cjpBLGtleXdvcmRfY291bnQ6eCx2YWx1ZTp5fX1jYXRjaChIKXtpZihIPT0iSWxsZWdhbCIpe3JldHVybntyOjAsa2V5d29yZF9jb3VudDowLHZhbHVlOm0oQyl9fWVsc2V7dGhyb3cgSH19fWZ1bmN0aW9uIGcodCl7dmFyIHA9e2tleXdvcmRfY291bnQ6MCxyOjAsdmFsdWU6bSh0KX07dmFyIHI9cDtmb3IodmFyIHEgaW4gZSl7aWYoIWUuaGFzT3duUHJvcGVydHkocSkpe2NvbnRpbnVlfXZhciBzPWQocSx0KTtzLmxhbmd1YWdlPXE7aWYocy5rZXl3b3JkX2NvdW50K3Mucj5yLmtleXdvcmRfY291bnQrci5yKXtyPXN9aWYocy5rZXl3b3JkX2NvdW50K3Mucj5wLmtleXdvcmRfY291bnQrcC5yKXtyPXA7cD1zfX1pZihyLmxhbmd1YWdlKXtwLnNlY29uZF9iZXN0PXJ9cmV0dXJuIHB9ZnVuY3Rpb24gaShyLHEscCl7aWYocSl7cj1yLnJlcGxhY2UoL14oKDxbXj5dKz58XHQpKykvZ20sZnVuY3Rpb24odCx3LHYsdSl7cmV0dXJuIHcucmVwbGFjZSgvXHQvZyxxKX0pfWlmKHApe3I9ci5yZXBsYWNlKC9cbi9nLCI8YnI+Iil9cmV0dXJuIHJ9ZnVuY3Rpb24gbih0LHcscil7dmFyIHg9aCh0LHIpO3ZhciB2PWEodCk7dmFyIHkscztpZih2KXt5PWQodix4KX1lbHNle3JldHVybn12YXIgcT1jKHQpO2lmKHEubGVuZ3RoKXtzPWRvY3VtZW50LmNyZWF0ZUVsZW1lbnQoInByZSIpO3MuaW5uZXJIVE1MPXkudmFsdWU7eS52YWx1ZT1rKHEsYyhzKSx4KX15LnZhbHVlPWkoeS52YWx1ZSx3LHIpO3ZhciB1PXQuY2xhc3NOYW1lO2lmKCF1Lm1hdGNoKCIoXFxzfF4pKGxhbmd1YWdlLSk/Iit2KyIoXFxzfCQpIikpe3U9dT8odSsiICIrdik6dn1pZigvTVNJRSBbNjc4XS8udGVzdChuYXZpZ2F0b3IudXNlckFnZW50KSYmdC50YWdOYW1lPT0iQ09ERSImJnQucGFyZW50Tm9kZS50YWdOYW1lPT0iUFJFIil7cz10LnBhcmVudE5vZGU7dmFyIHA9ZG9jdW1lbnQuY3JlYXRlRWxlbWVudCgiZGl2Iik7cC5pbm5lckhUTUw9IjxwcmU+PGNvZGU+Iit5LnZhbHVlKyI8L2NvZGU+PC9wcmU+Ijt0PXAuZmlyc3RDaGlsZC5maXJzdENoaWxkO3AuZmlyc3RDaGlsZC5jTj1zLmNOO3MucGFyZW50Tm9kZS5yZXBsYWNlQ2hpbGQocC5maXJzdENoaWxkLHMpfWVsc2V7dC5pbm5lckhUTUw9eS52YWx1ZX10LmNsYXNzTmFtZT11O3QucmVzdWx0PXtsYW5ndWFnZTp2LGt3Onkua2V5d29yZF9jb3VudCxyZTp5LnJ9O2lmKHkuc2Vjb25kX2Jlc3Qpe3Quc2Vjb25kX2Jlc3Q9e2xhbmd1YWdlOnkuc2Vjb25kX2Jlc3QubGFuZ3VhZ2Usa3c6eS5zZWNvbmRfYmVzdC5rZXl3b3JkX2NvdW50LHJlOnkuc2Vjb25kX2Jlc3Qucn19fWZ1bmN0aW9uIG8oKXtpZihvLmNhbGxlZCl7cmV0dXJufW8uY2FsbGVkPXRydWU7dmFyIHI9ZG9jdW1lbnQuZ2V0RWxlbWVudHNCeVRhZ05hbWUoInByZSIpO2Zvcih2YXIgcD0wO3A8ci5sZW5ndGg7cCsrKXt2YXIgcT1iKHJbcF0pO2lmKHEpe24ocSxobGpzLnRhYlJlcGxhY2UpfX19ZnVuY3Rpb24gbCgpe2lmKHdpbmRvdy5hZGRFdmVudExpc3RlbmVyKXt3aW5kb3cuYWRkRXZlbnRMaXN0ZW5lcigiRE9NQ29udGVudExvYWRlZCIsbyxmYWxzZSk7d2luZG93LmFkZEV2ZW50TGlzdGVuZXIoImxvYWQiLG8sZmFsc2UpfWVsc2V7aWYod2luZG93LmF0dGFjaEV2ZW50KXt3aW5kb3cuYXR0YWNoRXZlbnQoIm9ubG9hZCIsbyl9ZWxzZXt3aW5kb3cub25sb2FkPW99fX12YXIgZT17fTt0aGlzLkxBTkdVQUdFUz1lO3RoaXMuaGlnaGxpZ2h0PWQ7dGhpcy5oaWdobGlnaHRBdXRvPWc7dGhpcy5maXhNYXJrdXA9aTt0aGlzLmhpZ2hsaWdodEJsb2NrPW47dGhpcy5pbml0SGlnaGxpZ2h0aW5nPW87dGhpcy5pbml0SGlnaGxpZ2h0aW5nT25Mb2FkPWw7dGhpcy5JUj0iW2EtekEtWl1bYS16QS1aMC05X10qIjt0aGlzLlVJUj0iW2EtekEtWl9dW2EtekEtWjAtOV9dKiI7dGhpcy5OUj0iXFxiXFxkKyhcXC5cXGQrKT8iO3RoaXMuQ05SPSJcXGIoMFt4WF1bYS1mQS1GMC05XSt8KFxcZCsoXFwuXFxkKik/fFxcLlxcZCspKFtlRV1bLStdP1xcZCspPykiO3RoaXMuQk5SPSJcXGIoMGJbMDFdKykiO3RoaXMuUlNSPSIhfCE9fCE9PXwlfCU9fCZ8JiZ8Jj18XFwqfFxcKj18XFwrfFxcKz18LHxcXC58LXwtPXwvfC89fDp8O3w8fDw8fDw8PXw8PXw9fD09fD09PXw+fD49fD4+fD4+PXw+Pj58Pj4+PXxcXD98XFxbfFxce3xcXCh8XFxefFxcXj18XFx8fFxcfD18XFx8XFx8fH4iO3RoaXMuRVI9Iig/IVtcXHNcXFNdKSI7dGhpcy5CRT17YjoiXFxcXC4iLHI6MH07dGhpcy5BU009e2NOOiJzdHJpbmciLGI6IiciLGU6IiciLGk6IlxcbiIsYzpbdGhpcy5CRV0scjowfTt0aGlzLlFTTT17Y046InN0cmluZyIsYjonIicsZTonIicsaToiXFxuIixjOlt0aGlzLkJFXSxyOjB9O3RoaXMuQ0xDTT17Y046ImNvbW1lbnQiLGI6Ii8vIixlOiIkIn07dGhpcy5DQkxDTE09e2NOOiJjb21tZW50IixiOiIvXFwqIixlOiJcXCovIn07dGhpcy5IQ009e2NOOiJjb21tZW50IixiOiIjIixlOiIkIn07dGhpcy5OTT17Y046Im51bWJlciIsYjp0aGlzLk5SLHI6MH07dGhpcy5DTk09e2NOOiJudW1iZXIiLGI6dGhpcy5DTlIscjowfTt0aGlzLkJOTT17Y046Im51bWJlciIsYjp0aGlzLkJOUixyOjB9O3RoaXMuaW5oZXJpdD1mdW5jdGlvbihyLHMpe3ZhciBwPXt9O2Zvcih2YXIgcSBpbiByKXtwW3FdPXJbcV19aWYocyl7Zm9yKHZhciBxIGluIHMpe3BbcV09c1txXX19cmV0dXJuIHB9fSgpO2hsanMuTEFOR1VBR0VTLmJhc2g9ZnVuY3Rpb24oKXt2YXIgZT17InRydWUiOjEsImZhbHNlIjoxfTt2YXIgYj17Y046InZhcmlhYmxlIixiOiJcXCQoW2EtekEtWjAtOV9dKylcXGIifTt2YXIgYT17Y046InZhcmlhYmxlIixiOiJcXCRcXHsoKFtefV0pfChcXFxcfSkpK1xcfSIsYzpbaGxqcy5DTk1dfTt2YXIgZj17Y046InN0cmluZyIsYjonIicsZTonIicsaToiXFxuIixjOltobGpzLkJFLGIsYV0scjowfTt2YXIgYz17Y046InN0cmluZyIsYjoiJyIsZToiJyIsYzpbe2I6IicnIn1dLHI6MH07dmFyIGQ9e2NOOiJ0ZXN0X2NvbmRpdGlvbiIsYjoiIixlOiIiLGM6W2YsYyxiLGEsaGxqcy5DTk1dLGs6e2xpdGVyYWw6ZX0scjowfTtyZXR1cm57ZE06e2s6e2tleXdvcmQ6eyJpZiI6MSx0aGVuOjEsImVsc2UiOjEsZmk6MSwiZm9yIjoxLCJicmVhayI6MSwiY29udGludWUiOjEsIndoaWxlIjoxLCJpbiI6MSwiZG8iOjEsZG9uZToxLGVjaG86MSxleGl0OjEsInJldHVybiI6MSxzZXQ6MSxkZWNsYXJlOjF9LGxpdGVyYWw6ZX0sYzpbe2NOOiJzaGViYW5nIixiOiIoIyFcXC9iaW5cXC9iYXNoKXwoIyFcXC9iaW5cXC9zaCkiLHI6MTB9LGIsYSxobGpzLkhDTSxobGpzLkNOTSxmLGMsaGxqcy5pbmhlcml0KGQse2I6IlxcWyAiLGU6IiBcXF0iLHI6MH0pLGhsanMuaW5oZXJpdChkLHtiOiJcXFtcXFsgIixlOiIgXFxdXFxdIn0pXX19fSgpO2hsanMuTEFOR1VBR0VTLmNwcD1mdW5jdGlvbigpe3ZhciBhPXtrZXl3b3JkOnsiZmFsc2UiOjEsImludCI6MSwiZmxvYXQiOjEsIndoaWxlIjoxLCJwcml2YXRlIjoxLCJjaGFyIjoxLCJjYXRjaCI6MSwiZXhwb3J0IjoxLHZpcnR1YWw6MSxvcGVyYXRvcjoyLHNpemVvZjoyLGR5bmFtaWNfY2FzdDoyLHR5cGVkZWY6Mixjb25zdF9jYXN0OjIsImNvbnN0IjoxLHN0cnVjdDoxLCJmb3IiOjEsc3RhdGljX2Nhc3Q6Mix1bmlvbjoxLG5hbWVzcGFjZToxLHVuc2lnbmVkOjEsImxvbmciOjEsInRocm93IjoxLCJ2b2xhdGlsZSI6Miwic3RhdGljIjoxLCJwcm90ZWN0ZWQiOjEsYm9vbDoxLHRlbXBsYXRlOjEsbXV0YWJsZToxLCJpZiI6MSwicHVibGljIjoxLGZyaWVuZDoyLCJkbyI6MSwicmV0dXJuIjoxLCJnb3RvIjoxLGF1dG86MSwidm9pZCI6MiwiZW51bSI6MSwiZWxzZSI6MSwiYnJlYWsiOjEsIm5ldyI6MSxleHRlcm46MSx1c2luZzoxLCJ0cnVlIjoxLCJjbGFzcyI6MSxhc206MSwiY2FzZSI6MSx0eXBlaWQ6MSwic2hvcnQiOjEscmVpbnRlcnByZXRfY2FzdDoyLCJkZWZhdWx0IjoxLCJkb3VibGUiOjEscmVnaXN0ZXI6MSxleHBsaWNpdDoxLHNpZ25lZDoxLHR5cGVuYW1lOjEsInRyeSI6MSwidGhpcyI6MSwic3dpdGNoIjoxLCJjb250aW51ZSI6MSx3Y2hhcl90OjEsaW5saW5lOjEsImRlbGV0ZSI6MSxhbGlnbm9mOjEsY2hhcjE2X3Q6MSxjaGFyMzJfdDoxLGNvbnN0ZXhwcjoxLGRlY2x0eXBlOjEsbm9leGNlcHQ6MSxudWxscHRyOjEsc3RhdGljX2Fzc2VydDoxLHRocmVhZF9sb2NhbDoxLHJlc3RyaWN0OjEsX0Jvb2w6MSxjb21wbGV4OjF9LGJ1aWx0X2luOntzdGQ6MSxzdHJpbmc6MSxjaW46MSxjb3V0OjEsY2VycjoxLGNsb2c6MSxzdHJpbmdzdHJlYW06MSxpc3RyaW5nc3RyZWFtOjEsb3N0cmluZ3N0cmVhbToxLGF1dG9fcHRyOjEsZGVxdWU6MSxsaXN0OjEscXVldWU6MSxzdGFjazoxLHZlY3RvcjoxLG1hcDoxLHNldDoxLGJpdHNldDoxLG11bHRpc2V0OjEsbXVsdGltYXA6MSx1bm9yZGVyZWRfc2V0OjEsdW5vcmRlcmVkX21hcDoxLHVub3JkZXJlZF9tdWx0aXNldDoxLHVub3JkZXJlZF9tdWx0aW1hcDoxLGFycmF5OjEsc2hhcmVkX3B0cjoxfX07cmV0dXJue2RNOntrOmEsaToiPC8iLGM6W2hsanMuQ0xDTSxobGpzLkNCTENMTSxobGpzLlFTTSx7Y046InN0cmluZyIsYjoiJ1xcXFw/LiIsZToiJyIsaToiLiJ9LHtjTjoibnVtYmVyIixiOiJcXGIoXFxkKyhcXC5cXGQqKT98XFwuXFxkKykodXxVfGx8THx1bHxVTHxmfEYpIn0saGxqcy5DTk0se2NOOiJwcmVwcm9jZXNzb3IiLGI6IiMiLGU6IiQifSx7Y046InN0bF9jb250YWluZXIiLGI6IlxcYihkZXF1ZXxsaXN0fHF1ZXVlfHN0YWNrfHZlY3RvcnxtYXB8c2V0fGJpdHNldHxtdWx0aXNldHxtdWx0aW1hcHx1bm9yZGVyZWRfbWFwfHVub3JkZXJlZF9zZXR8dW5vcmRlcmVkX211bHRpc2V0fHVub3JkZXJlZF9tdWx0aW1hcHxhcnJheSlcXHMqPCIsZToiPiIsazphLHI6MTAsYzpbInNlbGYiXX1dfX19KCk7aGxqcy5MQU5HVUFHRVMuY3NzPWZ1bmN0aW9uKCl7dmFyIGE9e2NOOiJmdW5jdGlvbiIsYjpobGpzLklSKyJcXCgiLGU6IlxcKSIsYzpbe2VXOnRydWUsZUU6dHJ1ZSxjOltobGpzLk5NLGhsanMuQVNNLGhsanMuUVNNXX1dfTtyZXR1cm57Y0k6dHJ1ZSxkTTp7aToiWz0vfCddIixjOltobGpzLkNCTENMTSx7Y046ImlkIixiOiJcXCNbQS1aYS16MC05Xy1dKyJ9LHtjTjoiY2xhc3MiLGI6IlxcLltBLVphLXowLTlfLV0rIixyOjB9LHtjTjoiYXR0cl9zZWxlY3RvciIsYjoiXFxbIixlOiJcXF0iLGk6IiQifSx7Y046InBzZXVkbyIsYjoiOig6KT9bYS16QS1aMC05XFxfXFwtXFwrXFwoXFwpXFxcIlxcJ10rIn0se2NOOiJhdF9ydWxlIixiOiJAKGZvbnQtZmFjZXxwYWdlKSIsbDoiW2Etei1dKyIsazp7ImZvbnQtZmFjZSI6MSxwYWdlOjF9fSx7Y046ImF0X3J1bGUiLGI6IkAiLGU6Ilt7O10iLGVFOnRydWUsazp7ImltcG9ydCI6MSxwYWdlOjEsbWVkaWE6MSxjaGFyc2V0OjF9LGM6W2EsaGxqcy5BU00saGxqcy5RU00saGxqcy5OTV19LHtjTjoidGFnIixiOmhsanMuSVIscjowfSx7Y046InJ1bGVzIixiOiJ7IixlOiJ9IixpOiJbXlxcc10iLHI6MCxjOltobGpzLkNCTENMTSx7Y046InJ1bGUiLGI6IlteXFxzXSIsckI6dHJ1ZSxlOiI7IixlVzp0cnVlLGM6W3tjTjoiYXR0cmlidXRlIixiOiJbQS1aXFxfXFwuXFwtXSsiLGU6IjoiLGVFOnRydWUsaToiW15cXHNdIixzdGFydHM6e2NOOiJ2YWx1ZSIsZVc6dHJ1ZSxlRTp0cnVlLGM6W2EsaGxqcy5OTSxobGpzLlFTTSxobGpzLkFTTSxobGpzLkNCTENMTSx7Y046ImhleGNvbG9yIixiOiJcXCNbMC05QS1GXSsifSx7Y046ImltcG9ydGFudCIsYjoiIWltcG9ydGFudCJ9XX19XX1dfV19fX0oKTtobGpzLkxBTkdVQUdFUy5pbmk9e2NJOnRydWUsZE06e2k6IlteXFxzXSIsYzpbe2NOOiJjb21tZW50IixiOiI7IixlOiIkIn0se2NOOiJ0aXRsZSIsYjoiXlxcWyIsZToiXFxdIn0se2NOOiJzZXR0aW5nIixiOiJeW2EtejAtOV9cXFtcXF1dK1sgXFx0XSo9WyBcXHRdKiIsZToiJCIsYzpbe2NOOiJ2YWx1ZSIsZVc6dHJ1ZSxrOntvbjoxLG9mZjoxLCJ0cnVlIjoxLCJmYWxzZSI6MSx5ZXM6MSxubzoxfSxjOltobGpzLlFTTSxobGpzLk5NXX1dfV19fTtobGpzLkxBTkdVQUdFUy5wZXJsPWZ1bmN0aW9uKCl7dmFyIGQ9e2dldHB3ZW50OjEsZ2V0c2VydmVudDoxLHF1b3RlbWV0YToxLG1zZ3JjdjoxLHNjYWxhcjoxLGtpbGw6MSxkYm1jbG9zZToxLHVuZGVmOjEsbGM6MSxtYToxLHN5c3dyaXRlOjEsdHI6MSxzZW5kOjEsdW1hc2s6MSxzeXNvcGVuOjEsc2htd3JpdGU6MSx2ZWM6MSxxeDoxLHV0aW1lOjEsbG9jYWw6MSxvY3Q6MSxzZW1jdGw6MSxsb2NhbHRpbWU6MSxyZWFkcGlwZToxLCJkbyI6MSwicmV0dXJuIjoxLGZvcm1hdDoxLHJlYWQ6MSxzcHJpbnRmOjEsZGJtb3BlbjoxLHBvcDoxLGdldHBncnA6MSxub3Q6MSxnZXRwd25hbToxLHJld2luZGRpcjoxLHFxOjEsZmlsZW5vOjEscXc6MSxlbmRwcm90b2VudDoxLHdhaXQ6MSxzZXRob3N0ZW50OjEsYmxlc3M6MSxzOjAsb3BlbmRpcjoxLCJjb250aW51ZSI6MSxlYWNoOjEsc2xlZXA6MSxlbmRncmVudDoxLHNodXRkb3duOjEsZHVtcDoxLGNob21wOjEsY29ubmVjdDoxLGdldHNvY2tuYW1lOjEsZGllOjEsc29ja2V0cGFpcjoxLGNsb3NlOjEsZmxvY2s6MSxleGlzdHM6MSxpbmRleDoxLHNobWdldDoxLHN1YjoxLCJmb3IiOjEsZW5kcHdlbnQ6MSxyZWRvOjEsbHN0YXQ6MSxtc2djdGw6MSxzZXRwZ3JwOjEsYWJzOjEsZXhpdDoxLHNlbGVjdDoxLHByaW50OjEscmVmOjEsZ2V0aG9zdGJ5YWRkcjoxLHVuc2hpZnQ6MSxmY250bDoxLHN5c2NhbGw6MSwiZ290byI6MSxnZXRuZXRieWFkZHI6MSxqb2luOjEsZ210aW1lOjEsc3ltbGluazoxLHNlbWdldDoxLHNwbGljZToxLHg6MCxnZXRwZWVybmFtZToxLHJlY3Y6MSxsb2c6MSxzZXRzb2Nrb3B0OjEsY29zOjEsbGFzdDoxLHJldmVyc2U6MSxnZXRob3N0YnluYW1lOjEsZ2V0Z3JuYW06MSxzdHVkeToxLGZvcm1saW5lOjEsZW5kaG9zdGVudDoxLHRpbWVzOjEsY2hvcDoxLGxlbmd0aDoxLGdldGhvc3RlbnQ6MSxnZXRuZXRlbnQ6MSxwYWNrOjEsZ2V0cHJvdG9lbnQ6MSxnZXRzZXJ2YnluYW1lOjEscmFuZDoxLG1rZGlyOjEscG9zOjEsY2htb2Q6MSx5OjAsc3Vic3RyOjEsZW5kbmV0ZW50OjEscHJpbnRmOjEsbmV4dDoxLG9wZW46MSxtc2dzbmQ6MSxyZWFkZGlyOjEsdXNlOjEsdW5saW5rOjEsZ2V0c29ja29wdDoxLGdldHByaW9yaXR5OjEscmluZGV4OjEsd2FudGFycmF5OjEsaGV4OjEsc3lzdGVtOjEsZ2V0c2VydmJ5cG9ydDoxLGVuZHNlcnZlbnQ6MSwiaW50IjoxLGNocjoxLHVudGllOjEscm1kaXI6MSxwcm90b3R5cGU6MSx0ZWxsOjEsbGlzdGVuOjEsZm9yazoxLHNobXJlYWQ6MSx1Y2ZpcnN0OjEsc2V0cHJvdG9lbnQ6MSwiZWxzZSI6MSxzeXNzZWVrOjEsbGluazoxLGdldGdyZ2lkOjEsc2htY3RsOjEsd2FpdHBpZDoxLHVucGFjazoxLGdldG5ldGJ5bmFtZToxLHJlc2V0OjEsY2hkaXI6MSxncmVwOjEsc3BsaXQ6MSxyZXF1aXJlOjEsY2FsbGVyOjEsbGNmaXJzdDoxLHVudGlsOjEsd2FybjoxLCJ3aGlsZSI6MSx2YWx1ZXM6MSxzaGlmdDoxLHRlbGxkaXI6MSxnZXRwd3VpZDoxLG15OjEsZ2V0cHJvdG9ieW51bWJlcjoxLCJkZWxldGUiOjEsYW5kOjEsc29ydDoxLHVjOjEsZGVmaW5lZDoxLHNyYW5kOjEsYWNjZXB0OjEsInBhY2thZ2UiOjEsc2Vla2RpcjoxLGdldHByb3RvYnluYW1lOjEsc2Vtb3A6MSxvdXI6MSxyZW5hbWU6MSxzZWVrOjEsImlmIjoxLHE6MCxjaHJvb3Q6MSxzeXNyZWFkOjEsc2V0cHdlbnQ6MSxubzoxLGNyeXB0OjEsZ2V0YzoxLGNob3duOjEsc3FydDoxLHdyaXRlOjEsc2V0bmV0ZW50OjEsc2V0cHJpb3JpdHk6MSxmb3JlYWNoOjEsdGllOjEsc2luOjEsbXNnZ2V0OjEsbWFwOjEsc3RhdDoxLGdldGxvZ2luOjEsdW5sZXNzOjEsZWxzaWY6MSx0cnVuY2F0ZToxLGV4ZWM6MSxrZXlzOjEsZ2xvYjoxLHRpZWQ6MSxjbG9zZWRpcjoxLGlvY3RsOjEsc29ja2V0OjEscmVhZGxpbms6MSwiZXZhbCI6MSx4b3I6MSxyZWFkbGluZToxLGJpbm1vZGU6MSxzZXRzZXJ2ZW50OjEsZW9mOjEsb3JkOjEsYmluZDoxLGFsYXJtOjEscGlwZToxLGF0YW4yOjEsZ2V0Z3JlbnQ6MSxleHA6MSx0aW1lOjEscHVzaDoxLHNldGdyZW50OjEsZ3Q6MSxsdDoxLG9yOjEsbmU6MSxtOjB9O3ZhciBmPXtjTjoic3Vic3QiLGI6IlskQF1cXHsiLGU6IlxcfSIsazpkLHI6MTB9O3ZhciBjPXtjTjoidmFyaWFibGUiLGI6IlxcJFxcZCJ9O3ZhciBiPXtjTjoidmFyaWFibGUiLGI6IltcXCRcXCVcXEBcXCpdKFxcXlxcd1xcYnwjXFx3KyhcXDpcXDpcXHcrKSp8W15cXHNcXHd7XXx7XFx3K318XFx3KyhcXDpcXDpcXHcqKSopIn07dmFyIGg9W2hsanMuQkUsZixjLGJdO3ZhciBnPXtiOiItPiIsYzpbe2I6aGxqcy5JUn0se2I6InsiLGU6In0ifV19O3ZhciBlPXtjTjoiY29tbWVudCIsYjoiXihfX0VORF9ffF9fREFUQV9fKSIsZToiXFxuJCIscjo1fTt2YXIgYT1bYyxiLGhsanMuSENNLGUsZyx7Y046InN0cmluZyIsYjoicVtxd3hyXT9cXHMqXFwoIixlOiJcXCkiLGM6aCxyOjV9LHtjTjoic3RyaW5nIixiOiJxW3F3eHJdP1xccypcXFsiLGU6IlxcXSIsYzpoLHI6NX0se2NOOiJzdHJpbmciLGI6InFbcXd4cl0/XFxzKlxceyIsZToiXFx9IixjOmgscjo1fSx7Y046InN0cmluZyIsYjoicVtxd3hyXT9cXHMqXFx8IixlOiJcXHwiLGM6aCxyOjV9LHtjTjoic3RyaW5nIixiOiJxW3F3eHJdP1xccypcXDwiLGU6IlxcPiIsYzpoLHI6NX0se2NOOiJzdHJpbmciLGI6InF3XFxzK3EiLGU6InEiLGM6aCxyOjV9LHtjTjoic3RyaW5nIixiOiInIixlOiInIixjOltobGpzLkJFXSxyOjB9LHtjTjoic3RyaW5nIixiOiciJyxlOiciJyxjOmgscjowfSx7Y046InN0cmluZyIsYjoiYCIsZToiYCIsYzpbaGxqcy5CRV19LHtjTjoic3RyaW5nIixiOiJ7XFx3K30iLHI6MH0se2NOOiJzdHJpbmciLGI6Ii0/XFx3K1xccypcXD1cXD4iLHI6MH0se2NOOiJudW1iZXIiLGI6IihcXGIwWzAtN19dKyl8KFxcYjB4WzAtOWEtZkEtRl9dKyl8KFxcYlsxLTldWzAtOV9dKihcXC5bMC05X10rKT8pfFswX11cXGIiLHI6MH0se2I6IigiK2hsanMuUlNSKyJ8XFxiKHNwbGl0fHJldHVybnxwcmludHxyZXZlcnNlfGdyZXApXFxiKVxccyoiLGs6e3NwbGl0OjEsInJldHVybiI6MSxwcmludDoxLHJldmVyc2U6MSxncmVwOjF9LHI6MCxjOltobGpzLkhDTSxlLHtjTjoicmVnZXhwIixiOiIoc3x0cnx5KS8oXFxcXC58W14vXSkqLyhcXFxcLnxbXi9dKSovW2Etel0qIixyOjEwfSx7Y046InJlZ2V4cCIsYjoiKG18cXIpPy8iLGU6Ii9bYS16XSoiLGM6W2hsanMuQkVdLHI6MH1dfSx7Y046InN1YiIsYjoiXFxic3ViXFxiIixlOiIoXFxzKlxcKC4qP1xcKSk/Wzt7XSIsazp7c3ViOjF9LHI6NX0se2NOOiJvcGVyYXRvciIsYjoiLVxcd1xcYiIscjowfSx7Y046InBvZCIsYjoiXFw9XFx3IixlOiJcXD1jdXQifV07Zi5jPWE7Zy5jWzFdLmM9YTtyZXR1cm57ZE06e2s6ZCxjOmF9fX0oKTtobGpzLkxBTkdVQUdFUy5weXRob249ZnVuY3Rpb24oKXt2YXIgYj1be2NOOiJzdHJpbmciLGI6Iih1fGIpP3I/JycnIixlOiInJyciLHI6MTB9LHtjTjoic3RyaW5nIixiOicodXxiKT9yPyIiIicsZTonIiIiJyxyOjEwfSx7Y046InN0cmluZyIsYjoiKHV8cnx1ciknIixlOiInIixjOltobGpzLkJFXSxyOjEwfSx7Y046InN0cmluZyIsYjonKHV8cnx1cikiJyxlOiciJyxjOltobGpzLkJFXSxyOjEwfSx7Y046InN0cmluZyIsYjoiKGJ8YnIpJyIsZToiJyIsYzpbaGxqcy5CRV19LHtjTjoic3RyaW5nIixiOicoYnxicikiJyxlOiciJyxjOltobGpzLkJFXX1dLmNvbmNhdChbaGxqcy5BU00saGxqcy5RU01dKTt2YXIgZD17Y046InRpdGxlIixiOmhsanMuVUlSfTt2YXIgYz17Y046InBhcmFtcyIsYjoiXFwoIixlOiJcXCkiLGM6Yi5jb25jYXQoW2hsanMuQ05NXSl9O3ZhciBhPXtiV0s6dHJ1ZSxlOiI6IixpOiJbJHtdIixjOltkLGNdLHI6MTB9O3JldHVybntkTTp7azp7a2V5d29yZDp7YW5kOjEsZWxpZjoxLGlzOjEsZ2xvYmFsOjEsYXM6MSwiaW4iOjEsImlmIjoxLGZyb206MSxyYWlzZToxLCJmb3IiOjEsZXhjZXB0OjEsImZpbmFsbHkiOjEscHJpbnQ6MSwiaW1wb3J0IjoxLHBhc3M6MSwicmV0dXJuIjoxLGV4ZWM6MSwiZWxzZSI6MSwiYnJlYWsiOjEsbm90OjEsIndpdGgiOjEsImNsYXNzIjoxLGFzc2VydDoxLHlpZWxkOjEsInRyeSI6MSwid2hpbGUiOjEsImNvbnRpbnVlIjoxLGRlbDoxLG9yOjEsZGVmOjEsbGFtYmRhOjEsbm9ubG9jYWw6MTB9LGJ1aWx0X2luOntOb25lOjEsVHJ1ZToxLEZhbHNlOjEsRWxsaXBzaXM6MSxOb3RJbXBsZW1lbnRlZDoxfX0saToiKDwvfC0+fFxcPykiLGM6Yi5jb25jYXQoW2hsanMuSENNLGhsanMuaW5oZXJpdChhLHtjTjoiZnVuY3Rpb24iLGs6e2RlZjoxfX0pLGhsanMuaW5oZXJpdChhLHtjTjoiY2xhc3MiLGs6eyJjbGFzcyI6MX19KSxobGpzLkNOTSx7Y046ImRlY29yYXRvciIsYjoiQCIsZToiJCJ9XSl9fX0oKTtobGpzLkxBTkdVQUdFUy5yPXtkTTp7YzpbaGxqcy5IQ00se2NOOiJudW1iZXIiLGI6IlxcYjBbeFhdWzAtOWEtZkEtRl0rW0xpXT9cXGIiLGU6aGxqcy5JTU1FRElBVEVfUkUscjowfSx7Y046Im51bWJlciIsYjoiXFxiXFxkKyg/OltlRV1bK1xcLV0/XFxkKik/TFxcYiIsZTpobGpzLklNTUVESUFURV9SRSxyOjB9LHtjTjoibnVtYmVyIixiOiJcXGJcXGQrXFwuKD8hXFxkKSg/OmlcXGIpPyIsZTpobGpzLklNTUVESUFURV9SRSxyOjF9LHtjTjoibnVtYmVyIixiOiJcXGJcXGQrKD86XFwuXFxkKik/KD86W2VFXVsrXFwtXT9cXGQqKT9pP1xcYiIsZTpobGpzLklNTUVESUFURV9SRSxyOjB9LHtjTjoibnVtYmVyIixiOiJcXC5cXGQrKD86W2VFXVsrXFwtXT9cXGQqKT9pP1xcYiIsZTpobGpzLklNTUVESUFURV9SRSxyOjF9LHtjTjoia2V5d29yZCIsYjoiKD86dHJ5Q2F0Y2h8bGlicmFyeXxzZXRHZW5lcmljfHNldEdyb3VwR2VuZXJpYylcXGIiLGU6aGxqcy5JTU1FRElBVEVfUkUscjoxMH0se2NOOiJrZXl3b3JkIixiOiJcXC5cXC5cXC4iLGU6aGxqcy5JTU1FRElBVEVfUkUscjoxMH0se2NOOiJrZXl3b3JkIixiOiJcXC5cXC5cXGQrKD8hW1xcdy5dKSIsZTpobGpzLklNTUVESUFURV9SRSxyOjEwfSx7Y046ImtleXdvcmQiLGI6IlxcYig/OmZ1bmN0aW9uKSIsZTpobGpzLklNTUVESUFURV9SRSxyOjJ9LHtjTjoia2V5d29yZCIsYjoiKD86aWZ8aW58YnJlYWt8bmV4dHxyZXBlYXR8ZWxzZXxmb3J8cmV0dXJufHN3aXRjaHx3aGlsZXx0cnl8c3RvcHx3YXJuaW5nfHJlcXVpcmV8YXR0YWNofGRldGFjaHxzb3VyY2V8c2V0TWV0aG9kfHNldENsYXNzKVxcYiIsZTpobGpzLklNTUVESUFURV9SRSxyOjF9LHtjTjoibGl0ZXJhbCIsYjoiKD86TkF8TkFfaW50ZWdlcl98TkFfcmVhbF98TkFfY2hhcmFjdGVyX3xOQV9jb21wbGV4XylcXGIiLGU6aGxqcy5JTU1FRElBVEVfUkUscjoxMH0se2NOOiJsaXRlcmFsIixiOiIoPzpOVUxMfFRSVUV8RkFMU0V8VHxGfEluZnxOYU4pXFxiIixlOmhsanMuSU1NRURJQVRFX1JFLHI6MX0se2NOOiJpZGVudGlmaWVyIixiOiJbYS16QS1aLl1bYS16QS1aMC05Ll9dKlxcYiIsZTpobGpzLklNTUVESUFURV9SRSxyOjB9LHtjTjoib3BlcmF0b3IiLGI6IjxcXC0oPyFcXHMqXFxkKSIsZTpobGpzLklNTUVESUFURV9SRSxyOjJ9LHtjTjoib3BlcmF0b3IiLGI6IlxcLT58PFxcLSIsZTpobGpzLklNTUVESUFURV9SRSxyOjF9LHtjTjoib3BlcmF0b3IiLGI6IiUlfH4iLGU6aGxqcy5JTU1FRElBVEVfUkV9LHtjTjoib3BlcmF0b3IiLGI6Ij49fDw9fD09fCE9fFxcfFxcfHwmJnw9fFxcK3xcXC18XFwqfC98XFxefD58PHwhfCZ8XFx8fFxcJHw6IixlOmhsanMuSU1NRURJQVRFX1JFLHI6MH0se2NOOiJvcGVyYXRvciIsYjoiJSIsZToiJSIsaToiXFxuIixyOjF9LHtjTjoiaWRlbnRpZmllciIsYjoiYCIsZToiYCIscjowfSx7Y046InN0cmluZyIsYjonIicsZTonIicsYzpbaGxqcy5CRV0scjowfSx7Y046InN0cmluZyIsYjoiJyIsZToiJyIsYzpbaGxqcy5CRV0scjowfSx7Y046InBhcmVuIixiOiJbWyh7XFxdKX1dIixlOmhsanMuSU1NRURJQVRFX1JFLHI6MH1dfX07aGxqcy5MQU5HVUFHRVMucnVieT1mdW5jdGlvbigpe3ZhciBhPSJbYS16QS1aX11bYS16QS1aMC05X10qKFxcIXxcXD8pPyI7dmFyIGo9IlthLXpBLVpfXVxcdypbIT89XT98Wy0rfl1cXEB8PDx8Pj58PX58PT09P3w8PT58Wzw+XT0/fFxcKlxcKnxbLS8rJV4mKn5gfF18XFxbXFxdPT8iO3ZhciBmPXtrZXl3b3JkOnthbmQ6MSwiZmFsc2UiOjEsdGhlbjoxLGRlZmluZWQ6MSxtb2R1bGU6MSwiaW4iOjEsInJldHVybiI6MSxyZWRvOjEsImlmIjoxLEJFR0lOOjEscmV0cnk6MSxlbmQ6MSwiZm9yIjoxLCJ0cnVlIjoxLHNlbGY6MSx3aGVuOjEsbmV4dDoxLHVudGlsOjEsImRvIjoxLGJlZ2luOjEsdW5sZXNzOjEsRU5EOjEscmVzY3VlOjEsbmlsOjEsImVsc2UiOjEsImJyZWFrIjoxLHVuZGVmOjEsbm90OjEsInN1cGVyIjoxLCJjbGFzcyI6MSwiY2FzZSI6MSxyZXF1aXJlOjEseWllbGQ6MSxhbGlhczoxLCJ3aGlsZSI6MSxlbnN1cmU6MSxlbHNpZjoxLG9yOjEsZGVmOjF9LGtleW1ldGhvZHM6e19faWRfXzoxLF9fc2VuZF9fOjEsYWJvcnQ6MSxhYnM6MSwiYWxsPyI6MSxhbGxvY2F0ZToxLGFuY2VzdG9yczoxLCJhbnk/IjoxLGFyaXR5OjEsYXNzb2M6MSxhdDoxLGF0X2V4aXQ6MSxhdXRvbG9hZDoxLCJhdXRvbG9hZD8iOjEsImJldHdlZW4/IjoxLGJpbmRpbmc6MSxiaW5tb2RlOjEsImJsb2NrX2dpdmVuPyI6MSxjYWxsOjEsY2FsbGNjOjEsY2FsbGVyOjEsY2FwaXRhbGl6ZToxLCJjYXBpdGFsaXplISI6MSxjYXNlY21wOjEsImNhdGNoIjoxLGNlaWw6MSxjZW50ZXI6MSxjaG9tcDoxLCJjaG9tcCEiOjEsY2hvcDoxLCJjaG9wISI6MSxjaHI6MSwiY2xhc3MiOjEsY2xhc3NfZXZhbDoxLCJjbGFzc192YXJpYWJsZV9kZWZpbmVkPyI6MSxjbGFzc192YXJpYWJsZXM6MSxjbGVhcjoxLGNsb25lOjEsY2xvc2U6MSxjbG9zZV9yZWFkOjEsY2xvc2Vfd3JpdGU6MSwiY2xvc2VkPyI6MSxjb2VyY2U6MSxjb2xsZWN0OjEsImNvbGxlY3QhIjoxLGNvbXBhY3Q6MSwiY29tcGFjdCEiOjEsY29uY2F0OjEsImNvbnN0X2RlZmluZWQ/IjoxLGNvbnN0X2dldDoxLGNvbnN0X21pc3Npbmc6MSxjb25zdF9zZXQ6MSxjb25zdGFudHM6MSxjb3VudDoxLGNyeXB0OjEsImRlZmF1bHQiOjEsZGVmYXVsdF9wcm9jOjEsImRlbGV0ZSI6MSwiZGVsZXRlISI6MSxkZWxldGVfYXQ6MSxkZWxldGVfaWY6MSxkZXRlY3Q6MSxkaXNwbGF5OjEsZGl2OjEsZGl2bW9kOjEsZG93bmNhc2U6MSwiZG93bmNhc2UhIjoxLGRvd250bzoxLGR1bXA6MSxkdXA6MSxlYWNoOjEsZWFjaF9ieXRlOjEsZWFjaF9pbmRleDoxLGVhY2hfa2V5OjEsZWFjaF9saW5lOjEsZWFjaF9wYWlyOjEsZWFjaF92YWx1ZToxLGVhY2hfd2l0aF9pbmRleDoxLCJlbXB0eT8iOjEsZW50cmllczoxLGVvZjoxLCJlb2Y/IjoxLCJlcWw/IjoxLCJlcXVhbD8iOjEsImV2YWwiOjEsZXhlYzoxLGV4aXQ6MSwiZXhpdCEiOjEsZXh0ZW5kOjEsZmFpbDoxLGZjbnRsOjEsZmV0Y2g6MSxmaWxlbm86MSxmaWxsOjEsZmluZDoxLGZpbmRfYWxsOjEsZmlyc3Q6MSxmbGF0dGVuOjEsImZsYXR0ZW4hIjoxLGZsb29yOjEsZmx1c2g6MSxmb3JfZmQ6MSxmb3JlYWNoOjEsZm9yazoxLGZvcm1hdDoxLGZyZWV6ZToxLCJmcm96ZW4/IjoxLGZzeW5jOjEsZ2V0YzoxLGdldHM6MSxnbG9iYWxfdmFyaWFibGVzOjEsZ3JlcDoxLGdzdWI6MSwiZ3N1YiEiOjEsImhhc19rZXk/IjoxLCJoYXNfdmFsdWU/IjoxLGhhc2g6MSxoZXg6MSxpZDoxLGluY2x1ZGU6MSwiaW5jbHVkZT8iOjEsaW5jbHVkZWRfbW9kdWxlczoxLGluZGV4OjEsaW5kZXhlczoxLGluZGljZXM6MSxpbmR1Y2VkX2Zyb206MSxpbmplY3Q6MSxpbnNlcnQ6MSxpbnNwZWN0OjEsaW5zdGFuY2VfZXZhbDoxLGluc3RhbmNlX21ldGhvZDoxLGluc3RhbmNlX21ldGhvZHM6MSwiaW5zdGFuY2Vfb2Y/IjoxLCJpbnN0YW5jZV92YXJpYWJsZV9kZWZpbmVkPyI6MSxpbnN0YW5jZV92YXJpYWJsZV9nZXQ6MSxpbnN0YW5jZV92YXJpYWJsZV9zZXQ6MSxpbnN0YW5jZV92YXJpYWJsZXM6MSwiaW50ZWdlcj8iOjEsaW50ZXJuOjEsaW52ZXJ0OjEsaW9jdGw6MSwiaXNfYT8iOjEsaXNhdHR5OjEsIml0ZXJhdG9yPyI6MSxqb2luOjEsImtleT8iOjEsa2V5czoxLCJraW5kX29mPyI6MSxsYW1iZGE6MSxsYXN0OjEsbGVuZ3RoOjEsbGluZW5vOjEsbGp1c3Q6MSxsb2FkOjEsbG9jYWxfdmFyaWFibGVzOjEsbG9vcDoxLGxzdHJpcDoxLCJsc3RyaXAhIjoxLG1hcDoxLCJtYXAhIjoxLG1hdGNoOjEsbWF4OjEsIm1lbWJlcj8iOjEsbWVyZ2U6MSwibWVyZ2UhIjoxLG1ldGhvZDoxLCJtZXRob2RfZGVmaW5lZD8iOjEsbWV0aG9kX21pc3Npbmc6MSxtZXRob2RzOjEsbWluOjEsbW9kdWxlX2V2YWw6MSxtb2R1bG86MSxuYW1lOjEsbmVzdGluZzoxLCJuZXciOjEsbmV4dDoxLCJuZXh0ISI6MSwibmlsPyI6MSxuaXRlbXM6MSwibm9uemVybz8iOjEsb2JqZWN0X2lkOjEsb2N0OjEsb3BlbjoxLHBhY2s6MSxwYXJ0aXRpb246MSxwaWQ6MSxwaXBlOjEscG9wOjEscG9wZW46MSxwb3M6MSxwcmVjOjEscHJlY19mOjEscHJlY19pOjEscHJpbnQ6MSxwcmludGY6MSxwcml2YXRlX2NsYXNzX21ldGhvZDoxLHByaXZhdGVfaW5zdGFuY2VfbWV0aG9kczoxLCJwcml2YXRlX21ldGhvZF9kZWZpbmVkPyI6MSxwcml2YXRlX21ldGhvZHM6MSxwcm9jOjEscHJvdGVjdGVkX2luc3RhbmNlX21ldGhvZHM6MSwicHJvdGVjdGVkX21ldGhvZF9kZWZpbmVkPyI6MSxwcm90ZWN0ZWRfbWV0aG9kczoxLHB1YmxpY19jbGFzc19tZXRob2Q6MSxwdWJsaWNfaW5zdGFuY2VfbWV0aG9kczoxLCJwdWJsaWNfbWV0aG9kX2RlZmluZWQ/IjoxLHB1YmxpY19tZXRob2RzOjEscHVzaDoxLHB1dGM6MSxwdXRzOjEscXVvOjEscmFpc2U6MSxyYW5kOjEscmFzc29jOjEscmVhZDoxLHJlYWRfbm9uYmxvY2s6MSxyZWFkY2hhcjoxLHJlYWRsaW5lOjEscmVhZGxpbmVzOjEscmVhZHBhcnRpYWw6MSxyZWhhc2g6MSxyZWplY3Q6MSwicmVqZWN0ISI6MSxyZW1haW5kZXI6MSxyZW9wZW46MSxyZXBsYWNlOjEscmVxdWlyZToxLCJyZXNwb25kX3RvPyI6MSxyZXZlcnNlOjEsInJldmVyc2UhIjoxLHJldmVyc2VfZWFjaDoxLHJld2luZDoxLHJpbmRleDoxLHJqdXN0OjEscm91bmQ6MSxyc3RyaXA6MSwicnN0cmlwISI6MSxzY2FuOjEsc2VlazoxLHNlbGVjdDoxLHNlbmQ6MSxzZXRfdHJhY2VfZnVuYzoxLHNoaWZ0OjEsc2luZ2xldG9uX21ldGhvZF9hZGRlZDoxLHNpbmdsZXRvbl9tZXRob2RzOjEsc2l6ZToxLHNsZWVwOjEsc2xpY2U6MSwic2xpY2UhIjoxLHNvcnQ6MSwic29ydCEiOjEsc29ydF9ieToxLHNwbGl0OjEsc3ByaW50ZjoxLHNxdWVlemU6MSwic3F1ZWV6ZSEiOjEsc3JhbmQ6MSxzdGF0OjEsc3RlcDoxLHN0b3JlOjEsc3RyaXA6MSwic3RyaXAhIjoxLHN1YjoxLCJzdWIhIjoxLHN1Y2M6MSwic3VjYyEiOjEsc3VtOjEsc3VwZXJjbGFzczoxLHN3YXBjYXNlOjEsInN3YXBjYXNlISI6MSxzeW5jOjEsc3lzY2FsbDoxLHN5c29wZW46MSxzeXNyZWFkOjEsc3lzc2VlazoxLHN5c3RlbToxLHN5c3dyaXRlOjEsdGFpbnQ6MSwidGFpbnRlZD8iOjEsdGVsbDoxLHRlc3Q6MSwidGhyb3ciOjEsdGltZXM6MSx0b19hOjEsdG9fYXJ5OjEsdG9fZjoxLHRvX2hhc2g6MSx0b19pOjEsdG9faW50OjEsdG9faW86MSx0b19wcm9jOjEsdG9fczoxLHRvX3N0cjoxLHRvX3N5bToxLHRyOjEsInRyISI6MSx0cl9zOjEsInRyX3MhIjoxLHRyYWNlX3ZhcjoxLHRyYW5zcG9zZToxLHRyYXA6MSx0cnVuY2F0ZToxLCJ0dHk/IjoxLHR5cGU6MSx1bmdldGM6MSx1bmlxOjEsInVuaXEhIjoxLHVucGFjazoxLHVuc2hpZnQ6MSx1bnRhaW50OjEsdW50cmFjZV92YXI6MSx1cGNhc2U6MSwidXBjYXNlISI6MSx1cGRhdGU6MSx1cHRvOjEsInZhbHVlPyI6MSx2YWx1ZXM6MSx2YWx1ZXNfYXQ6MSx3YXJuOjEsd3JpdGU6MSx3cml0ZV9ub25ibG9jazoxLCJ6ZXJvPyI6MSx6aXA6MX19O3ZhciBjPXtjTjoieWFyZG9jdGFnIixiOiJAW0EtWmEtel0rIn07dmFyIGs9W3tjTjoiY29tbWVudCIsYjoiIyIsZToiJCIsYzpbY119LHtjTjoiY29tbWVudCIsYjoiXlxcPWJlZ2luIixlOiJeXFw9ZW5kIixjOltjXSxyOjEwfSx7Y046ImNvbW1lbnQiLGI6Il5