-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtransformer.py
381 lines (303 loc) · 14.8 KB
/
transformer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
#https://arxiv.org/abs/1706.03762 Attention Is All You Need(Transformer)
#https://arxiv.org/abs/1607.06450 Layer Normalization
#https://arxiv.org/abs/1512.00567 Label Smoothing
import tensorflow as tf #version 1.4
import numpy as np
import os
#tf.set_random_seed(787)
class Transformer:
def __init__(self, sess, voca_size, embedding_size, is_embedding_scale, PE_sequence_length,
encoder_decoder_stack, multihead_num, eos_idx, pad_idx, label_smoothing):
self.sess = sess
self.voca_size = voca_size
self.embedding_size = embedding_size
self.is_embedding_scale = is_embedding_scale # True or False
self.PE_sequence_length = PE_sequence_length
self.encoder_decoder_stack = encoder_decoder_stack
self.multihead_num = multihead_num
self.eos_idx = eos_idx # <'eos'> symbol index
self.pad_idx = pad_idx # <'pad'> symbol index
self.label_smoothing = label_smoothing # if 1.0, then one-hot encooding
self.PE = tf.convert_to_tensor(self.positional_encoding(), dtype=tf.float32) #[self.PE_sequence_length, self.embedding_siz] #slice해서 쓰자.
with tf.name_scope("placeholder"):
self.lr = tf.placeholder(tf.float32)
self.encoder_input = tf.placeholder(tf.int32, [None, None], name='encoder_input')
self.encoder_input_length = tf.shape(self.encoder_input)[1]
self.decoder_input = tf.placeholder(tf.int32, [None, None], name='decoder_input') #'go a b c eos pad'
self.decoder_input_length = tf.shape(self.decoder_input)[1]
self.target = tf.placeholder(tf.int32, [None, None], name='target') # 'a b c eos pad pad'
self.keep_prob = tf.placeholder(tf.float32, name='keep_prob')
# dropout (each sublayers before add and norm) and (sums of the embeddings and the PE) and (attention)
with tf.name_scope("embedding_table"):
with tf.device('/cpu:0'):
zero = tf.zeros([1, self.embedding_size], dtype=tf.float32) # for padding
#embedding_table = tf.Variable(tf.random_uniform([self.voca_size-1, self.embedding_size], -1, 1))
embedding_table = tf.get_variable( # https://github.com/tensorflow/models/blob/master/official/transformer/model/embedding_layer.py
'embedding_table',
[self.voca_size-1, self.embedding_size],
initializer=tf.random_normal_initializer(0., self.embedding_size ** -0.5))
front, end = tf.split(embedding_table, [self.pad_idx, self.voca_size-1-self.pad_idx])
self.embedding_table = tf.concat((front, zero, end), axis=0) # [self.voca_size, self.embedding_size]
with tf.name_scope('encoder'):
encoder_input_embedding, encoder_input_mask = self.embedding_and_PE(self.encoder_input, self.encoder_input_length)
self.encoder_embedding = self.encoder(encoder_input_embedding, encoder_input_mask)
with tf.name_scope('decoder'):
decoder_input_embedding, decoder_input_mask = self.embedding_and_PE(self.decoder_input, self.decoder_input_length) # decoder_input은 go 붙어있어야함.
