-
Notifications
You must be signed in to change notification settings - Fork 2.1k
/
Copy pathterraintessellation.cpp
752 lines (644 loc) · 30.2 KB
/
terraintessellation.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
/*
* Vulkan Example - Dynamic terrain tessellation
*
* This samples draw a terrain from a heightmap texture and uses tessellation to add in details based on camera distance
* The height level is generated in the vertex shader by reading from the heightmap image
*
* Copyright (C) 2016-2023 by Sascha Willems - www.saschawillems.de
*
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
*/
#include "vulkanexamplebase.h"
#include "VulkanglTFModel.h"
#include "frustum.hpp"
#include <ktx.h>
#include <ktxvulkan.h>
class VulkanExample : public VulkanExampleBase
{
public:
bool wireframe = false;
bool tessellation = true;
// Holds the buffers for rendering the tessellated terrain
struct {
struct Vertices {
VkBuffer buffer{ VK_NULL_HANDLE };
VkDeviceMemory memory{ VK_NULL_HANDLE };
} vertices;
struct Indices {
int count;
VkBuffer buffer{ VK_NULL_HANDLE };
VkDeviceMemory memory{ VK_NULL_HANDLE };
} indices;
} terrain;
struct {
vks::Texture2D heightMap;
vks::Texture2D skySphere;
vks::Texture2DArray terrainArray;
} textures;
struct {
vkglTF::Model skysphere;
} models;
struct {
vks::Buffer terrainTessellation;
vks::Buffer skysphereVertex;
} uniformBuffers;
// Shared values for tessellation control and evaluation stages
struct UniformDataTessellation {
glm::mat4 projection;
glm::mat4 modelview;
glm::vec4 lightPos = glm::vec4(-48.0f, -40.0f, 46.0f, 0.0f);
glm::vec4 frustumPlanes[6];
float displacementFactor = 32.0f;
float tessellationFactor = 0.75f;
glm::vec2 viewportDim;
// Desired size of tessellated quad patch edge
float tessellatedEdgeSize = 20.0f;
} uniformDataTessellation;
// Skysphere vertex shader stage
struct UniformDataVertex {
glm::mat4 mvp;
} uniformDataVertex;
struct Pipelines {
VkPipeline terrain{ VK_NULL_HANDLE };
VkPipeline wireframe{ VK_NULL_HANDLE };
VkPipeline skysphere{ VK_NULL_HANDLE };
} pipelines;
struct {
VkDescriptorSetLayout terrain{ VK_NULL_HANDLE };
VkDescriptorSetLayout skysphere{ VK_NULL_HANDLE };
} descriptorSetLayouts;
struct {
VkPipelineLayout terrain{ VK_NULL_HANDLE };
VkPipelineLayout skysphere{ VK_NULL_HANDLE };
} pipelineLayouts;
struct {
VkDescriptorSet terrain{ VK_NULL_HANDLE };
VkDescriptorSet skysphere{ VK_NULL_HANDLE };
} descriptorSets;
// If supported, this sample will gather pipeline statistics to show e.g. tessellation related information
struct {
VkBuffer buffer{ VK_NULL_HANDLE };
VkDeviceMemory memory{ VK_NULL_HANDLE };
} queryResult;
VkQueryPool queryPool{ VK_NULL_HANDLE };
uint64_t pipelineStats[2] = { 0 };
// View frustum passed to tessellation control shader for culling
vks::Frustum frustum;
VulkanExample() : VulkanExampleBase()
{
title = "Dynamic terrain tessellation";
camera.type = Camera::CameraType::firstperson;
camera.setPerspective(60.0f, (float)width / (float)height, 0.1f, 512.0f);
camera.setRotation(glm::vec3(-12.0f, 159.0f, 0.0f));
camera.setTranslation(glm::vec3(18.0f, 22.5f, 57.5f));
camera.movementSpeed = 10.0f;
}
~VulkanExample()
{
if (device) {
vkDestroyPipeline(device, pipelines.terrain, nullptr);
if (pipelines.wireframe != VK_NULL_HANDLE) {
vkDestroyPipeline(device, pipelines.wireframe, nullptr);
}
vkDestroyPipeline(device, pipelines.skysphere, nullptr);