fX0VORF9fIixlOiJcXG4kIn1dO3ZhciBkPXtjTjoic3Vic3QiLGI6IiNcXHsiLGU6In0iLGw6YSxrOmZ9O3ZhciBpPVtobGpzLkJFLGRdO3ZhciBiPVt7Y046InN0cmluZyIsYjoiJyIsZToiJyIsYzppLHI6MH0se2NOOiJzdHJpbmciLGI6JyInLGU6JyInLGM6aSxyOjB9LHtjTjoic3RyaW5nIixiOiIlW3F3XT9cXCgiLGU6IlxcKSIsYzppLHI6MTB9LHtjTjoic3RyaW5nIixiOiIlW3F3XT9cXFsiLGU6IlxcXSIsYzppLHI6MTB9LHtjTjoic3RyaW5nIixiOiIlW3F3XT97IixlOiJ9IixjOmkscjoxMH0se2NOOiJzdHJpbmciLGI6IiVbcXddPzwiLGU6Ij4iLGM6aSxyOjEwfSx7Y046InN0cmluZyIsYjoiJVtxd10/LyIsZToiLyIsYzppLHI6MTB9LHtjTjoic3RyaW5nIixiOiIlW3F3XT8lIixlOiIlIixjOmkscjoxMH0se2NOOiJzdHJpbmciLGI6IiVbcXddPy0iLGU6Ii0iLGM6aSxyOjEwfSx7Y046InN0cmluZyIsYjoiJVtxd10/XFx8IixlOiJcXHwiLGM6aSxyOjEwfV07dmFyIGg9e2NOOiJmdW5jdGlvbiIsYjoiXFxiZGVmXFxzKyIsZToiIHwkfDsiLGw6YSxrOmYsYzpbe2NOOiJ0aXRsZSIsYjpqLGw6YSxrOmZ9LHtjTjoicGFyYW1zIixiOiJcXCgiLGU6IlxcKSIsbDphLGs6Zn1dLmNvbmNhdChrKX07dmFyIGc9e2NOOiJpZGVudGlmaWVyIixiOmEsbDphLGs6ZixyOjB9O3ZhciBlPWsuY29uY2F0KGIuY29uY2F0KFt7Y046ImNsYXNzIixiOiJcXGIoY2xhc3N8bW9kdWxlKVxcYiIsZToiJHw7IixrOnsiY2xhc3MiOjEsbW9kdWxlOjF9LGM6W3tjTjoidGl0bGUiLGI6IltBLVphLXpfXVxcdyooOjpcXHcrKSooXFw/fFxcISk/IixyOjB9LHtjTjoiaW5oZXJpdGFuY2UiLGI6IjxcXHMqIixjOlt7Y046InBhcmVudCIsYjoiKCIraGxqcy5JUisiOjopPyIraGxqcy5JUn1dfV0uY29uY2F0KGspfSxoLHtjTjoiY29uc3RhbnQiLGI6Iig6Oik/KFtBLVpdXFx3Kig6Oik/KSsiLHI6MH0se2NOOiJzeW1ib2wiLGI6IjoiLGM6Yi5jb25jYXQoW2ddKSxyOjB9LHtjTjoibnVtYmVyIixiOiIoXFxiMFswLTdfXSspfChcXGIweFswLTlhLWZBLUZfXSspfChcXGJbMS05XVswLTlfXSooXFwuWzAtOV9dKyk/KXxbMF9dXFxiIixyOjB9LHtjTjoibnVtYmVyIixiOiJcXD9cXHcifSx7Y046InZhcmlhYmxlIixiOiIoXFwkXFxXKXwoKFxcJHxcXEBcXEA/KShcXHcrKSkifSxnLHtiOiIoIitobGpzLlJTUisiKVxccyoiLGM6ay5jb25jYXQoW3tjTjoicmVnZXhwIixiOiIvIixlOiIvW2Etel0qIixpOiJcXG4iLGM6W2hsanMuQkVdfV0pLHI6MH1dKSk7ZC5jPWU7aC5jWzFdLmM9ZTtyZXR1cm57ZE06e2w6YSxrOmYsYzplfX19KCk7aGxqcy5MQU5HVUFHRVMuc2NhbGE9ZnVuY3Rpb24oKXt2YXIgYj17Y046ImFubm90YXRpb24iLGI6IkBbQS1aYS16XSsifTt2YXIgYT17Y046InN0cmluZyIsYjondT9yPyIiIicsZTonIiIiJyxyOjEwfTtyZXR1cm57ZE06e2s6e3R5cGU6MSx5aWVsZDoxLGxhenk6MSxvdmVycmlkZToxLGRlZjoxLCJ3aXRoIjoxLHZhbDoxLCJ2YXIiOjEsImZhbHNlIjoxLCJ0cnVlIjoxLHNlYWxlZDoxLCJhYnN0cmFjdCI6MSwicHJpdmF0ZSI6MSx0cmFpdDoxLG9iamVjdDoxLCJudWxsIjoxLCJpZiI6MSwiZm9yIjoxLCJ3aGlsZSI6MSwidGhyb3ciOjEsImZpbmFsbHkiOjEsInByb3RlY3RlZCI6MSwiZXh0ZW5kcyI6MSwiaW1wb3J0IjoxLCJmaW5hbCI6MSwicmV0dXJuIjoxLCJlbHNlIjoxLCJicmVhayI6MSwibmV3IjoxLCJjYXRjaCI6MSwic3VwZXIiOjEsImNsYXNzIjoxLCJjYXNlIjoxLCJwYWNrYWdlIjoxLCJkZWZhdWx0IjoxLCJ0cnkiOjEsInRoaXMiOjEsbWF0Y2g6MSwiY29udGludWUiOjEsInRocm93cyI6MX0sYzpbe2NOOiJqYXZhZG9jIixiOiIvXFwqXFwqIixlOiJcXCovIixjOlt7Y046ImphdmFkb2N0YWciLGI6IkBbQS1aYS16XSsifV0scjoxMH0saGxqcy5DTENNLGhsanMuQ0JMQ0xNLGhsanMuQVNNLGhsanMuUVNNLGEse2NOOiJjbGFzcyIsYjoiKChjYXNlICk/Y2xhc3MgfG9iamVjdCB8dHJhaXQgKSIsZToiKHt8JCkiLGk6IjoiLGs6eyJjYXNlIjoxLCJjbGFzcyI6MSx0cmFpdDoxLG9iamVjdDoxfSxjOlt7YldLOnRydWUsazp7ImV4dGVuZHMiOjEsIndpdGgiOjF9LHI6MTB9LHtjTjoidGl0bGUiLGI6aGxqcy5VSVJ9LHtjTjoicGFyYW1zIixiOiJcXCgiLGU6IlxcKSIsYzpbaGxqcy5BU00saGxqcy5RU00sYSxiXX1dfSxobGpzLkNOTSxiXX19fSgpO2hsanMuTEFOR1VBR0VTLnNxbD17Y0k6dHJ1ZSxkTTp7aToiW15cXHNdIixjOlt7Y046Im9wZXJhdG9yIixiOiIoYmVnaW58c3RhcnR8Y29tbWl0fHJvbGxiYWNrfHNhdmVwb2ludHxsb2NrfGFsdGVyfGNyZWF0ZXxkcm9wfHJlbmFtZXxjYWxsfGRlbGV0ZXxkb3xoYW5kbGVyfGluc2VydHxsb2FkfHJlcGxhY2V8c2VsZWN0fHRydW5jYXRlfHVwZGF0ZXxzZXR8c2hvd3xwcmFnbWF8Z3JhbnQpXFxiIixlOiI7fCIraGxqcy5FUixrOntrZXl3b3JkOnthbGw6MSxwYXJ0aWFsOjEsZ2xvYmFsOjEsbW9udGg6MSxjdXJyZW50X3RpbWVzdGFtcDoxLHVzaW5nOjEsZ286MSxyZXZva2U6MSxzbWFsbGludDoxLGluZGljYXRvcjoxLCJlbmQtZXhlYyI6MSxkaXNjb25uZWN0OjEsem9uZToxLCJ3aXRoIjoxLGNoYXJhY3RlcjoxLGFzc2VydGlvbjoxLHRvOjEsYWRkOjEsY3VycmVudF91c2VyOjEsdXNhZ2U6MSxpbnB1dDoxLGxvY2FsOjEsYWx0ZXI6MSxtYXRjaDoxLGNvbGxhdGU6MSxyZWFsOjEsdGhlbjoxLHJvbGxiYWNrOjEsZ2V0OjEscmVhZDoxLHRpbWVzdGFtcDoxLHNlc3Npb25fdXNlcjoxLG5vdDoxLGludGVnZXI6MSxiaXQ6MSx1bmlxdWU6MSxkYXk6MSxtaW51dGU6MSxkZXNjOjEsaW5zZXJ0OjEsZXhlY3V0ZToxLGxpa2U6MSxpbGlrZToyLGxldmVsOjEsZGVjaW1hbDoxLGRyb3A6MSwiY29udGludWUiOjEsaXNvbGF0aW9uOjEsZm91bmQ6MSx3aGVyZToxLGNvbnN0cmFpbnRzOjEsZG9tYWluOjEscmlnaHQ6MSxuYXRpb25hbDoxLHNvbWU6MSxtb2R1bGU6MSx0cmFuc2FjdGlvbjoxLHJlbGF0aXZlOjEsc2Vjb25kOjEsY29ubmVjdDoxLGVzY2FwZToxLGNsb3NlOjEsc3lzdGVtX3VzZXI6MSwiZm9yIjoxLGRlZmVycmVkOjEsc2VjdGlvbjoxLGNhc3Q6MSxjdXJyZW50OjEsc3Fsc3RhdGU6MSxhbGxvY2F0ZToxLGludGVyc2VjdDoxLGRlYWxsb2NhdGU6MSxudW1lcmljOjEsInB1YmxpYyI6MSxwcmVzZXJ2ZToxLGZ1bGw6MSwiZ290byI6MSxpbml0aWFsbHk6MSxhc2M6MSxubzoxLGtleToxLG91dHB1dDoxLGNvbGxhdGlvbjoxLGdyb3VwOjEsYnk6MSx1bmlvbjoxLHNlc3Npb246MSxib3RoOjEsbGFzdDoxLGxhbmd1YWdlOjEsY29uc3RyYWludDoxLGNvbHVtbjoxLG9mOjEsc3BhY2U6MSxmb3JlaWduOjEsZGVmZXJyYWJsZToxLHByaW9yOjEsY29ubmVjdGlvbjoxLHVua25vd246MSxhY3Rpb246MSxjb21taXQ6MSx2aWV3OjEsb3I6MSxmaXJzdDoxLGludG86MSwiZmxvYXQiOjEseWVhcjoxLHByaW1hcnk6MSxjYXNjYWRlZDoxLGV4Y2VwdDoxLHJlc3RyaWN0OjEsc2V0OjEscmVmZXJlbmNlczoxLG5hbWVzOjEsdGFibGU6MSxvdXRlcjoxLG9wZW46MSxzZWxlY3Q6MSxzaXplOjEsYXJlOjEscm93czoxLGZyb206MSxwcmVwYXJlOjEsZGlzdGluY3Q6MSxsZWFkaW5nOjEsY3JlYXRlOjEsb25seToxLG5leHQ6MSxpbm5lcjoxLGF1dGhvcml6YXRpb246MSxzY2hlbWE6MSxjb3JyZXNwb25kaW5nOjEsb3B0aW9uOjEsZGVjbGFyZToxLHByZWNpc2lvbjoxLGltbWVkaWF0ZToxLCJlbHNlIjoxLHRpbWV6b25lX21pbnV0ZToxLGV4dGVybmFsOjEsdmFyeWluZzoxLHRyYW5zbGF0aW9uOjEsInRydWUiOjEsImNhc2UiOjEsZXhjZXB0aW9uOjEsam9pbjoxLGhvdXI6MSwiZGVmYXVsdCI6MSwiZG91YmxlIjoxLHNjcm9sbDoxLHZhbHVlOjEsY3Vyc29yOjEsZGVzY3JpcHRvcjoxLHZhbHVlczoxLGRlYzoxLGZldGNoOjEscHJvY2VkdXJlOjEsImRlbGV0ZSI6MSxhbmQ6MSwiZmFsc2UiOjEsImludCI6MSxpczoxLGRlc2NyaWJlOjEsImNoYXIiOjEsYXM6MSxhdDoxLCJpbiI6MSx2YXJjaGFyOjEsIm51bGwiOjEsdHJhaWxpbmc6MSxhbnk6MSxhYnNvbHV0ZToxLGN1cnJlbnRfdGltZToxLGVuZDoxLGdyYW50OjEscHJpdmlsZWdlczoxLHdoZW46MSxjcm9zczoxLGNoZWNrOjEsd3JpdGU6MSxjdXJyZW50X2RhdGU6MSxwYWQ6MSxiZWdpbjoxLHRlbXBvcmFyeToxLGV4ZWM6MSx0aW1lOjEsdXBkYXRlOjEsY2F0YWxvZzoxLHVzZXI6MSxzcWw6MSxkYXRlOjEsb246MSxpZGVudGl0eToxLHRpbWV6b25lX2hvdXI6MSxuYXR1cmFsOjEsd2hlbmV2ZXI6MSxpbnRlcnZhbDoxLHdvcms6MSxvcmRlcjoxLGNhc2NhZGU6MSxkaWFnbm9zdGljczoxLG5jaGFyOjEsaGF2aW5nOjEsbGVmdDoxLGNhbGw6MSwiZG8iOjEsaGFuZGxlcjoxLGxvYWQ6MSxyZXBsYWNlOjEsdHJ1bmNhdGU6MSxzdGFydDoxLGxvY2s6MSxzaG93OjEscHJhZ21hOjF9LGFnZ3JlZ2F0ZTp7Y291bnQ6MSxzdW06MSxtaW46MSxtYXg6MSxhdmc6MX19LGM6W3tjTjoic3RyaW5nIixiOiInIixlOiInIixjOltobGpzLkJFLHtiOiInJyJ9XSxyOjB9LHtjTjoic3RyaW5nIixiOiciJyxlOiciJyxjOltobGpzLkJFLHtiOiciIid9XSxyOjB9LHtjTjoic3RyaW5nIixiOiJgIixlOiJgIixjOltobGpzLkJFXX0saGxqcy5DTk1dfSxobGpzLkNCTENMTSx7Y046ImNvbW1lbnQiLGI6Ii0tIixlOiIkIn1dfX07aGxqcy5MQU5HVUFHRVMuc3Rhbj17ZE06e2M6W2hsanMuSENNLGhsanMuQ0xDTSxobGpzLlFTTSxobGpzLkNOTSx7Y046Im9wZXJhdG9yIixiOiIoPzo8LXx+fFxcfFxcfHwmJnw9PXwhPXw8PT98Pj0/fFxcK3wtfFxcLj8vfFxcXFx8XFxefFxcXnwhfCd8JXw6fCx8O3w9KVxcYiIsZTpobGpzLklNTUVESUFURV9SRSxyOjEwfSx7Y046InBhcmVuIixiOiJbWyh7XFxdKX1dIixlOmhsanMuSU1NRURJQVRFX1JFLHI6MH0se2NOOiJmdW5jdGlvbiIsYjoiKD86UGhpfFBoaV9hcHByb3h8YWJzfGFjb3N8YWNvc2h8YXBwZW5kX2NvbHxhcHBlbmRfcm93fGFzaW58YXNpbmh8YXRhbnxhdGFuMnxhdGFuaHxiZXJub3VsbGlfY2NkZl9sb2d8YmVybm91bGxpX2NkZnxiZXJub3VsbGlfY2RmX2xvZ3xiZXJub3VsbGlfbG9nfGJlcm5vdWxsaV9sb2dpdF9sb2d8YmVybm91bGxpX3JuZ3xiZXNzZWxfZmlyc3Rfa2luZHxiZXNzZWxfc2Vjb25kX2tpbmR8YmV0YV9iaW5vbWlhbF9jY2RmX2xvZ3xiZXRhX2Jpbm9taWFsX2NkZnxiZXRhX2Jpbm9taWFsX2NkZl9sb2d8YmV0YV9iaW5vbWlhbF9sb2d8YmV0YV9iaW5vbWlhbF9ybmd8YmV0YV9jY2RmX2xvZ3xiZXRhX2NkZnxiZXRhX2NkZl9sb2d8YmV0YV9sb2d8YmV0YV9ybmd8YmluYXJ5X2xvZ19sb3NzfGJpbm9taWFsX2NjZGZfbG9nfGJpbm9taWFsX2NkZnxiaW5vbWlhbF9jZGZfbG9nfGJpbm9taWFsX2NvZWZmaWNpZW50X2xvZ3xiaW5vbWlhbF9sb2d8Ymlub21pYWxfbG9naXRfbG9nfGJpbm9taWFsX3JuZ3xibG9ja3xjYXRlZ29yaWNhbF9sb2d8Y2F0ZWdvcmljYWxfbG9naXRfbG9nfGNhdGVnb3JpY2FsX3JuZ3xjYXVjaHlfY2NkZl9sb2d8Y2F1Y2h5X2NkZnxjYXVjaHlfY2RmX2xvZ3xjYXVjaHlfbG9nfGNhdWNoeV9ybmd8Y2JydHxjZWlsfGNoaV9zcXVhcmVfY2NkZl9sb2d8Y2hpX3NxdWFyZV9jZGZ8Y2hpX3NxdWFyZV9jZGZfbG9nfGNoaV9zcXVhcmVfbG9nfGNoaV9zcXVhcmVfcm5nfGNob2xlc2t5X2RlY29tcG9zZXxjb2x8Y29sc3xjb2x1bW5zX2RvdF9wcm9kdWN0fGNvbHVtbnNfZG90X3NlbGZ8Y29zfGNvc2h8Y3Jvc3Nwcm9kfGNzcl9leHRyYWN0X3V8Y3NyX2V4dHJhY3Rfdnxjc3JfZXh0cmFjdF93fGNzcl9tYXRyaXhfdGltZXNfdmVjdG9yfGNzcl90b19kZW5zZV9tYXRyaXh8Y3VtdWxhdGl2ZV9zdW18ZGV0ZXJtaW5hbnR8ZGlhZ19tYXRyaXh8ZGlhZ19wb3N0X211bHRpcGx5fGRpYWdfcHJlX211bHRpcGx5fGRpYWdvbmFsfGRpZ2FtbWF8ZGltc3xkaXJpY2hsZXRfbG9nfGRpcmljaGxldF9ybmd8ZGlzdGFuY2V8ZG90X3Byb2R1Y3R8ZG90X3NlbGZ8ZG91YmxlX2V4cG9uZW50aWFsX2NjZGZfbG9nfGRvdWJsZV9leHBvbmVudGlhbF9jZGZ8ZG91YmxlX2V4cG9uZW50aWFsX2NkZl9sb2d8ZG91YmxlX2V4cG9uZW50aWFsX2xvZ3xkb3VibGVfZXhwb25lbnRpYWxfcm5nfGV8ZWlnZW52YWx1ZXNfc3ltfGVpZ2VudmVjdG9yc19zeW18ZXJmfGVyZmN8ZXhwfGV4cDJ8ZXhwX21vZF9ub3JtYWxfY2NkZl9sb2d8ZXhwX21vZF9ub3JtYWxfY2RmfGV4cF9tb2Rfbm9ybWFsX2NkZl9sb2d8ZXhwX21vZF9ub3JtYWxfbG9nfGV4cF9tb2Rfbm9ybWFsX3JuZ3xleHBtMXxleHBvbmVudGlhbF9jY2RmX2xvZ3xleHBvbmVudGlhbF9jZGZ8ZXhwb25lbnRpYWxfY2RmX2xvZ3xleHBvbmVudGlhbF9sb2d8ZXhwb25lbnRpYWxfcm5nfGZhYnN8ZmFsbGluZ19mYWN0b3JpYWx8ZmRpbXxmbG9vcnxmbWF8Zm1heHxmbWlufGZtb2R8ZnJlY2hldF9jY2RmX2xvZ3xmcmVjaGV0X2NkZnxmcmVjaGV0X2NkZl9sb2d8ZnJlY2hldF9sb2d8ZnJlY2hldF9ybmd8Z2FtbWFfY2NkZl9sb2d8Z2FtbWFfY2RmfGdhbW1hX2NkZl9sb2d8Z2FtbWFfbG9nfGdhbW1hX3B8Z2FtbWFfcXxnYW1tYV9ybmd8Z2F1c3NpYW5fZGxtX29ic19sb2d8Z2V0X2xwfGd1bWJlbF9jY2RmX2xvZ3xndW1iZWxfY2RmfGd1bWJlbF9jZGZfbG9nfGd1bWJlbF9sb2d8Z3VtYmVsX3JuZ3xoZWFkfGh5cGVyZ2VvbWV0cmljX2xvZ3xoeXBlcmdlb21ldHJpY19ybmd8aHlwb3R8aWZfZWxzZXxpbnRfc3RlcHxpbnZ8aW52X2NoaV9zcXVhcmVfY2NkZl9sb2d8aW52X2NoaV9zcXVhcmVfY2RmfGludl9jaGlfc3F1YXJlX2NkZl9sb2d8aW52X2NoaV9zcXVhcmVfbG9nfGludl9jaGlfc3F1YXJlX3JuZ3xpbnZfY2xvZ2xvZ3xpbnZfZ2FtbWFfY2NkZl9sb2d8aW52X2dhbW1hX2NkZnxpbnZfZ2FtbWFfY2RmX2xvZ3xpbnZfZ2FtbWFfbG9nfGludl9nYW1tYV9ybmd8aW52X2xvZ2l0fGludl9waGl8aW52X3NxcnR8aW52X3NxdWFyZXxpbnZfd2lzaGFydF9sb2d8aW52X3dpc2hhcnRfcm5nfGludmVyc2V8aW52ZXJzZV9zcGR8aXNfaW5mfGlzX25hbnxsYmV0YXxsZ2FtbWF8bGtqX2NvcnJfY2hvbGVza3lfbG9nfGxral9jb3JyX2Nob2xlc2t5X3JuZ3xsa2pfY29ycl9sb2d8bGtqX2NvcnJfcm5nfGxtZ2FtbWF8bG9nfGxvZzEwfGxvZzFtfGxvZzFtX2V4cHxsb2cxbV9pbnZfbG9naXR8bG9nMXB8bG9nMXBfZXhwfGxvZzJ8bG9nX2RldGVybWluYW50fGxvZ19kaWZmX2V4cHxsb2dfZmFsbGluZ19mYWN0b3JpYWx8bG9nX2ludl9sb2dpdHxsb2dfbWl4fGxvZ19yaXNpbmdfZmFjdG9yaWFsfGxvZ19zb2Z0bWF4fGxvZ19zdW1fZXhwfGxvZ2lzdGljX2NjZGZfbG9nfGxvZ2lzdGljX2NkZnxsb2dpc3RpY19jZGZfbG9nfGxvZ2lzdGljX2xvZ3xsb2dpc3RpY19ybmd8bG9naXR8bG9nbm9ybWFsX2NjZGZfbG9nfGxvZ25vcm1hbF9jZGZ8bG9nbm9ybWFsX2NkZl9sb2d8bG9nbm9ybWFsX2xvZ3xsb2dub3JtYWxfcm5nfG1hY2hpbmVfcHJlY2lzaW9ufG1heHxtZGl2aWRlX2xlZnRfdHJpX2xvd3xtZGl2aWRlX3JpZ2h0X3RyaV9sb3d8bWVhbnxtaW58bW9kaWZpZWRfYmVzc2VsX2ZpcnN0X2tpbmR8bW9kaWZpZWRfYmVzc2VsX3NlY29uZF9raW5kfG11bHRpX2dwX2Nob2xlc2t5X2xvZ3xtdWx0aV9ncF9sb2d8bXVsdGlfbm9ybWFsX2Nob2xlc2t5X2xvZ3xtdWx0aV9ub3JtYWxfY2hvbGVza3lfcm5nfG11bHRpX25vcm1hbF9sb2d8bXVsdGlfbm9ybWFsX3ByZWNfbG9nfG11bHRpX25vcm1hbF9ybmd8bXVsdGlfc3R1ZGVudF90X2xvZ3xtdWx0aV9zdHVkZW50X3Rfcm5nfG11bHRpbm9taWFsX2xvZ3xtdWx0aW5vbWlhbF9ybmd8bXVsdGlwbHlfbG9nfG11bHRpcGx5X2xvd2VyX3RyaV9zZWxmX3RyYW5zcG9zZXxuZWdfYmlub21pYWxfMl9jY2RmX2xvZ3xuZWdfYmlub21pYWxfMl9jZGZ8bmVnX2Jpbm9taWFsXzJfY2RmX2xvZ3xuZWdfYmlub21pYWxfMl9sb2d8bmVnX2Jpbm9taWFsXzJfbG9nX2xvZ3xuZWdfYmlub21pYWxfMl9sb2dfcm5nfG5lZ19iaW5vbWlhbF8yX3JuZ3xuZWdfYmlub21pYWxfY2NkZl9sb2d8bmVnX2Jpbm9taWFsX2NkZnxuZWdfYmlub21pYWxfY2RmX2xvZ3xuZWdfYmlub21pYWxfbG9nfG5lZ19iaW5vbWlhbF9ybmd8bmVnYXRpdmVfaW5maW5pdHl8bm9ybWFsX2NjZGZfbG9nfG5vcm1hbF9jZGZ8bm9ybWFsX2NkZl9sb2d8bm9ybWFsX2xvZ3xub3JtYWxfcm5nfG5vdF9hX251bWJlcnxudW1fZWxlbWVudHN8b3JkZXJlZF9sb2dpc3RpY19sb2d8b3JkZXJlZF9sb2dpc3RpY19ybmd8b3dlbnNfdHxwYXJldG9fY2NkZl9sb2d8cGFyZXRvX2NkZnxwYXJldG9fY2RmX2xvZ3xwYXJldG9fbG9nfHBhcmV0b19ybmd8cGFyZXRvX3R5cGVfMl9jY2RmX2xvZ3xwYXJldG9fdHlwZV8yX2NkZnxwYXJldG9fdHlwZV8yX2NkZl9sb2d8cGFyZXRvX3R5cGVfMl9sb2d8cGFyZXRvX3R5cGVfMl9ybmd8cGl8cG9pc3Nvbl9jY2RmX2xvZ3xwb2lzc29uX2NkZnxwb2lzc29uX2NkZl9sb2d8cG9pc3Nvbl9sb2d8cG9pc3Nvbl9sb2dfbG9nfHBvaXNzb25fbG9nX3JuZ3xwb2lzc29uX3JuZ3xwb3NpdGl2ZV9pbmZpbml0eXxwb3d8cHJvZHxxcl9RfHFyX1J8cXVhZF9mb3JtfHF1YWRfZm9ybV9kaWFnfHF1YWRfZm9ybV9zeW18cmFua3xyYXlsZWlnaF9jY2RmX2xvZ3xyYXlsZWlnaF9jZGZ8cmF5bGVpZ2hfY2RmX2xvZ3xyYXlsZWlnaF9sb2d8cmF5bGVpZ2hfcm5nfHJlcF9hcnJheXxyZXBfbWF0cml4fHJlcF9yb3dfdmVjdG9yfHJlcF92ZWN0b3J8cmlzaW5nX2ZhY3RvcmlhbHxyb3VuZHxyb3d8cm93c3xyb3dzX2RvdF9wcm9kdWN0fHJvd3NfZG90X3NlbGZ8c2NhbGVkX2ludl9jaGlfc3F1YXJlX2NjZGZfbG9nfHNjYWxlZF9pbnZfY2hpX3NxdWFyZV9jZGZ8c2NhbGVkX2ludl9jaGlfc3F1YXJlX2NkZl9sb2d8c2NhbGVkX2ludl9jaGlfc3F1YXJlX2xvZ3xzY2FsZWRfaW52X2NoaV9zcXVhcmVfcm5nfHNkfHNlZ21lbnR8c2lufHNpbmd1bGFyX3ZhbHVlc3xzaW5ofHNpemV8c2tld19ub3JtYWxfY2NkZl9sb2d8c2tld19ub3JtYWxfY2RmfHNrZXdfbm9ybWFsX2NkZl9sb2d8c2tld19ub3JtYWxfbG9nfHNrZXdfbm9ybWFsX3JuZ3xzb2Z0bWF4fHNvcnRfYXNjfHNvcnRfZGVzY3xzb3J0X2luZGljZXNfYXNjfHNvcnRfaW5kaWNlc19kZXNjfHNxcnR8c3FydDJ8c3F1YXJlfHNxdWFyZWRfZGlzdGFuY2V8c3RlcHxzdHVkZW50X3RfY2NkZl9sb2d8c3R1ZGVudF90X2NkZnxzdHVkZW50X3RfY2RmX2xvZ3xzdHVkZW50X3RfbG9nfHN0dWRlbnRfdF9ybmd8c3ViX2NvbHxzdWJfcm93fHN1bXx0YWlsfHRhbnx0YW5ofHRjcm9zc3Byb2R8dGdhbW1hfHRvX2FycmF5XzFkfHRvX2FycmF5XzJkfHRvX21hdHJpeHx0b19yb3dfdmVjdG9yfHRvX3ZlY3Rvcnx0cmFjZXx0cmFjZV9nZW5fcXVhZF9mb3JtfHRyYWNlX3F1YWRfZm9ybXx0cmlnYW1tYXx0cnVuY3x1bmlmb3JtX2NjZGZfbG9nfHVuaWZvcm1fY2RmfHVuaWZvcm1fY2RmX2xvZ3x1bmlmb3JtX2xvZ3x1bmlmb3JtX3JuZ3x2YXJpYW5jZXx2b25fbWlzZXNfbG9nfHZvbl9taXNlc19ybmd8d2VpYnVsbF9jY2RmX2xvZ3x3ZWlidWxsX2NkZnx3ZWlidWxsX2NkZl9sb2d8d2VpYnVsbF9sb2d8d2VpYnVsbF9ybmd8d2llbmVyX2xvZ3x3aXNoYXJ0X2xvZ3x3aXNoYXJ0X3JuZylcXGIiLGU6aGxqcy5JTU1FRElBVEVfUkUscjoxMH0se2NOOiJmdW5jdGlvbiIsYjoiKD86YmVybm91bGxpfGJlcm5vdWxsaV9sb2dpdHxiZXRhfGJldGFfYmlub21pYWx8Ymlub21pYWx8Ymlub21pYWxfbG9naXR8Y2F0ZWdvcmljYWx8Y2F0ZWdvcmljYWxfbG9naXR8Y2F1Y2h5fGNoaV9zcXVhcmV8ZGlyaWNobGV0fGRvdWJsZV9leHBvbmVudGlhbHxleHBfbW9kX25vcm1hbHxleHBvbmVudGlhbHxmcmVjaGV0fGdhbW1hfGdhdXNzaWFuX2RsbV9vYnN8Z3VtYmVsfGh5cGVyZ2VvbWV0cmljfGludl9jaGlfc3F1YXJlfGludl9nYW1tYXxpbnZfd2lzaGFydHxsa2pfY29ycnxsa2pfY29ycl9jaG9sZXNreXxsb2dpc3RpY3xsb2dub3JtYWx8bXVsdGlfZ3B8bXVsdGlfZ3BfY2hvbGVza3l8bXVsdGlfbm9ybWFsfG11bHRpX25vcm1hbF9jaG9sZXNreXxtdWx0aV9ub3JtYWxfcHJlY3xtdWx0aV9zdHVkZW50X3R8bXVsdGlub21pYWx8bmVnX2Jpbm9taWFsfG5lZ19iaW5vbWlhbF8yfG5lZ19iaW5vbWlhbF8yX2xvZ3xub3JtYWx8b3JkZXJlZF9sb2dpc3RpY3xwYXJldG98cGFyZXRvX3R5cGVfMnxwb2lzc29ufHBvaXNzb25fbG9nfHJheWxlaWdofHNjYWxlZF9pbnZfY2hpX3NxdWFyZXxza2V3X25vcm1hbHxzdHVkZW50X3R8dW5pZm9ybXx2b25fbWlzZXN8d2VpYnVsbHx3aWVuZXJ8d2lzaGFydClcXGIiLGU6aGxqcy5JTU1FRElBVEVfUkUscjoxMH0se2NOOiJrZXl3b3JkIixiOiIoPzpmb3J8aW58d2hpbGV8aWZ8dGhlbnxlbHNlfHJldHVybnxsb3dlcnx1cHBlcnxwcmludHxpbmNyZW1lbnRfbG9nX3Byb2J8aW50ZWdyYXRlX29kZXxyZWplY3QpXFxiIixlOmhsanMuSU1NRURJQVRFX1JFLHI6MTB9LHtjTjoia2V5d29yZCIsYjoiKD86aW50fHJlYWx8dmVjdG9yfHNpbXBsZXh8dW5pdF92ZWN0b3J8b3JkZXJlZHxwb3NpdGl2ZV9vcmRlcmVkfHJvd192ZWN0b3J8bWF0cml4fGNob2xlc2t5X2ZhY3Rvcl9jb3Z8Y2hvbGVza3lfZmFjdG9yX2NvcnJ8Y29ycl9tYXRyaXh8Y292X21hdHJpeHx2b2lkKVxcYiIsZTpobGpzLklNTUVESUFURV9SRSxyOjV9LHtjTjoia2V5d29yZCIsYjoiKD86ZnVuY3Rpb25zfGRhdGF8dHJhbnNmb3JtZWRcXHMrZGF0YXxwYXJhbWV0ZXJzfHRyYW5zZm9ybWVkXFxzK3BhcmFtZXRlcnN8bW9kZWx8Z2VuZXJhdGVkXFxzK3F1YW50aXRpZXMpXFxiIixlOmhsanMuSU1NRURJQVRFX1JFLHI6NX1dfX07aGxqcy5MQU5HVUFHRVMueG1sPWZ1bmN0aW9uKCl7dmFyIGI9IltBLVphLXowLTlcXC5fOi1dKyI7dmFyIGE9e2VXOnRydWUsYzpbe2NOOiJhdHRyaWJ1dGUiLGI6YixyOjB9LHtiOic9IicsckI6dHJ1ZSxlOiciJyxjOlt7Y046InZhbHVlIixiOiciJyxlVzp0cnVlfV19LHtiOiI9JyIsckI6dHJ1ZSxlOiInIixjOlt7Y046InZhbHVlIixiOiInIixlVzp0cnVlfV19LHtiOiI9IixjOlt7Y046InZhbHVlIixiOiJbXlxccy8+XSsifV19XX07cmV0dXJue2NJOnRydWUsZE06e2M6W3tjTjoicGkiLGI6IjxcXD8iLGU6IlxcPz4iLHI6MTB9LHtjTjoiZG9jdHlwZSIsYjoiPCFET0NUWVBFIixlOiI+IixyOjEwLGM6W3tiOiJcXFsiLGU6IlxcXSJ9XX0se2NOOiJjb21tZW50IixiOiI8IS0tIixlOiItLT4iLHI6MTB9LHtjTjoiY2RhdGEiLGI6IjxcXCFcXFtDREFUQVxcWyIsZToiXFxdXFxdPiIscjoxMH0se2NOOiJ0YWciLGI6IjxzdHlsZSg/PVxcc3w+fCQpIixlOiI+IixrOnt0aXRsZTp7c3R5bGU6MX19LGM6W2FdLHN0YXJ0czp7Y046ImNzcyIsZToiPC9zdHlsZT4iLHJFOnRydWUsc0w6ImNzcyJ9fSx7Y046InRhZyIsYjoiPHNjcmlwdCg/PVxcc3w+fCQpIixlOiI+IixrOnt0aXRsZTp7c2NyaXB0OjF9fSxjOlthXSxzdGFydHM6e2NOOiJqYXZhc2NyaXB0IixlOiI8XC9zY3JpcHQ+IixyRTp0cnVlLHNMOiJqYXZhc2NyaXB0In19LHtjTjoidmJzY3JpcHQiLGI6IjwlIixlOiIlPiIsc0w6InZic2NyaXB0In0se2NOOiJ0YWciLGI6IjwvPyIsZToiLz8+IixjOlt7Y046InRpdGxlIixiOiJbXiAvPl0rIn0sYV19XX19fSgpOwpobGpzLmluaXRIaWdobGlnaHRpbmdPbkxvYWQoKTsKCg=="></script>
<style type="text/css">code{white-space: pre;}</style>
<style type="text/css">
pre:not([class]) {
background-color: white;
}
</style>
<script type="text/javascript">
if (window.hljs && document.readyState && document.readyState === "complete") {
window.setTimeout(function() {
hljs.initHighlighting();
}, 0);
}
</script>
<link href="data:text/css;charset=utf-8,body%2C%20td%20%7B%0Afont%2Dfamily%3A%20sans%2Dserif%3B%0Abackground%2Dcolor%3A%20white%3B%0Afont%2Dsize%3A%2013px%3B%0A%7D%0Abody%20%7B%0Amax%2Dwidth%3A%20800px%3B%0Amargin%3A%200%20auto%3B%0Apadding%3A%201em%201em%202em%3B%0Aline%2Dheight%3A%2020px%3B%0A%7D%0A%0Adiv%23TOC%20li%20%7B%0Alist%2Dstyle%3Anone%3B%0Abackground%2Dimage%3Anone%3B%0Abackground%2Drepeat%3Anone%3B%0Abackground%2Dposition%3A0%3B%0A%7D%0A%0Ap%2C%20pre%20%7B%20margin%3A%200em%200em%201em%3B%0A%7D%0A%0Aimg%2C%20table%20%7B%0Amargin%3A%200em%20auto%201em%3B%0A%7D%0Ap%20%7B%0Atext%2Dalign%3A%20justify%3B%0A%7D%0Att%2C%20code%2C%20pre%20%7B%0Afont%2Dfamily%3A%20%27DejaVu%20Sans%20Mono%27%2C%20%27Droid%20Sans%20Mono%27%2C%20%27Lucida%20Console%27%2C%20Consolas%2C%20Monaco%2C%20monospace%3B%0A%7D%0Ah1%2C%20h2%2C%20h3%2C%20h4%2C%20h5%2C%20h6%20%7B%20font%2Dfamily%3A%20Helvetica%2C%20Arial%2C%20sans%2Dserif%3B%0Amargin%3A%201%2E2em%200em%200%2E6em%200em%3B%0Afont%2Dweight%3A%20bold%3B%0A%7D%0Ah1%2Etitle%20%7B%0Afont%2Dsize%3A%20250%25%3B%0Afont%2Dweight%3A%20normal%3B%0Acolor%3A%20%2387b13f%3B%0Aline%2Dheight%3A%201%2E1em%3B%0Amargin%2Dtop%3A%200px%3B%0Aborder%2Dbottom%3A%200px%3B%0A%7D%0Ah1%20%7B%0Afont%2Dsize%3A%20160%25%3B%0Afont%2Dweight%3A%20normal%3B%0Aline%2Dheight%3A%201%2E4em%3B%0Aborder%2Dbottom%3A%201px%20%231a81c2%20solid%3B%0A%7D%0Ah2%20%7B%0Afont%2Dsize%3A%20130%25%3B%20%7D%0Ah1%2C%20h2%2C%20h3%20%7B%0Acolor%3A%20%231a81c2%3B%0A%7D%0Ah3%2C%20h4%2C%20h5%2C%20h6%20%7B%0Afont%2Dsize%3A115%25%3B%0A%7D%20%0A%0Aa%20%7B%20color%3A%20%231a81c2%3B%20%7D%0Aa%3Aactive%20%7B%20outline%3A%20none%3B%20%7D%0Aa%3Avisited%20%7B%20color%3A%20%231a81c2%3B%20%7D%0Aa%3Ahover%20%7B%20color%3A%20%234c94c2%3B%20%7D%0Apre%2C%20img%20%7B%0Amax%2Dwidth%3A%20100%25%3B%0Adisplay%3A%20block%3B%0A%7D%0Apre%20%7B%0Aborder%3A%200px%20none%3B%0Abackground%2Dcolor%3A%20%23F8F8F8%3B%0Awhite%2Dspace%3A%20pre%3B%0Aoverflow%2Dx%3A%20auto%3B%0A%7D%0Apre%20code%20%7B%0Aborder%3A%201px%20%23aaa%20dashed%3B%0Abackground%2Dcolor%3A%20white%3B%0Adisplay%3A%20block%3B%0Apadding%3A%201em%3B%20color%3A%20%23111%3B%0Aoverflow%2Dx%3A%20inherit%3B%0A%7D%0A%0Apre%20code%5Bclass%5D%20%7B%0Abackground%2Dcolor%3A%20inherit%3B%0A%7D%0A%0Apre%5Bclass%5D%20code%20%7B%0Abackground%2Dcolor%3A%20inherit%3B%0A%7D%0A%0Acode%20%7B%20background%2Dcolor%3A%20transparent%3B%0Acolor%3A%20%2387b13f%3B%0Afont%2Dsize%3A%2092%25%3B%0A%7D%0A%0Atable%2C%20td%2C%20th%20%7B%0Aborder%3A%20none%3B%0Apadding%3A%200%200%2E5em%3B%0A%7D%0A%0Atbody%20tr%3Anth%2Dchild%28odd%29%20td%20%7B%0Abackground%2Dcolor%3A%20%23F8F8F8%3B%0A%7D%0Ablockquote%20%7B%0Acolor%3A%23666666%3B%0Amargin%3A0%3B%0Apadding%2Dleft%3A%201em%3B%0Aborder%2Dleft%3A%200%2E5em%20%23EEE%20solid%3B%0A%7D%0Ahr%20%7B%0Aheight%3A%200px%3B%0Aborder%2Dbottom%3A%20none%3B%0Aborder%2Dtop%2Dwidth%3A%20thin%3B%0Aborder%2Dtop%2Dstyle%3A%20dotted%3B%0Aborder%2Dtop%2Dcolor%3A%20%23999999%3B%0A%7D%0Aspan%2Eheader%2Dsection%2Dnumber%20%7B%0Apadding%2Dright%3A%201em%3B%0A%7D%0Aspan%2Etoc%2Dsection%2Dnumber%3A%3Aafter%20%7B%0Acontent%3A%20%22%20%22%3B%0Awhite%2Dspace%3A%20pre%3B%0A%7D%0A%40media%20print%20%7B%0A%2A%20%7B%0Abackground%3A%20transparent%20%21important%3B%0Acolor%3A%20black%20%21important%3B%0Afilter%3Anone%20%21important%3B%0A%2Dms%2Dfilter%3A%20none%20%21important%3B%0A%7D%0Abody%20%7B%0Afont%2Dsize%3A12pt%3B%0Amax%2Dwidth%3A100%25%3B%0A%7D%0Aa%2C%20a%3Avisited%20%7B%0Atext%2Ddecoration%3A%20underline%3B%0A%7D%0Ahr%20%7B%0Avisibility%3A%20hidden%3B%0Apage%2Dbreak%2Dbefore%3A%20always%3B%0A%7D%0Apre%2C%20blockquote%20%7B%0Apadding%2Dright%3A%201em%3B%0Apage%2Dbreak%2Dinside%3A%20avoid%3B%0A%7D%0Atr%2C%20img%20%7B%0Apage%2Dbreak%2Dinside%3A%20avoid%3B%0A%7D%0Aimg%20%7B%0Amax%2Dwidth%3A%20100%25%20%21important%3B%0A%7D%0A%40page%20%3Aleft%20%7B%0Amargin%3A%2015mm%2020mm%2015mm%2010mm%3B%0A%7D%0A%40page%20%3Aright%20%7B%0Amargin%3A%2015mm%2010mm%2015mm%2020mm%3B%0A%7D%0Ap%2C%20h2%2C%20h3%20%7B%0Aorphans%3A%203%3B%20widows%3A%203%3B%0A%7D%0Ah2%2C%20h3%20%7B%0Apage%2Dbreak%2Dafter%3A%20avoid%3B%0A%7D%0A%7D%0A" rel="stylesheet" type="text/css" />
<script type="text/javascript">
document.addEventListener("DOMContentLoaded", function() {
var links = document.links;
for (var i = 0, linksLength = links.length; i < linksLength; i++)
if(links[i].hostname != window.location.hostname)
links[i].target = '_blank';
});
</script>
</head>
<body>
<div id="header">
<h1 class="title">Summarizing Sex in the SRA</h1>
<h4 class="author"><em>Shannon E. Ellis</em></h4>
</div>
<h1>Contents</h1>
<div id="TOC">
<ul>
<li><a href="#load-data"><span class="toc-section-number">1</span> Load data</a></li>
<li><a href="#recount-breakdown"><span class="toc-section-number">2</span> Recount breakdown</a></li>
<li><a href="#tcga-and-gtex-breakdown"><span class="toc-section-number">3</span> TCGA and GTEx Breakdown</a></li>
<li><a href="#analyze-sex-across-the-sra"><span class="toc-section-number">4</span> Analyze sex across the SRA</a></li>
<li><a href="#looking-at-sex-broken-down-by-project"><span class="toc-section-number">5</span> Looking at sex broken down by project</a></li>
<li><a href="#vignette-information"><span class="toc-section-number">6</span> Vignette information</a></li>
<li><a href="#code-for-creating-the-vignette"><span class="toc-section-number">7</span> Code for creating the vignette</a></li>
</ul>
</div>
<pre class="r"><code>library(extrafont)
library(gridExtra)
library(dplyr)
## load colors
bright= c(red=rgb(222,45,38, maxColorValue=255), #de2d26
pink=rgb( 255, 102, 153, maxColorValue=255), #ff6699