self.decoder_embedding, self.decoder_pred = self.decoder(decoder_input_embedding, self.encoder_embedding, decoder_input_mask)
with tf.name_scope('train_cost'):
# target mask ( masking pad of target )
self.target_pad_mask = tf.cast( #sequence_mask처럼 생성됨
tf.not_equal(self.target, self.pad_idx),
dtype=tf.float32
) # [N, target_length] (include eos)
# make smoothing target one hot vector
self.target_one_hot = tf.one_hot(
self.target,
depth=self.voca_size,
on_value = (1.0-self.label_smoothing) + (self.label_smoothing / self.voca_size), # tf.float32
off_value = (self.label_smoothing / self.voca_size), # tf.float32
dtype= tf.float32
) # [N, self.target_length, self.voca_size]
# calc train_cost
self.train_cost = tf.nn.softmax_cross_entropy_with_logits(
labels = self.target_one_hot,
logits = self.decoder_embedding
) # [N, self.target_length]
self.train_cost *= self.target_pad_mask # except pad
self.train_cost = tf.reduce_sum(self.train_cost) / tf.reduce_sum(self.target_pad_mask)
with tf.name_scope('optimizer'):
optimizer = tf.train.AdamOptimizer(self.lr, beta1=0.9, beta2=0.98, epsilon=1e-9)
self.minimize = optimizer.minimize(self.train_cost)
with tf.name_scope("saver"):
self.saver = tf.train.Saver(max_to_keep=10000)
sess.run(tf.global_variables_initializer())
def embedding_and_PE(self, data, data_length):
# data: [N, data_length]
# embedding lookup and scale
with tf.device('/cpu:0'):
embedding = tf.nn.embedding_lookup(
self.embedding_table,
data
) # [N, data_length, self.embedding_size]
if self.is_embedding_scale is True:
embedding *= self.embedding_size**0.5
embedding_mask = tf.expand_dims(
tf.cast(tf.not_equal(data, self.pad_idx), dtype=tf.float32), # [N, data_length]
axis=-1
) # [N, data_length, 1]
# Add Position Encoding
embedding += self.PE[:data_length, :]
# pad masking (set 0 PE added pad position)
embedding *= embedding_mask
# Drop out
embedding = tf.nn.dropout(embedding, keep_prob=self.keep_prob)
return embedding, embedding_mask
def encoder(self, encoder_input_embedding, encoder_input_mask):
# encoder_input_embedding: [N, self.encoder_input_length, self.embedding_size] , pad mask applied
# encoder_input_mask: [N, self.encoder_input_length, 1]
# mask
encoder_self_attention_mask = tf.tile(
tf.matmul(encoder_input_mask, tf.transpose(encoder_input_mask, [0, 2, 1])), # [N, encoder_input_length, encoder_input_length]
[self.multihead_num, 1, 1]
) # [self.multihead_num*N, encoder_input_length, encoder_input_length]
for i in range(self.encoder_decoder_stack): #6
# Multi-Head Attention
Multihead_add_norm = self.multi_head_attention_add_norm(
query=encoder_input_embedding,
key_value=encoder_input_embedding,
score_mask=encoder_self_attention_mask,
output_mask=encoder_input_mask,
activation=None,
name='encoder'+str(i)
) # [N, self.encoder_input_length, self.embedding_size]
# Feed Forward
encoder_input_embedding = self.dense_add_norm(
Multihead_add_norm,
self.embedding_size,
output_mask=encoder_input_mask, # set 0 bias added pad position
activation=tf.nn.relu,
name='encoder_dense'+str(i)
) # [N, self.encoder_input_length, self.embedding_size]
return encoder_input_embedding # [N, self.encoder_input_length, self.embedding_size]
def decoder(self, decoder_input_embedding, encoder_embedding, decoder_input_mask):
# decoder_input_embedding: [N, self.decoder_input_length, self.embedding_size] , pad mask applied
# encoder_embedding: [N, self.encoder_input_length, self.embedding_size] , pad mask applied
# decoder_input_mask: [N, self.decoder_input_length, 1]
# mask
pad_of_encoder_embedding = tf.transpose(
tf.reduce_sum(tf.abs(encoder_embedding), axis=-1, keep_dims=True), # [N, self.encoder_input_length, 1]
[0, 2, 1]
) # [N, 1, encoder_input_length]
decoder_ED_attention_mask = tf.tile(
tf.cast(tf.not_equal(pad_of_encoder_embedding, self.pad_idx), dtype=tf.float32), # [N, 1, encoder_input_length]
[self.multihead_num, 1, 1]
) # [self.multihead_num*N, 1, encoder_input_length]