vkDestroyPipelineLayout(device, pipelineLayouts.skysphere, nullptr);
vkDestroyPipelineLayout(device, pipelineLayouts.terrain, nullptr);
vkDestroyDescriptorSetLayout(device, descriptorSetLayouts.terrain, nullptr);
vkDestroyDescriptorSetLayout(device, descriptorSetLayouts.skysphere, nullptr);
uniformBuffers.skysphereVertex.destroy();
uniformBuffers.terrainTessellation.destroy();
textures.heightMap.destroy();
textures.skySphere.destroy();
textures.terrainArray.destroy();
vkDestroyBuffer(device, terrain.vertices.buffer, nullptr);
vkFreeMemory(device, terrain.vertices.memory, nullptr);
vkDestroyBuffer(device, terrain.indices.buffer, nullptr);
vkFreeMemory(device, terrain.indices.memory, nullptr);
if (queryPool != VK_NULL_HANDLE) {
vkDestroyQueryPool(device, queryPool, nullptr);
vkDestroyBuffer(device, queryResult.buffer, nullptr);
vkFreeMemory(device, queryResult.memory, nullptr);
}
}
}
// Enable physical device features required for this example
virtual void getEnabledFeatures()
{
// Tessellation shader support is required for this example
if (deviceFeatures.tessellationShader) {
enabledFeatures.tessellationShader = VK_TRUE;
} else {
vks::tools::exitFatal("Selected GPU does not support tessellation shaders!", VK_ERROR_FEATURE_NOT_PRESENT);
}
// Fill mode non solid is required for wireframe display
if (deviceFeatures.fillModeNonSolid) {
enabledFeatures.fillModeNonSolid = VK_TRUE;
};
// Enable pipeline statistics if supported (to display them in the UI)
if (deviceFeatures.pipelineStatisticsQuery) {
enabledFeatures.pipelineStatisticsQuery = VK_TRUE;
};
// Enable anisotropic filtering if supported
if (deviceFeatures.samplerAnisotropy) {
enabledFeatures.samplerAnisotropy = VK_TRUE;
}
}
// Setup a pool and a buffer for storing pipeline statistics results
void setupQueryResultBuffer()
{
uint32_t bufSize = 2 * sizeof(uint64_t);
VkMemoryRequirements memReqs;
VkMemoryAllocateInfo memAlloc = vks::initializers::memoryAllocateInfo();
VkBufferCreateInfo bufferCreateInfo =
vks::initializers::bufferCreateInfo(
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT,
bufSize);
// Results are saved in a host visible buffer for easy access by the application
VK_CHECK_RESULT(vkCreateBuffer(device, &bufferCreateInfo, nullptr, &queryResult.buffer));
vkGetBufferMemoryRequirements(device, queryResult.buffer, &memReqs);
memAlloc.allocationSize = memReqs.size;
memAlloc.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT);
VK_CHECK_RESULT(vkAllocateMemory(device, &memAlloc, nullptr, &queryResult.memory));
VK_CHECK_RESULT(vkBindBufferMemory(device, queryResult.buffer, queryResult.memory, 0));
// Create query pool
if (deviceFeatures.pipelineStatisticsQuery) {
VkQueryPoolCreateInfo queryPoolInfo = {};
queryPoolInfo.sType = VK_STRUCTURE_TYPE_QUERY_POOL_CREATE_INFO;
queryPoolInfo.queryType = VK_QUERY_TYPE_PIPELINE_STATISTICS;
queryPoolInfo.pipelineStatistics =
VK_QUERY_PIPELINE_STATISTIC_VERTEX_SHADER_INVOCATIONS_BIT |
VK_QUERY_PIPELINE_STATISTIC_TESSELLATION_EVALUATION_SHADER_INVOCATIONS_BIT;
queryPoolInfo.queryCount = 2;
VK_CHECK_RESULT(vkCreateQueryPool(device, &queryPoolInfo, NULL, &queryPool));
}
}
// Retrieves the results of the pipeline statistics query submitted to the command buffer
void getQueryResults()
{
// We use vkGetQueryResults to copy the results into a host visible buffer
vkGetQueryPoolResults(
device,
queryPool,
0,
