-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathfindBackground.py
executable file
·340 lines (310 loc) · 12.5 KB
/
findBackground.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
# coding=utf-8
import sys as sys
import argparse as argp
import collections as col
import csv as csv
import functools as fnt
import io as io
import multiprocessing as mp
import operator as op
import threading as thd
import traceback as trb
import time as ti
# imports of non-standard libraries
# this represents the set of external
# dependencies for this script
import numpy as np
import numpy.random as rng
import scipy.spatial as spat
import twobitreader as tbr
"""
Stand-alone script that expects a BED-like input file
and searches for a similar genomic region for each region
in the input file. In other words, given a list of regions
of interest (the foreground), the scripts searches for a
similar set of background regions.
Similarity is defined - for this script - in terms of GC
content and region length.
Note that this code has been extracted from another project
and has been designed for a slightly different use case.
This implies that performance is not optimized for the
specific use case in TEPIC.
"""
__DEVELOPER__ = 'Peter Ebert'
__DEV_EMAIL__ = '[email protected]'
__MAINTAINER__ = 'Florian Schmidt'
__MAINT_EMAIL__ = '[email protected]'
def parse_command_line():
"""
:return:
"""
parser = argp.ArgumentParser(prog='TEPIC/findBackground.py', add_help=True)
ag = parser.add_argument_group('Input/output parameters')
ag.add_argument('--input', '-i', type=str, dest='inputfile', required=True,
help='Path to input file. First three columns in file'
' are expected to be chrom - start - end.')
ag.add_argument('--genome', '-g', type=str, dest='genome', required=True,
help='Path to genome reference file in 2bit format.')
ag.add_argument('--output', '-o', type=str, dest='outputfile', default='stdout',
help='Path to output file or stdout. Default: stdout')
ag = parser.add_argument_group('Runtime parameters')
ag.add_argument('--workers', '-w', type=int, dest='workers', default=1,
help='Number of CPU cores to use. 1 CPU core'
' processes 1 chromosome at a time. Default: 1')
ag.add_argument('--time-out', '-to', type=int, dest='timeout', default=3,
help='Maximal number of minutes to spend searching for'
' background regions per chromosome. Default: 3 minutes')
ag.add_argument('--threshold', '-th', type=int, dest='threshold', default=90,
help='Stop searching after having found more than <THRESHOLD>%%'
' matches per chromosome. Default: 90%%')
ag.add_argument('--eps-init', '-ei', type=float, dest='epsinit', default=1.,
help='Init value for epsilon. Error tolerance in percentage points'
' for similarity matching. Default: 1.0 ppt')
ag.add_argument('--eps-step', '-es', type=float, dest='epsstep', default=0.5,
help='Increment epsilon at each iteration by this value. Default: 0.5')
ag.add_argument('--eps-max', '-em', type=float, dest='epsmax', default=2.,
help='Maximal value for epsilon. After reaching this value, restart'
' search with different starting positions. Default: 2.0')
return parser.parse_args()
def read_input_file(fpath):
"""
:param fpath:
:return:
"""
foreground = col.defaultdict(list)
with open(fpath, 'r') as inputfile:
rows = csv.reader(inputfile, delimiter='\t')
try:
for idx, row in enumerate(rows, start=1):
region = {'name': idx, 'chrom': row[0],
'start': int(row[1]), 'end': int(row[2]),
'length': int(row[2]) - int(row[1])}
foreground[row[0]].append(region)
except (ValueError, IndexError, TypeError) as err:
sys.stderr.write('\nError processing line {} in input file {}\nRecord: {}\n'.format(idx, fpath, row))
raise err
assert foreground, 'No input regions read from file {}'.format(fpath)
return foreground
def load_chromosome_sequence(chrom, fpath):
"""
:param chrom:
:param fpath:
:return:
"""
tbf = tbr.TwoBitFile(fpath)
for key in tbf.keys():
tbf[key.replace("chr","")]=tbf[key]
assert chrom in tbf, 'Chromosome {} not in reference file {}'.format(chrom, fpath)
chrom_seq = tbf[chrom]
return str(chrom_seq).upper()
def compute_data_limits(regions, rt_params):
"""
:param regions:
:param rt_params:
:return:
"""
fac_hi = 1 + rt_params['epsmax'] / 100.