orange=rgb(232,121,12, maxColorValue=255), #e8790c
yellow=rgb(255,222,13, maxColorValue=255), #ffde0d
green=rgb(12,189,24, maxColorValue=255), #0cbd18
teal=rgb(59,196,199, maxColorValue=255), #3bc4c7
blue=rgb(58,158,234, maxColorValue=255), #3a9eea
purple=rgb(148,12,232, maxColorValue=255)) #940ce8 </code></pre>
<div id="load-data" class="section level1">
<h1><span class="header-section-number">1</span> Load data</h1>
<pre class="r"><code>## load predicted phenotypes
load('/dcl01/leek/data/sellis/barcoding/output/PredictedPhenotypes_v0.0.06.rda')
df = PredictedPhenotypes #70479
df$predicted_sex <- as.factor(tolower(df$predicted_sex))
## load SRA metadata
load('/dcl01/leek/data/recount-website/metadata/metadata_sra.Rdata')
metadata <- metadata[!is.na(metadata$bigwig_path), ]
sra_meta = metadata
rm(metadata)
pd = read_csv("https://raw.githubusercontent.com/nellore/runs/master/sra/v2/hg38/SraRunInfo.csv")
sra_meta = left_join(as.data.frame(sra_meta),pd,by=c("run"="Run","sample"="Sample"))
colnames(sra_meta)[4] <- "sample_id"
meta = left_join(sra_meta,df)</code></pre>
</div>
<div id="recount-breakdown" class="section level1">
<h1><span class="header-section-number">2</span> Recount breakdown</h1>
<pre class="r"><code>## overall breakdown
(sex_recount <- df %>% dplyr::filter(!is.na(dataset)) %>% group_by(predicted_sex) %>% dplyr::summarise(n = n()) %>% mutate(freq = n / sum(n))) </code></pre>
<pre><code>## # A tibble: 3 x 3
## predicted_sex n freq
## <fctr> <int> <dbl>
## 1 female 35311 0.50101449
## 2 male 31461 0.44638829
## 3 unassigned 3707 0.05259723</code></pre>
<pre class="r"><code>b <- ggplot(data = sex_recount, aes(x=predicted_sex, y = freq,label = freq)) +
labs(y="Proportion",x="Predicted Sex",title="") +
geom_bar(stat="identity", aes(fill = predicted_sex),position="dodge") +
# geom_text(aes(fill=predicted_sex),size = 12, position = position_dodge(width = 0.9),colour="black") +
scale_fill_manual(values=c("#940CE8", "#0CBD18", "grey48"))+
theme_bw()+
theme(legend.title=element_blank(),legend.text=element_text(size=16),plot.title = element_text(hjust = 0.5),text = element_text(size=16), panel.border = element_blank(), panel.grid.major = element_blank(),
panel.grid.minor = element_blank(), axis.line = element_line(colour = "black"),axis.text=element_text(colour="black"))
# pdf('/dcl01/leek/data/sellis/barcoding/plots/Sex_recount.pdf',family="Roboto Condensed",width=15,height=15)
plot(b)</code></pre>
<p><img src="" /></p>
<pre class="r"><code># dev.off()</code></pre>
</div>
<div id="tcga-and-gtex-breakdown" class="section level1">
<h1><span class="header-section-number">3</span> TCGA and GTEx Breakdown</h1>
<pre class="r"><code>## get breakdown across projects
(sex_recount2 <- df %>% dplyr::filter(dataset=="tcga" | dataset=="gtex") %>% group_by(dataset,predicted_sex) %>% dplyr::summarise(n = n()) %>% mutate(freq = n / sum(n))) </code></pre>
<pre><code>## # A tibble: 4 x 4
## # Groups: dataset [2]
## dataset predicted_sex n freq
## <fctr> <fctr> <int> <dbl>
## 1 gtex female 3505 0.3674775
## 2 gtex male 6033 0.6325225
## 3 tcga female 5944 0.5267636
## 4 tcga male 5340 0.4732364</code></pre>
<pre class="r"><code>## Overall summary
b <- ggplot(data = sex_recount2, aes(x=dataset, y = freq,label = freq)) +
labs(y="Proportion",x="Data Set",title="Predicted Sex") +
geom_bar(stat="identity", aes(fill = predicted_sex),position="dodge") +
# geom_text(aes(fill=predicted_sex),size = 12, position = position_dodge(width = 0.9),colour="black") +
scale_fill_manual(values=c("#940CE8", "#0CBD18"))+
theme_bw()+
theme(legend.title=element_blank(),legend.text=element_text(size=16),plot.title = element_text(hjust = 0.5),text = element_text(size=16), panel.border = element_blank(), panel.grid.major = element_blank(),
panel.grid.minor = element_blank(), axis.line = element_line(colour = "black"),axis.text=element_text(colour="black"))
# pdf('/dcl01/leek/data/sellis/barcoding/plots/Sex_recount_summary.pdf',family="Roboto Condensed",width=15,height=15)
plot(b)</code></pre>
<p><img src="" /></p>
<pre class="r"><code># dev.off()</code></pre>
</div>
<div id="analyze-sex-across-the-sra" class="section level1">
<h1><span class="header-section-number">4</span> Analyze sex across the SRA</h1>
<pre class="r"><code>## Sex Breakdown w/n SRA
(sex_SRA <- meta %>% group_by(predicted_sex) %>% select(predicted_sex) %>% dplyr::summarise(Count = n())) </code></pre>
<pre><code>## # A tibble: 3 x 2
## predicted_sex Count
## <fctr> <int>
## 1 female 25862
## 2 male 20088
## 3 unassigned 3707</code></pre>
<pre class="r"><code>## Overall summary
# pdf('/dcl01/leek/data/sellis/barcoding/plots/Sex_SRA_summary.pdf',family="Roboto Condensed",width=15,height=15)
# plot(ggplot(data = sex_SRA, aes(x=predicted_sex, y = Count,label = Count)) +
# labs(y="No. of Samples",x="Data Set",title="Predicted Sex") +
# geom_bar(stat="identity", aes(fill = predicted_sex),position="dodge") +
# # geom_text(aes(fill=predicted_sex),size = 12, position = position_dodge(width = 0.9),colour="black") +
# scale_fill_manual(values=c("#940CE8", "#0CBD18", "grey48"))+
# theme_bw()+
# theme(legend.title=element_blank(),legend.text=element_text(size=60),plot.title = element_text(hjust = 0.5),text = element_text(size=48), panel.border = element_blank(), panel.grid.major = element_blank(),
# panel.grid.minor = element_blank(), axis.line = element_line(colour = "black"),axis.text=element_text(colour="black")))
# dev.off()
plot(ggplot(data = sex_SRA, aes(x=predicted_sex, y = Count,label = Count)) +
labs(y="No. of Samples",x="Data Set",title="Predicted Sex") +
geom_bar(stat="identity", aes(fill = predicted_sex),position="dodge") +
geom_text(aes(fill=predicted_sex),size = 6, position = position_dodge(width = 0.9),colour="black") +
scale_fill_manual(values=c("#940CE8", "#0CBD18", "grey48"))+
theme_bw()+
theme(legend.title=element_blank(),legend.text=element_text(size=12),plot.title = element_text(hjust = 0.5),text = element_text(size=12), panel.border = element_blank(), panel.grid.major = element_blank(),
panel.grid.minor = element_blank(), axis.line = element_line(colour = "black"),axis.text=element_text(colour="black")))</code></pre>
<p><img src="" /></p>
</div>
<div id="looking-at-sex-broken-down-by-project" class="section level1">
<h1><span class="header-section-number">5</span> Looking at sex broken down by project</h1>
<pre class="r"><code>## Broken down by project type
## combine to look at sex across SRA
(projorder <- meta %>% group_by(ProjectID) %>% summarise(n=n()) %>% arrange(n) %>% mutate(index=1:nrow(.)))</code></pre>
<pre><code>## # A tibble: 1,991 x 3
## ProjectID n index
## <int> <int> <int>
## 1 33835 1 1
## 2 33851 1 2
## 3 33865 1 3
## 4 63201 1 4
## 5 80133 1 5
## 6 80159 1 6
## 7 124917 1 7
## 8 125353 1 8
## 9 126491 1 9
## 10 128253 1 10
## # ... with 1,981 more rows</code></pre>
<pre class="r"><code>(proj <- meta %>% group_by(ProjectID,predicted_sex) %>% summarise(n=n()) %>% mutate(prop= n/sum(n)))</code></pre>
<pre><code>## # A tibble: 2,829 x 4