1,
sizeof(pipelineStats),
pipelineStats,
sizeof(uint64_t),
VK_QUERY_RESULT_64_BIT);
}
void loadAssets()
{
const uint32_t glTFLoadingFlags = vkglTF::FileLoadingFlags::PreTransformVertices | vkglTF::FileLoadingFlags::PreMultiplyVertexColors | vkglTF::FileLoadingFlags::FlipY;
models.skysphere.loadFromFile(getAssetPath() + "models/sphere.gltf", vulkanDevice, queue, glTFLoadingFlags);
textures.skySphere.loadFromFile(getAssetPath() + "textures/skysphere_rgba.ktx", VK_FORMAT_R8G8B8A8_UNORM, vulkanDevice, queue);
// Terrain textures are stored in a texture array with layers corresponding to terrain height
textures.terrainArray.loadFromFile(getAssetPath() + "textures/terrain_texturearray_rgba.ktx", VK_FORMAT_R8G8B8A8_UNORM, vulkanDevice, queue);
// Height data is stored in a one-channel texture
textures.heightMap.loadFromFile(getAssetPath() + "textures/terrain_heightmap_r16.ktx", VK_FORMAT_R16_UNORM, vulkanDevice, queue);
VkSamplerCreateInfo samplerInfo = vks::initializers::samplerCreateInfo();
// Setup a mirroring sampler for the height map
vkDestroySampler(device, textures.heightMap.sampler, nullptr);
samplerInfo.magFilter = VK_FILTER_LINEAR;
samplerInfo.minFilter = VK_FILTER_LINEAR;
samplerInfo.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR;
samplerInfo.addressModeU = VK_SAMPLER_ADDRESS_MODE_MIRRORED_REPEAT;
samplerInfo.addressModeV = samplerInfo.addressModeU;
samplerInfo.addressModeW = samplerInfo.addressModeU;
samplerInfo.compareOp = VK_COMPARE_OP_NEVER;
samplerInfo.minLod = 0.0f;
samplerInfo.maxLod = (float)textures.heightMap.mipLevels;
samplerInfo.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE;
VK_CHECK_RESULT(vkCreateSampler(device, &samplerInfo, nullptr, &textures.heightMap.sampler));
textures.heightMap.descriptor.sampler = textures.heightMap.sampler;
// Setup a repeating sampler for the terrain texture layers
vkDestroySampler(device, textures.terrainArray.sampler, nullptr);
samplerInfo = vks::initializers::samplerCreateInfo();
samplerInfo.magFilter = VK_FILTER_LINEAR;
samplerInfo.minFilter = VK_FILTER_LINEAR;
samplerInfo.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR;
samplerInfo.addressModeU = VK_SAMPLER_ADDRESS_MODE_REPEAT;
samplerInfo.addressModeV = samplerInfo.addressModeU;
samplerInfo.addressModeW = samplerInfo.addressModeU;
samplerInfo.compareOp = VK_COMPARE_OP_NEVER;
samplerInfo.minLod = 0.0f;
samplerInfo.maxLod = (float)textures.terrainArray.mipLevels;
samplerInfo.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE;
if (deviceFeatures.samplerAnisotropy) {
samplerInfo.maxAnisotropy = 4.0f;
samplerInfo.anisotropyEnable = VK_TRUE;
}
VK_CHECK_RESULT(vkCreateSampler(device, &samplerInfo, nullptr, &textures.terrainArray.sampler));
textures.terrainArray.descriptor.sampler = textures.terrainArray.sampler;
}
void buildCommandBuffers()
{
VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo();
VkClearValue clearValues[2];
clearValues[0].color = defaultClearColor;
clearValues[1].depthStencil = { 1.0f, 0 };
VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo();
renderPassBeginInfo.renderPass = renderPass;
renderPassBeginInfo.renderArea.offset.x = 0;
renderPassBeginInfo.renderArea.offset.y = 0;
renderPassBeginInfo.renderArea.extent.width = width;
renderPassBeginInfo.renderArea.extent.height = height;
renderPassBeginInfo.clearValueCount = 2;
renderPassBeginInfo.pClearValues = clearValues;