fac_lo = 1 - rt_params['epsmax'] / 100.
reglen_max = max([r['length'] for r in regions])
reglen_min = min([r['length'] for r in regions])
len_bound_hi = np.ceil(reglen_max * fac_hi)
len_bound_lo = np.floor(reglen_min * fac_lo)
threshold = min(len(regions), np.ceil(len(regions) * (rt_params['threshold'] / 100.)))
limits = {'factor_lo': fac_lo, 'factor_hi': fac_hi,
'len_bound_lo': len_bound_lo, 'len_bound_hi': len_bound_hi,
'threshold': threshold, 'num_samples': len(regions)}
return limits
def bulk_add_seq_features(regions, sequence, yardstick):
"""
:param regions:
:param sequence:
:param yardstick:
:return:
"""
regions = sorted(regions, key=lambda x: x['name'])
idxmap = dict()
features = []
taken = np.zeros(len(sequence), dtype=np.bool)
for row, rec in enumerate(regions):
ft_pct_len = np.round(rec['length'] / yardstick * 100., 2)
seq = sequence[rec['start']:rec['end']]
num_c = seq.count('C')
num_g = seq.count('G')
ft_pct_gc = np.round((num_g + num_c) / float(rec['length']) * 100., 2)
idxmap[row] = rec['name']
features.append([ft_pct_len, ft_pct_gc])
taken[rec['start']:rec['end']] = 1
features = np.array(features, dtype=np.float32)
return features, taken, idxmap
def compute_seq_features(yardstick, sequence):
"""
:param yardstick:
:param sequence:
:return:
"""
seq_len = float(len(sequence))
ft_pct_len = np.round(seq_len / yardstick * 100., 2)
num_c = sequence.count('C')
num_g = sequence.count('G')
if (seq_len > 0):
ft_pct_gc = np.round((num_g + num_c) / seq_len * 100., 2)
return [True,ft_pct_len, ft_pct_gc]
else:
return [False,0,0]
def start_relaxed_search(nntree, chromseq, covered, idxmap, limits, params):
"""
:param nntree:
:param chromseq:
:param covered:
:param idxmap:
:param limits:
:param params:
:return:
"""
timeout = thd.Event()
if params['timeout'] > 0:
timer = thd.Timer(params['timeout'] * 60, timeout.set)
timer.start()
chrom_bound = len(chromseq)
coordinates = np.arange(chrom_bound, dtype=np.int32)
found = set()
matched_bg = []
compfeat = fnt.partial(compute_seq_features, limits['len_bound_hi'])
zero_cand = 0
while not timeout.is_set() and len(found) < limits['threshold']:
# select all free start coordinates
rand_starts = coordinates[~covered]
num_candidates = max(25, int(np.ceil((limits['num_samples'] - len(found)) * 1.1)))
rand_starts = rng.choice(rand_starts, size=num_candidates, replace=False)
rand_lengths = rng.randint(low=limits['len_bound_lo'],
high=limits['len_bound_hi'],
size=rand_starts.size)
cand_regions = []
cand_points = []
for s, e in zip(rand_starts, rand_starts + rand_lengths):
if e > chrom_bound or covered[s:e].any():
continue
cand_seq = chromseq[s:e]
cand_feat = compfeat(cand_seq)
if (cand_feat[0]==True):
cand_regions.append((s, e, cand_feat[1], cand_feat[2]))
cand_points.append([cand_feat[1],cand_feat[2]])
if len(cand_points) == 0:
# this can happen, e.g., for small
# chromosomes like chrM
chrom_len = float(covered.size)
if covered.sum() / chrom_len > 0.9:
# most of the chromosome covered, unlikely
# to find more matches
break
if zero_cand > 20:
# I assume this is tantamount to the above
# but just as a safeguard against wasting
# more CPU cycles
break
zero_cand += 1
continue
