-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathspoonful.py
168 lines (133 loc) · 4.82 KB
/
spoonful.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
from math import nan
from typing import Tuple
import torch
__version__ = "1.0.0-rc1"
def solve_linearized(
R: torch.Tensor, AA: torch.Tensor, Ab: torch.Tensor
) -> torch.Tensor:
"""
Find the rotation that minimizes distance error between correspondences
enforcing linearized rotation constraints.
B - batch size
Parameters:
R: An initial rotation Bx3x3
Returns:
A solution of size Bx3x3
"""
nb = len(R)
R_out = torch.full(R.shape, nan, dtype=R.dtype, device=R.device)
Eij = (
torch.eye(3, device=R.device)[:, None, :, None]
* torch.eye(3, device=R.device)[:, None]
).reshape((-1, 3, 3))
Ekl = Eij[[0, 1, 2, 4, 5, 8]]
f = (R.transpose(-1, -2) @ R - torch.eye(3, device=R.device)).view(-1, 9)[
:, [0, 1, 2, 5, 6, 8]
]
J = R[:, None] @ (Ekl + Ekl.transpose(-1, -2))
Ac = torch.cat(
[
torch.cat([AA, J.permute(0, 2, 3, 1).reshape(-1, 9, 6)], dim=-1),
torch.cat(
[
J.transpose(-2, -1).reshape(-1, 6, 9),
torch.zeros(nb, 6, 6, device=AA.device),
],
dim=-1,
),
],
dim=-2,
)
bc = torch.cat(
[Ab, torch.unsqueeze(torch.sum(J * R[:, None], dim=(-2, -1)) - f, -1)], dim=-2
)
try:
# prevents issues with backprop update suddenly producing NaNs
mask = torch.svd(Ac)[1][:, -1] > torch.finfo(Ac.dtype).eps
X = torch.solve(bc[mask], Ac[mask])[0]
except RuntimeError:
return R_out
R_out[mask] = X[:, :9].view(-1, 3, 3).transpose(-2, -1)
return R_out
def form_rotation(R: torch.Tensor) -> torch.Tensor:
"""
Forms a rotation matrix from a candidate rotation matrix in a process with close
ties to Gram-Schmidt orthogonalization.
B - Batch size
Parameters:
R: A candidate rotation matrix Bx3x3
Returns:
Rout: Rotation matrices of size Bx3x3
"""
# 1st column
col1 = R[:, :, 0] / R[:, :, 0].norm(dim=-1, keepdim=True)
# 2nd column
tmp = (
(torch.eye(3, device=R.device) - col1[:, :, None] * col1[:, None])
@ R[:, :, 1, None]
).view_as(R[:, :, 1])
col2 = tmp / tmp.norm(dim=-1, keepdim=True)
# 3rd column
col3 = torch.cross(col1, col2, dim=-1)
Rout = torch.stack([col1, col2, col3], dim=-1)
return Rout
def spoonful(
R: torch.Tensor,
Ps: torch.Tensor,
Pt: torch.Tensor,
iters: int = 5,
weights: torch.Tensor = None,
use_target: bool = False,
eps: float = 1e-5,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Takes up a candidate rotation and a set of correspondences from the source and target
point clouds and produces additional poses under the linearized constraints for the rotation.
This is the function in this file you'll want to call most often.
B - Batch size
N - Number of correspondences
I - Number of iterations
Parameters:
R : A batch of initial rotation matrices Bx3x3
Ps: Correspondence points from the source point cloud BxNx3
Pt: Correspondence points from the target point cloud BxNx3
iters: Number of iterations to perform
weights: A tensor of non-negative weights ranking each correspondence BxN
use_target: Whether the source or target point clouds should be used to form matrix A. If you experience instability, try setting it to True
eps: Small epsilon to prevent division by zero situations
Returns:
R_all: A set of new rotation estimates BxIx3x3
t_all: A set of new translation estimates BxIx3
"""
A = torch.full_like(R, nan)
b = torch.full_like(R, nan)
if weights is None:
weights = Ps.new_ones(Ps.shape[:2])
wn = weights / (weights.sum(dim=-1, keepdim=True) + eps)
# weighted mean
Psm = torch.sum(wn[..., None] * Ps, dim=1, keepdim=True)
Ptm = torch.sum(wn[..., None] * Pt, dim=1, keepdim=True)
Psc = Ps - Psm
Ptc = Pt - Ptm
# Reshaping the linear system of equations
Eij = (
torch.eye(3, device=A.device)[:, None, :, None]
* torch.eye(3, device=A.device)[:, None, :]
).reshape((-1, 3, 3))
if use_target:
A = Ptc.transpose(-1, -2) @ (wn[..., None] * Ptc)
AA = (A[:, None] @ Eij).transpose(-1, -2).reshape(-1, 9, 9)
else:
A = Psc.transpose(-1, -2) @ (wn[..., None] * Psc)
AA = (Eij @ A[:, None]).transpose(-1, -2).reshape(-1, 9, 9)
b = Ptc.transpose(-1, -2) @ (wn[..., None] * Psc)
Ab = b.view(-1, 9, 1)
# Linearize
R_all = []
for _ in range(iters):
R = solve_linearized(R, AA, Ab)
R = form_rotation(R)
R_all.append(R)
R_all = torch.stack(R_all, dim=1)
t_all = Ptm.transpose(-1, -2)[:, None] - R_all @ Psm.transpose(-1, -2)[:, None]
return R_all, t_all.squeeze(-1)