-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcrosstalk_spacing.py
438 lines (386 loc) · 15.6 KB
/
crosstalk_spacing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
#!/usr/bin/env python
# coding=UTF-8
import argparse
import os
from typing import Callable, Iterable
import mlflow
import numpy as np
import torch
import torch.cuda.amp as amp
import torch.nn as nn
from pyutils.config import Config, configs
from pyutils.general import AverageMeter
from pyutils.general import logger as lg
from pyutils.torch_train import (
count_parameters,
load_model,
set_torch_deterministic,
)
from pyutils.typing import Criterion, DataLoader
from core import builder
from core.models.dst import MultiMask
from core.utils import get_parameter_group, register_hidden_hooks
from hardware.photonic_crossbar import PhotonicCrossbar
def validate(
model: nn.Module,
validation_loader: DataLoader,
epoch: int,
criterion: Criterion,
loss_vector: Iterable,
accuracy_vector: Iterable,
device: torch.device,
mixup_fn: Callable = None,
fp16: bool = False,
) -> None:
model.eval()
val_loss = 0
correct = 0
class_meter = AverageMeter("ce")
with amp.autocast(enabled=fp16):
with torch.no_grad():
for i, (data, target) in enumerate(validation_loader):
data = data.to(device, non_blocking=True)
target = target.to(device, non_blocking=True)
if mixup_fn is not None:
data, target = mixup_fn(data, target, random_state=i, vflip=False)
output = model(data)
val_loss = criterion(output, target)
class_meter.update(val_loss.item())
pred = output.data.max(1)[1]
correct += pred.eq(target.data).sum().item()
loss_vector.append(class_meter.avg)
accuracy = 100.0 * correct / len(validation_loader.dataset)
accuracy_vector.append(accuracy)
lg.info(
f"\nValidation set: Average loss: {class_meter.avg:.4e}, Accuracy: {correct}/{len(validation_loader.dataset)} ({accuracy:.2f}%)\n"
)
mlflow.log_metrics({"val_loss": class_meter.avg, "val_acc": accuracy}, step=epoch)
def test(
model: nn.Module,
test_loader: DataLoader,
epoch: int,
criterion: Criterion,
loss_vector: Iterable,
accuracy_vector: Iterable,
device: torch.device,
mixup_fn: Callable = None,
fp16: bool = False,
) -> None:
model.eval()
val_loss = 0
correct = 0
class_meter = AverageMeter("ce")
with amp.autocast(enabled=fp16):
with torch.no_grad():
for i, (data, target) in enumerate(test_loader):
data = data.to(device, non_blocking=True)
target = target.to(device, non_blocking=True)
if mixup_fn is not None:
data, target = mixup_fn(
data, target, random_state=i + 10000, vflip=False
)
output = model(data)
val_loss = criterion(output, target)
class_meter.update(val_loss.item())
pred = output.data.max(1)[1]
correct += pred.eq(target.data).sum().item()
loss_vector.append(class_meter.avg)
accuracy = 100.0 * correct / len(test_loader.dataset)
accuracy_vector.append(accuracy)
return accuracy
def main() -> None:
parser = argparse.ArgumentParser()
parser.add_argument("config", metavar="FILE", help="config file")
# parser.add_argument('--run-dir', metavar='DIR', help='run directory')
# parser.add_argument('--pdb', action='store_true', help='pdb')
args, opts = parser.parse_known_args()
configs.load(args.config, recursive=True)
configs.update(opts)
arch_config = Config()
arch_config.load("./configs/hardware/arch_config.yaml")
configs.update({"arch": arch_config.dict()})
lg.info(configs)
configs.arch.core.precision.in_bit = in_bit = configs.model.conv_cfg.in_bit
configs.arch.core.precision.w_bit = w_bit = configs.model.conv_cfg.w_bit
configs.arch.core.precision.act_bit = act_bit = configs.model.conv_cfg.w_bit
r, c, k1, k2 = configs.model.conv_cfg.miniblock
configs.arch.core.width = k2
configs.arch.core.height = k1
configs.arch.arch.r = r
configs.arch.arch.c = c
work_freq = configs.arch.core.work_freq
hw = PhotonicCrossbar(k2, k1, 1, in_bit, w_bit, act_bit, w_bit, configs.arch)
if torch.cuda.is_available() and int(configs.run.use_cuda):
torch.cuda.set_device(configs.run.gpu_id)
device = torch.device("cuda:" + str(configs.run.gpu_id))
torch.backends.cudnn.benchmark = True
else:
device = torch.device("cpu")
torch.backends.cudnn.benchmark = False
if bool(configs.run.deterministic):
set_torch_deterministic()
train_loader, validation_loader, test_loader = builder.make_dataloader(
splits=["train", "valid", "test"]
)
if (
configs.run.do_distill
and configs.teacher is not None
and os.path.exists(configs.teacher.checkpoint)
):
teacher = builder.make_model(device, model_cfg=configs.teacher)
load_model(teacher, path=configs.teacher.checkpoint)
teacher.eval()
lg.info(f"Load teacher model from {configs.teacher.checkpoint}")
else:
teacher = None
model = builder.make_model(
device,
model_cfg=configs.model,
random_state=(
int(configs.run.random_state) if int(configs.run.deterministic) else None
),
)
## dummy forward to initialize quantizer
model(next(iter(test_loader))[0].to(device))
optimizer = builder.make_optimizer(
get_parameter_group(model, weight_decay=float(configs.optimizer.weight_decay)),
name=configs.optimizer.name,
configs=configs.optimizer,
)
criterion = builder.make_criterion(configs.criterion.name, configs.criterion).to(
device
)
aux_criterions = dict()
if configs.aux_criterion is not None:
for name, config in configs.aux_criterion.items():
if float(config.weight) > 0:
try:
fn = builder.make_criterion(name, cfg=config)
except NotImplementedError:
fn = name
aux_criterions[name] = [fn, float(config.weight)]
print(aux_criterions)
if "mse_distill" in aux_criterions and teacher is not None:
## register hooks for teacher and student
register_hidden_hooks(teacher)
register_hidden_hooks(model)
print(len([m for m in teacher.modules() if hasattr(m, "_recorded_hidden")]))
print(len([m for m in teacher.modules() if hasattr(m, "_recorded_hidden")]))
if configs.dst_scheduler == "None":
configs.dst_scheduler = None
if configs.dst_scheduler is not None:
dst_scheduler = builder.make_dst_scheduler(
optimizer, model, train_loader, configs
)
else:
dst_scheduler = None
lg.info(model)
grad_scaler = amp.GradScaler(enabled=getattr(configs.run, "fp16", False))
lg.info(f"Number of parameters: {count_parameters(model)}")
model_name = f"{configs.model.name}"
checkpoint = f"./checkpoint/{configs.checkpoint.checkpoint_dir}/{model_name}_{configs.checkpoint.model_comment}.pt"
lg.info(f"Current checkpoint: {checkpoint}")
mlflow.set_experiment(configs.run.experiment)
experiment = mlflow.get_experiment_by_name(configs.run.experiment)
mlflow.start_run(run_name=model_name)
mlflow.log_params(
{
"exp_name": configs.run.experiment,
"exp_id": experiment.experiment_id,
"run_id": mlflow.active_run().info.run_id,
"init_lr": configs.optimizer.lr,
"checkpoint": checkpoint,
"restore_checkpoint": configs.checkpoint.restore_checkpoint,
"pid": os.getpid(),
}
)
lossv, accv = [0], [0]
try:
lg.info(
f"Experiment {configs.run.experiment} ({experiment.experiment_id}) starts. Run ID: ({mlflow.active_run().info.run_id}). PID: ({os.getpid()}). PPID: ({os.getppid()}). Host: ({os.uname()[1]})"
)
if (
int(configs.checkpoint.resume)
and len(configs.checkpoint.restore_checkpoint) > 0
):
load_model(
model,
configs.checkpoint.restore_checkpoint,
ignore_size_mismatch=int(configs.checkpoint.no_linear),
)
for name, m in model.named_modules():
if isinstance(m, model._conv_linear): # no last fc layer
# if hasattr(m, "prune_mask") and m.prune_mask is not None:
# print(m.prune_mask)
if (
hasattr(m, "row_prune_mask")
and m.row_prune_mask is not None
and hasattr(m, "col_prune_mask")
and m.col_prune_mask is not None
):
m.prune_mask = MultiMask(
{"row_mask": m.row_prune_mask, "col_mask": m.col_prune_mask}
)
percent = m.row_prune_mask.sum() / m.row_prune_mask.numel()
col_percent = m.col_prune_mask.sum() / m.col_prune_mask.numel()
print(percent, col_percent)
lg.info("Validate resumed model...")
acc = test(
model,
validation_loader,
0,
criterion,
lossv,
accv,
device,
fp16=grad_scaler._enabled,
)
print(f"Validate loaded checkpoint validation acc: {acc}")
if teacher is not None:
test(
teacher,
validation_loader,
0,
criterion,
[],
[],
device,
fp16=grad_scaler._enabled,
)
lg.info("Map teacher to student...")