cand_tree = spat.cKDTree(cand_points)
used_cand = set()
for eps in np.arange(start=params['epsinit'],
stop=params['epsmax'] + params['epsstep'],
step=params['epsstep']):
# bulk query: all candidates against all samples
neighbors = cand_tree.query_ball_tree(nntree, r=eps, p=np.inf)
for cand_idx, matches in enumerate(neighbors):
if cand_idx in used_cand:
continue
sample_idx = [idxmap[m] for m in matches]
sample_idx = [s for s in sample_idx if s not in found]
try:
found.add(sample_idx[0])
used_cand.add(cand_idx)
cand_reg = cand_regions[cand_idx]
covered[cand_reg[0]:cand_reg[1]] = 1
cand_reg = ('', cand_reg[0], cand_reg[1], sample_idx[0], cand_reg[2], cand_reg[3])
matched_bg.append(cand_reg)
except IndexError:
continue
if len(found) >= limits['threshold']:
break
nntree, idxmap = remove_matched_regions(nntree, idxmap, found)
return matched_bg
def remove_matched_regions(nntree, idxmap, found):
"""
:param nntree:
:param idxmap:
:param found:
:return:
"""
keep_rows = []
for k, v in idxmap.items():
if v not in found:
keep_rows.append((k, v))
keep_rows = sorted(keep_rows)
new_data = nntree.data[[t[0] for t in keep_rows], :]
new_idxmap = dict([(i, v) for i, (r, v) in enumerate(keep_rows)])
nntree = spat.cKDTree(new_data)
return nntree, new_idxmap
def find_background_regions(arguments):
"""
:param arguments:
:return:
"""
chrom, params, fg_regions = arguments
data_limits = compute_data_limits(fg_regions, params)
chrom_seq = load_chromosome_sequence(chrom, params['genome'])
fg_regions, taken, idxmap = bulk_add_seq_features(fg_regions, chrom_seq, data_limits['len_bound_hi'])
assert fg_regions.shape[0] == data_limits['num_samples'], \
'Lost foreground entries: {} vs {}'.format(data_limits['num_samples'],
fg_regions.shape[0])
kdtree = spat.cKDTree(fg_regions)
try:
matched = start_relaxed_search(kdtree, chrom_seq, taken, idxmap, data_limits, params)
except Exception:
trb.print_exc(file=sys.stderr)
return 'Error processing chromosome {}'.format(chrom), []
else:
return chrom, matched
def run_background_match(args):
"""
:param args:
:return:
"""
foreground = read_input_file(args.inputfile)
params = vars(args)
foreground = [(chrom, params, regions) for chrom, regions in foreground.items()]
pool = mp.Pool(args.workers)
try:
resit = pool.imap_unordered(find_background_regions, foreground)
out_mode = 'w'
for chrom, matches in resit:
if chrom.startswith('Error'):
sys.stderr.write(chrom)
continue # maybe we are lucky and the rest finishes
if len(matches) == 0:
sys.stderr.write('\nWarning: no matches for chromosome {}\n'.format(chrom))
continue
if args.outputfile == 'stdout':
[sys.stdout.write(chrom + '\t'.join(map(str, reg)) + '\n') for reg in matches]
else:
with open(args.outputfile, out_mode) as dump:
[dump.write(chrom + '\t'.join(map(str, reg)) + '\n') for reg in matches]
out_mode = 'a'
print('Results from chrom {} saved'.format(chrom))
pool.close()
pool.join()
except:
pool.close()
pool.terminate()
raise
return 0
if __name__ == '__main__':
try:
args = parse_command_line()
_ = run_background_match(args)
except Exception as e:
sys.stderr.write('\nError: {}\n'.format(e))
trb.print_exc(file=sys.stderr)
sys.exit(1)
else:
sys.exit(0)