## # Groups: ProjectID [1,991]
## ProjectID predicted_sex n prop
## <int> <fctr> <int> <dbl>
## 1 0 female 224 0.369028007
## 2 0 male 191 0.314662273
## 3 0 unassigned 192 0.316309720
## 4 30709 female 414 0.776735460
## 5 30709 male 118 0.221388368
## 6 30709 unassigned 1 0.001876173
## 7 33835 female 1 1.000000000
## 8 33851 female 1 1.000000000
## 9 33865 female 1 1.000000000
## 10 34535 female 203 0.377323420
## # ... with 2,819 more rows</code></pre>
<pre class="r"><code>test = left_join(proj,projorder, by="ProjectID") %>% arrange(index)
scale <- function(X){
(X - min(X))/diff(range(X))+0.001
}
test$widths <- scale(test$n.y)
# pdf("plots/Sex_by_proj.pdf",width=100,family="Roboto Condensed")
# ggplot(test, aes(x = index, y = prop,fill=predicted_sex)) +
# geom_bar(stat='identity',aes(width=widths))+
# scale_fill_manual(values=c("#940CE8", "#0CBD18", "grey48"))
# # dev.off()
proj_summ <- proj %>% group_by(ProjectID) %>% summarise(projtype = paste(predicted_sex, collapse=","), times=length(predicted_sex))
proj_summ$type <- proj_summ$projtype
proj_summ$type[proj_summ$times>1] <- "mixed"
proj_summ$type[proj_summ$type=="female"] <- "female only"
proj_summ$type[proj_summ$type=="male"] <- "male only"
proj_summ$type[proj_summ$type=="unassigned"] <- "unassigned only"
d <- proj_summ %>% group_by(type) %>% summarise(Count = n())
# pdf('plots/Sex_SRA_ProjectType.pdf',width=12,height=12,family="Roboto Condensed")
ggplot(data = d, aes(x=type, y = Count,label = Count)) +
labs(y="No. of Projects",x="Project Type",title="Project Type Summary")+
geom_bar(stat="identity", aes(fill = type),position="dodge") +
geom_text(aes(fill=type),size = 6, position = position_dodge(width = 0.9),colour="black") +
scale_fill_manual(values=c("#940CE8", "#0CBD18","#E8790C", "grey48"))+
theme_bw()+
theme(legend.title=element_blank(),plot.title = element_text(hjust = 0.5),text = element_text(size=16), panel.border = element_blank(), panel.grid.major = element_blank(),
panel.grid.minor = element_blank(), axis.line = element_line(colour = "black"),axis.text=element_text(colour="black"))</code></pre>
<p><img src="" /></p>
<pre class="r"><code># dev.off()
# embed_fonts('plots/Sex_SRA_ProjectType.pdf',outfile='plots/Sex_SRA_ProjectType.pdf')</code></pre>
</div>
<div id="vignette-information" class="section level1">
<h1><span class="header-section-number">6</span> Vignette information</h1>
<pre class="r"><code>## Time spent creating this report:
diff(c(startTime, Sys.time()))</code></pre>
<pre><code>## Time difference of 9.063228 secs</code></pre>
<pre class="r"><code>## Date this report was generated
message(Sys.time())</code></pre>
<pre><code>## 2017-11-22 10:47:05</code></pre>
<pre class="r"><code>## Reproducibility info
options(width = 120)
devtools::session_info()</code></pre>
<pre><code>## Session info ----------------------------------------------------------------------------------------------------------</code></pre>
<pre><code>## setting value
## version R version 3.3.3 Patched (2017-03-15 r72696)
## system x86_64, linux-gnu
## ui X11
## language (EN)
## collate en_US.UTF-8
## tz <NA>
## date 2017-11-22</code></pre>
<pre><code>## Packages --------------------------------------------------------------------------------------------------------------</code></pre>
<pre><code>## package * version date source
## assertthat 0.2.0 2017-04-11 CRAN (R 3.3.1)
## backports 1.1.1 2017-09-25 CRAN (R 3.3.3)
## base * 3.3.3 2017-05-18 local
## bindr 0.1 2016-11-13 CRAN (R 3.3.3)
## bindrcpp * 0.2 2017-06-17 CRAN (R 3.3.3)
## BiocGenerics * 0.20.0 2016-10-20 Bioconductor
## BiocStyle * 2.2.1 2016-11-25 Bioconductor
## broom 0.4.2 2017-02-13 CRAN (R 3.3.1)
## cellranger 1.1.0 2016-07-27 CRAN (R 3.3.1)
## colorspace 1.3-2 2016-12-14 CRAN (R 3.3.1)
## curl 2.8.1 2017-07-21 CRAN (R 3.3.3)
## datasets * 3.3.3 2017-05-18 local
## devtools 1.13.3 2017-08-02 CRAN (R 3.3.3)
## digest 0.6.12 2017-01-27 CRAN (R 3.3.1)
## dplyr * 0.7.4 2017-09-28 CRAN (R 3.3.3)
## evaluate 0.10.1 2017-06-24 CRAN (R 3.3.3)
## extrafont * 0.17 2014-12-08 CRAN (R 3.3.1)
## extrafontdb 1.0 2012-06-11 CRAN (R 3.3.1)
## forcats 0.2.0 2017-01-23 CRAN (R 3.3.1)
## foreign 0.8-67 2016-09-13 CRAN (R 3.3.3)
## ggplot2 * 2.2.1 2016-12-30 CRAN (R 3.3.1)
## glue 1.1.1 2017-06-21 CRAN (R 3.3.3)
## graphics * 3.3.3 2017-05-18 local
## grDevices * 3.3.3 2017-05-18 local
## grid 3.3.3 2017-05-18 local
## gridExtra * 2.3 2017-09-09 CRAN (R 3.3.3)
## gtable 0.2.0 2016-02-26 CRAN (R 3.3.0)
## haven 1.1.0 2017-07-09 CRAN (R 3.3.3)
## hms 0.3 2016-11-22 CRAN (R 3.3.1)
## htmltools 0.3.6 2017-04-28 CRAN (R 3.3.1)
## httr 1.3.1 2017-08-20 CRAN (R 3.3.3)
## IRanges * 2.8.2 2017-05-22 Bioconductor
## jsonlite 1.5 2017-06-01 CRAN (R 3.3.3)
## knitr 1.17 2017-08-10 CRAN (R 3.3.3)
## labeling 0.3 2014-08-23 CRAN (R 3.3.0)
## lattice 0.20-34 2016-09-06 CRAN (R 3.3.3)
## lazyeval 0.2.0 2016-06-12 CRAN (R 3.3.1)
## lubridate 1.6.0 2016-09-13 CRAN (R 3.3.1)
## magrittr 1.5 2014-11-22 CRAN (R 3.3.0)
## memoise 1.1.0 2017-04-21 CRAN (R 3.3.1)
## methods * 3.3.3 2017-05-18 local
## mnormt 1.5-5 2016-10-15 CRAN (R 3.3.1)
## modelr 0.1.1 2017-07-24 CRAN (R 3.3.3)
## munsell 0.4.3 2016-02-13 CRAN (R 3.3.0)
## nlme 3.1-131 2017-02-06 CRAN (R 3.3.1)
## parallel * 3.3.3 2017-05-18 local
## pkgconfig 2.0.1 2017-03-21 CRAN (R 3.3.3)
## plyr 1.8.4 2016-06-08 cran (@1.8.4)
## psych 1.7.5 2017-05-03 cran (@1.7.5)
## purrr * 0.2.3 2017-08-02 cran (@0.2.3)
## R6 2.2.2 2017-06-17 CRAN (R 3.3.3)
## Rcpp 0.12.12 2017-07-15 CRAN (R 3.3.3)
## readr * 1.1.1 2017-05-16 CRAN (R 3.3.1)
## readxl 1.0.0 2017-04-18 CRAN (R 3.3.1)
## reshape2 1.4.2 2016-10-22 CRAN (R 3.3.1)
## rlang 0.1.2 2017-08-09 cran (@0.1.2)
## rmarkdown * 1.6 2017-06-15 CRAN (R 3.3.3)
## rprojroot 1.2 2017-01-16 CRAN (R 3.3.1)
## Rttf2pt1 1.3.4 2016-05-19 CRAN (R 3.3.1)
## rvest 0.3.2 2016-06-17 CRAN (R 3.3.1)
## S4Vectors * 0.12.2 2017-05-22 Bioconductor
## scales 0.5.0 2017-08-24 CRAN (R 3.3.3)
## stats * 3.3.3 2017-05-18 local
## stats4 * 3.3.3 2017-05-18 local
## stringi 1.1.5 2017-04-07 CRAN (R 3.3.1)
## stringr 1.2.0 2017-02-18 CRAN (R 3.3.1)
## tibble * 1.3.4 2017-08-22 cran (@1.3.4)
## tidyr * 0.7.1 2017-09-01 CRAN (R 3.3.3)
## tidyverse * 1.1.1 2017-01-27 CRAN (R 3.3.1)
## tools 3.3.3 2017-05-18 local
## utils * 3.3.3 2017-05-18 local
## withr 2.0.0 2017-07-28 CRAN (R 3.3.3)
## xml2 1.1.1 2017-01-24 CRAN (R 3.3.1)
## yaml 2.1.14 2016-11-12 CRAN (R 3.3.1)</code></pre>
</div>
<div id="code-for-creating-the-vignette" class="section level1">
<h1><span class="header-section-number">7</span> Code for creating the vignette</h1>
<pre class="r"><code>## Create the vignette
library('rmarkdown')
system.time(render('/dcl01/leek/data/sellis/barcoding/phenopredict_usecase/sex_summary.Rmd', 'BiocStyle::html_document'))
## Extract the R code
library('knitr')
knit('/dcl01/leek/data/sellis/barcoding/phenopredict_usecase/sex_summary.Rmd', tangle = TRUE)</code></pre>
</div>
<!-- dynamically load mathjax for compatibility with self-contained -->
<script>
(function () {
var script = document.createElement("script");
script.type = "text/javascript";
script.src = "https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML";
document.getElementsByTagName("head")[0].appendChild(script);
})();
</script>
</body>
</html>