if hasattr(model, "load_from_teacher"):
with amp.autocast(grad_scaler._enabled):
model.load_from_teacher(teacher)
## compile models
if getattr(configs.run, "compile", False):
model = torch.compile(model)
if teacher is not None:
teacher = torch.compile(teacher)
model.set_noise_flag(configs.noise.noise_flag)
model.set_crosstalk_noise(configs.noise.crosstalk_flag)
model.set_output_noise(configs.noise.output_noise_std)
model.set_light_redist(configs.noise.light_redist)
model.set_input_power_gating(
configs.noise.input_power_gating, configs.noise.input_modulation_ER
)
model.set_output_power_gating(configs.noise.output_power_gating)
interv_s_minax = [
configs.noise.crosstalk_scheduler.interv_s_min,
configs.noise.crosstalk_scheduler.interv_s_max,
]
interv_s_range = np.arange(interv_s_minax[0], interv_s_minax[1] + 0.1, 2)
interv_h_s_minax = [
configs.noise.crosstalk_scheduler.interv_g_min,
configs.noise.crosstalk_scheduler.interv_g_max,
]
interv_h_s_range = np.arange(interv_h_s_minax[0], interv_h_s_minax[1] + 0.1, 2)
R = configs.arch.arch.num_tiles
C = configs.arch.arch.num_pe_per_tile
mzi_total_energy, mzi_energy_dict, _, cycle_dict, _, _ = (
model.calc_weight_MZI_energy(
next(iter(test_loader))[0].shape, R=R, C=C, freq=work_freq
)
)
total_cycles = 0
for key, value in cycle_dict.items():
total_cycles += value[0]
acc_list = []
total_energy_list = []
layer_energy_list = []
layer_energy_breakdown_list = []
network_energy_breakdown_list = []
for interv_s in interv_s_range:
for interv_h_s in interv_h_s_range:
interv_h = interv_h_s + interv_s + model.crosstalk_scheduler.ps_width
model.crosstalk_scheduler.set_spacing(
interv_s=interv_s, interv_h=interv_h
)
if configs.noise.output_noise_std > 0:
N = 3
else:
N = 1
accs = []
for i in range(N):
acc = test(
model,
test_loader,
0,
criterion,
[],
[],
device,
mixup_fn=None,
fp16=False,
)
accs.append(acc)
acc = np.mean(accs)
acc_list.append((interv_s, interv_h_s, acc))
print(f"interv_s: {interv_s}, interv_h: {interv_h}, acc: {acc}")
(
layer_energy,
layer_energy_breakdown,
newtwork_energy_breakdown,
total_energy,
) = hw.calc_total_energy(
cycle_dict,
dst_scheduler,
model,
configs.noise.input_power_gating,
configs.noise.output_power_gating,
)
mzi_total_energy, mzi_energy_dict, _, _, _, _ = (
model.calc_weight_MZI_energy(
next(iter(test_loader))[0].shape, R=R, C=C, freq=work_freq
)
)
for key in layer_energy:
layer_energy[key] += mzi_energy_dict[key]
layer_energy_breakdown[key]["MZI Power"] = mzi_energy_dict[key]
newtwork_energy_breakdown["MZI Power"] = mzi_total_energy
total_energy += mzi_total_energy
layer_energy_np = np.array(list(layer_energy.items()), dtype="object")
layer_energy_breakdown_np = np.array(
list(layer_energy_breakdown.items()), dtype="object"
)
newtwork_energy_breakdown_np = np.array(
list(newtwork_energy_breakdown.items()), dtype="object"
)
layer_energy_list.append(layer_energy_np)
layer_energy_breakdown_list.append(layer_energy_breakdown_np)
network_energy_breakdown_list.append(newtwork_energy_breakdown_np)
total_energy_list.append(total_energy)
lg.info("Energy Breakdown: \n")
lg.info(layer_energy)
lg.info(layer_energy_breakdown)
lg.info(newtwork_energy_breakdown)
lg.info(total_energy)
for layer, components in layer_energy_breakdown.items():
layer_energy[layer] = layer_energy[layer] / (
cycle_dict[layer][0] / work_freq / 1e9
)
for component, value in components.items():
components[component] = value / (
cycle_dict[layer][0] / work_freq / 1e9
)
for key, value in newtwork_energy_breakdown.items():
newtwork_energy_breakdown[key] = value / (
total_cycles / work_freq / 1e9
)
total_energy = total_energy / (total_cycles / work_freq / 1e9)
lg.info("Power Breakdown: \n")
lg.info(layer_energy)
lg.info(layer_energy_breakdown)
lg.info(newtwork_energy_breakdown)
lg.info(total_energy)
acc_list = np.array(acc_list)
np.savetxt(f"{configs.loginfo}.csv", acc_list, delimiter=",", fmt="%.2f")
np.savetxt(
f"{configs.loginfo}_acc_matrix.csv",
acc_list[:, -1].reshape([-1, interv_h_s_range.shape[0]]),
delimiter=",",
fmt="%.2f",
)
except KeyboardInterrupt:
lg.warning("Ctrl-C Stopped")
if __name__ == "__main__":
main()