forked from Cyn7hia/PAED
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
285 lines (237 loc) · 8.21 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
import json
import tqdm
import os
import shutil
import time
from collections import Counter
from pathlib import Path
from typing import Dict, List, Optional, Set, Tuple, Union
from pydantic import BaseModel
import torch
def train_test_split(*args, **kwargs) -> list:
raise NotImplementedError
class RelationSentence(BaseModel):
tokens: List[str]
head: List[int]
tail: List[int]
label: str
head_id: str = ""
tail_id: str = ""
label_id: str = ""
error: str = ""
raw: str = ""
score: float = 0.0
zerorc_included: bool = True
def as_tuple(self) -> Tuple[str, str, str]:
head = " ".join([self.tokens[i] for i in self.head])
tail = " ".join([self.tokens[i] for i in self.tail])
return head, self.label, tail
def as_line(self) -> str:
return self.json() + "\n"
def is_valid(self) -> bool:
for x in [self.tokens, self.head, self.tail, self.label]:
if len(x) == 0:
return False
for x in [self.head, self.tail]:
if -1 in x:
return False
return True
@property
def text(self) -> str:
return " ".join(self.tokens)
@classmethod
def from_spans(cls, text: str, head: str, tail: str, label: str, strict=True):
tokens = text.split()
sent = cls(
tokens=tokens,
head=find_span(head, tokens),
tail=find_span(tail, tokens),
label=label,
)
if strict:
assert sent.is_valid(), (head, label, tail, text)
return sent
def as_marked_text(self) -> str:
tokens = list(self.tokens)
for i, template in [
(self.head[0], "[H {}"),
(self.head[-1], "{} ]"),
(self.tail[0], "[T {}"),
(self.tail[-1], "{} ]"),
]:
tokens[i] = template.format(tokens[i])
return " ".join(tokens)
def find_span(span: str, tokens: List[str]) -> List[int]:
if span == "":
return []
start = find_sublist_index(tokens, span.split())
if start >= 0:
return [start + i for i in range(len(span.split()))]
else:
res = find_index(tokens, span.split())
if res != -1:
return res
else:
start, end = align_span_to_tokens(span, tokens)
return list(range(start, end))
def find_sublist_index(items: list, query: list):
length = len(query)
for i in range(len(items) - length + 1):
if items[i : i + length] == query:
return i
return -1
def find_index(items: list, query: list):
indices = []
for token in query:
if token in items:
indices.append(items.index(token))
else:
return -1
return indices
def align_span_to_tokens(span: str, tokens: List[str]) -> Tuple[int, int]:
# Eg align("John R. Allen, Jr.", ['John', 'R.', 'Allen', ',', 'Jr.'])
char_word_map = {}
num_chars = 0
for i, w in enumerate(tokens):
for _ in w:
char_word_map[num_chars] = i
num_chars += 1
char_word_map[num_chars] = len(tokens)
query = span.replace(" ", "")
text = "".join(tokens)
assert query in text
i = text.find(query)
start = char_word_map[i]
end = char_word_map[i + len(query) - 1]
assert 0 <= start <= end
return start, end + 1
def delete_checkpoints(
folder: str = ".", pattern="**/checkpoint*", delete: bool = True
):
for p in Path(folder).glob(pattern):
if (p.parent / "config.json").exists():
print(p)
if delete:
if p.is_dir():
shutil.rmtree(p)
elif p.is_file():
os.remove(p)
else:
raise ValueError("Unknown Type")
class DynamicModel(BaseModel):
class Config:
arbitrary_types_allowed = True
validate_assignment = True
class RelationData(BaseModel):
sents: List[RelationSentence]
@classmethod
def load(cls, path: Path):
with open(path) as f:
lines = f.readlines()
sents = [
RelationSentence(**json.loads(x))
for x in tqdm(lines, desc="RelationData.load")
]
return cls(sents=sents)
def save(self, path: Path):
path.parent.mkdir(exist_ok=True, parents=True)
with open(path, "w") as f:
f.write("".join([s.as_line() for s in self.sents]))
@property
def unique_labels(self) -> List[str]:
return sorted(set([s.label for s in self.sents]))
def train_test_split(
self, test_size: Union[int, float], random_seed: int, by_label: bool = False
):
if by_label:
labels_train, labels_test = train_test_split(
self.unique_labels, test_size=test_size, random_state=random_seed
)
train = [s for s in self.sents if s.label in labels_train]
test = [s for s in self.sents if s.label in labels_test]
else:
groups = self.to_sentence_groups()
keys_train, keys_test = train_test_split(
sorted(groups.keys()), test_size=test_size, random_state=random_seed
)
train = [s for k in keys_train for s in groups[k]]
test = [s for k in keys_test for s in groups[k]]
# Enforce no sentence overlap
texts_test = set([s.text for s in test])
train = [s for s in train if s.text not in texts_test]
data_train = RelationData(sents=train)
data_test = RelationData(sents=test)
if by_label:
assert len(data_test.unique_labels) == test_size
assert not set(data_train.unique_labels).intersection(
data_test.unique_labels
)
info = dict(
sents_train=len(data_train.sents),
sents_test=len(data_test.sents),
labels_train=len(data_train.unique_labels),
labels_test=len(data_test.unique_labels),
)
print(json.dumps(info, indent=2))
return data_train, data_test
def to_sentence_groups(self) -> Dict[str, List[RelationSentence]]:
groups = {}
for s in self.sents:
groups.setdefault(s.text, []).append(s)
return groups
def to_label_groups(self) -> Dict[str, List[RelationSentence]]:
groups = {}
for s in self.sents:
groups.setdefault(s.label, []).append(s)
return groups
def filter_group_sizes(self, min_size: int = 0, max_size: int = 999):
groups = self.to_sentence_groups()
sents = [
s
for k, lst in groups.items()
for s in lst
if min_size <= len(lst) <= max_size
]
return RelationData(sents=sents)
def filter_errors(self):
def check_valid_span(span: List[int]) -> bool:
start = sorted(span)[0]
end = sorted(span)[-1] + 1
return span == list(range(start, end))
sents = []
for s in self.sents:
if s.is_valid():
if check_valid_span(s.head) and check_valid_span(s.tail):
sents.append(s)
print(dict(filter_errors_success=len(sents) / len(self.sents)))
return RelationData(sents=sents)
def analyze(self, header: Optional[str] = None):
labels = self.unique_labels
groups = self.to_sentence_groups()
spans = []
words = []
for s in self.sents:
head, label, tail = s.as_tuple()
spans.append(head)
spans.append(tail)
words.extend(s.tokens)
info = dict(
header=header,
sents=len(self.sents),
labels=str([len(labels), labels]),
unique_texts=len(groups.keys()),
unique_spans=len(set(spans)),
unique_words=len(set(words)),
group_sizes=str(Counter([len(lst) for lst in groups.values()])),
)
print(json.dumps(info, indent=2))
return info
def safe_divide(a: float, b: float) -> float:
if a == 0 or b == 0:
return 0
return a / b
def _get_learning_rate(lr_scheduler):
last_lr = lr_scheduler.get_last_lr()[0]
if torch.is_tensor(last_lr):
last_lr = last_lr.item()
return last_lr