decoder_self_attention_mask = tf.sequence_mask(
tf.range(start=1, limit=self.decoder_input_length+1), # [start, limit)
maxlen=self.decoder_input_length,#.eval(session=sess),
dtype=tf.float32
) # [decoder_input_length, decoder_input_length]
for i in range(self.encoder_decoder_stack):
# Masked Multi-Head Attention
Masked_Multihead_add_norm = self.multi_head_attention_add_norm(
query=decoder_input_embedding,
key_value=decoder_input_embedding,
score_mask=decoder_self_attention_mask,
output_mask=decoder_input_mask,
activation=None,
name='self_attention_decoder'+str(i)
)
# Multi-Head Attention(Encoder Decoder Attention)
ED_Multihead_add_norm = self.multi_head_attention_add_norm(
query=Masked_Multihead_add_norm,
key_value=encoder_embedding,
score_mask=decoder_ED_attention_mask,
output_mask=decoder_input_mask,
activation=None,
name='ED_attention_decoder'+str(i)
)
#Feed Forward
decoder_input_embedding = self.dense_add_norm(
ED_Multihead_add_norm,
units=self.embedding_size,
output_mask=decoder_input_mask, # set 0 bias added pad position
activation=tf.nn.relu,
name='decoder_dense'+str(i)
) # [N, self.decoder_input_length, self.embedding_size]
# share weight, input embeddings, per-softmax layer
decoder_embedding = tf.reshape(
decoder_input_embedding,
[-1, self.embedding_size]
) # [N*self.decoder_input_length, self.embedding_size]
decoder_embedding = tf.matmul(
decoder_embedding,
tf.transpose(self.embedding_table) # [self.embedding_size, self.voca_size]
) # [N*self.decoder_input_length, self.voca_size]
decoder_embedding = tf.reshape(
decoder_embedding,
[-1, self.decoder_input_length, self.voca_size]
) # [N, self.decoder_input_length, self.voca_size]
decoder_pred = tf.argmax(
decoder_embedding,
axis=-1,
output_type=tf.int32
) # [N, self.decoder_input_length]
return decoder_embedding, decoder_pred
def multi_head_attention_add_norm(self, query, key_value, score_mask=None, output_mask=None, activation=None, name=None):
# Sharing Variables
with tf.variable_scope(name, reuse=tf.AUTO_REUSE):
# for문으로 self.multihead_num번 돌릴 필요 없이 embedding_size 만큼 만들고 self.multihead_num등분해서 연산하면 됨.
V = tf.layers.dense( # layers dense는 배치(N)별로 동일하게 연산됨.
key_value,
units=self.embedding_size,
activation=activation,
use_bias=False,
name='V'
) # [N, key_value_sequence_length, self.embedding_size]
K = tf.layers.dense(
key_value,
units=self.embedding_size,
activation=activation,
use_bias=False,
name='K'
) # [N, key_value_sequence_length, self.embedding_size]
Q = tf.layers.dense(
query,
units=self.embedding_size,
activation=activation,
use_bias=False,
name='Q'
) # [N, query_sequence_length, self.embedding_size]
# linear 결과를 self.multihead_num등분하고 연산에 지장을 주지 않도록 batch화 시킴.
# https://github.com/Kyubyong/transformer 참고.
# split: [N, key_value_sequence_length, self.embedding_size/self.multihead_num]이 self.multihead_num개 존재
V = tf.concat(tf.split(V, self.multihead_num, axis=-1), axis=0) # [self.multihead_num*N, key_value_sequence_length, self.embedding_size/self.multihead_num]
K = tf.concat(tf.split(K, self.multihead_num, axis=-1), axis=0) # [self.multihead_num*N, key_value_sequence_length, self.embedding_size/self.multihead_num]
Q = tf.concat(tf.split(Q, self.multihead_num, axis=-1), axis=0) # [self.multihead_num*N, query_sequence_length, self.embedding_size/self.multihead_num]
# Q * (K.T) and scaling , [self.multihead_num*N, query_sequence_length, key_value_sequence_length]
score = tf.matmul(Q, tf.transpose(K, [0, 2, 1])) / tf.sqrt(self.embedding_size/self.multihead_num)
# masking
if score_mask is not None:
score *= score_mask # zero mask
score += ((score_mask-1) * 1e+9) # -inf mask
# decoder self_attention:
# 1 0 0
# 1 1 0
# 1 1 1 형태로 마스킹
# encoder_self_attention
# if encoder_input_data: i like </pad>
# 1 1 0
# 1 1 0
# 0 0 0 형태로 마스킹
# ED_attention
# if encoder_input_data: i like </pad>
# 1 1 0
# 1 1 0
# 1 1 0 형태로 마스킹
softmax = tf.nn.softmax(score, dim=2) # [self.multihead_num*N, query_sequence_length, key_value_sequence_length]
# Attention dropout
# https://arxiv.org/abs/1706.03762v4 => v4 paper에는 attention dropout 하라고 되어 있음.
softmax = tf.nn.dropout(softmax, keep_prob=self.keep_prob)
# Attention weighted sum
attention = tf.matmul(softmax, V) # [self.multihead_num*N, query_sequence_length, self.embedding_size/self.multihead_num]
# split: [N, query_sequence_length, self.embedding_size/self.multihead_num]이 self.multihead_num개 존재
concat = tf.concat(tf.split(attention, self.multihead_num, axis=0), axis=-1) # [N, query_sequence_length, self.embedding_size]
# Linear
Multihead = tf.layers.dense(
concat,
units=self.embedding_size,
activation=activation,
use_bias=False,
name='linear'
) # [N, query_sequence_length, self.embedding_size]
if output_mask is not None:
Multihead *= output_mask
# residual Drop Out
Multihead = tf.nn.dropout(Multihead, keep_prob=self.keep_prob)
# Add
Multihead += query
# Layer Norm
Multihead = tf.contrib.layers.layer_norm(Multihead, begin_norm_axis=2) # [N, query_sequence_length, self.embedding_size]
return Multihead
def dense_add_norm(self, embedding, units, output_mask=None, activation=None, name=None):
# FFN(x) = max(0, x*W1+b1)*W2 + b2
# Sharing Variables
with tf.variable_scope(name, reuse=tf.AUTO_REUSE):
inner_layer = tf.layers.dense(
embedding,
units=4*self.embedding_size, #bert paper
activation=activation # relu
) # [N, self.decoder_input_length, 4*self.embedding_size]
dense = tf.layers.dense(
inner_layer,
units=units,
activation=None
) # [N, self.decoder_input_length, self.embedding_size]
if output_mask is not None:
dense *= output_mask # set 0 bias added pad position
# Drop out
dense = tf.nn.dropout(dense, keep_prob=self.keep_prob)
# Add
dense += embedding
# Layer Norm
dense = tf.contrib.layers.layer_norm(dense, begin_norm_axis=2)
return dense
def positional_encoding(self):
PE = np.zeros([self.PE_sequence_length, self.embedding_size], np.float32)
for pos in range(self.PE_sequence_length): #충분히 크게 만들어두고 slice 해서 쓰자.
sin, cos = [], []
for i in range(0, self.embedding_size//2):
sin.append(np.sin( pos / np.power(10000, 2*i/self.embedding_size) ).astype(np.float32))
cos.append(np.cos( pos / np.power(10000, 2*i/self.embedding_size) ).astype(np.float32))
PE[pos] = np.concatenate((sin,cos))
return PE #[self.PE_sequence_length, self.embedding_siz]
'''
# 기존
def positional_encoding(self):
PE = np.zeros([self.PE_sequence_length, self.embedding_size])
for pos in range(self.PE_sequence_length): #충분히 크게 만들어두고 slice 해서 쓰자.
for i in range(self.embedding_size//2):
PE[pos, 2*i] = np.sin( pos / np.power(10000, 2*i/self.embedding_size) )
PE[pos, 2*i+1] = np.cos( pos / np.power(10000, 2*i/self.embedding_size) )
return PE #[self.PE_sequence_length, self.embedding_siz]
'''