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i)
{
renderPassBeginInfo.framebuffer = frameBuffers[i];
VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo));
if (deviceFeatures.pipelineStatisticsQuery) {
vkCmdResetQueryPool(drawCmdBuffers[i], queryPool, 0, 2);
}
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
VkViewport viewport = vks::initializers::viewport((float)width, (float)height, 0.0f, 1.0f);
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
VkRect2D scissor = vks::initializers::rect2D(width, height, 0, 0);
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
vkCmdSetLineWidth(drawCmdBuffers[i], 1.0f);
VkDeviceSize offsets[1] = { 0 };
// Skysphere
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.skysphere);
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayouts.skysphere, 0, 1, &descriptorSets.skysphere, 0, nullptr);
models.skysphere.draw(drawCmdBuffers[i]);
// Tessellated terrain
if (deviceFeatures.pipelineStatisticsQuery) {
// Begin pipeline statistics query
vkCmdBeginQuery(drawCmdBuffers[i], queryPool, 0, 0);
}
// Render
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, wireframe ? pipelines.wireframe : pipelines.terrain);
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayouts.terrain, 0, 1, &descriptorSets.terrain, 0, nullptr);
vkCmdBindVertexBuffers(drawCmdBuffers[i], 0, 1, &terrain.vertices.buffer, offsets);
vkCmdBindIndexBuffer(drawCmdBuffers[i], terrain.indices.buffer, 0, VK_INDEX_TYPE_UINT32);
vkCmdDrawIndexed(drawCmdBuffers[i], terrain.indices.count, 1, 0, 0, 0);
if (deviceFeatures.pipelineStatisticsQuery) {
// End pipeline statistics query
vkCmdEndQuery(drawCmdBuffers[i], queryPool, 0);
}
drawUI(drawCmdBuffers[i]);
vkCmdEndRenderPass(drawCmdBuffers[i]);
VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i]));
}
}
// Generate a terrain quad patch with normals based on heightmap data
void generateTerrain()
{
const uint32_t patchSize{ 64 };
const float uvScale{ 1.0f };
uint16_t* heightdata;
uint32_t dim;
uint32_t scale;
ktxResult result;
ktxTexture* ktxTexture;
// We load the heightmap from an un-compressed ktx image with one channel that contains heights
std::string filename = getAssetPath() + "textures/terrain_heightmap_r16.ktx";
#if defined(__ANDROID__)
// On Android we need to load the file using the asset manager
AAsset* asset = AAssetManager_open(androidApp->activity->assetManager, filename.c_str(), AASSET_MODE_STREAMING);
assert(asset);
size_t size = AAsset_getLength(asset);
assert(size > 0);
ktx_uint8_t* textureData = new ktx_uint8_t[size];
AAsset_read(asset, textureData, size);
AAsset_close(asset);
result = ktxTexture_CreateFromMemory(textureData, size, KTX_TEXTURE_CREATE_LOAD_IMAGE_DATA_BIT, &ktxTexture);
delete[] textureData;
#else
result = ktxTexture_CreateFromNamedFile(filename.c_str(), KTX_TEXTURE_CREATE_LOAD_IMAGE_DATA_BIT, &ktxTexture);
#endif
assert(result == KTX_SUCCESS);
ktx_size_t ktxSize = ktxTexture_GetImageSize(ktxTexture, 0);
ktx_uint8_t* ktxImage = ktxTexture_GetData(ktxTexture);
dim = ktxTexture->baseWidth;
heightdata = new uint16_t[dim * dim];
memcpy(heightdata, ktxImage, ktxSize);
scale = dim / patchSize;
ktxTexture_Destroy(ktxTexture);
const uint32_t vertexCount = patchSize * patchSize;
// We use the Vertex definition from the glTF model loader, so we can re-use the vertex input state
vkglTF::Vertex *vertices = new vkglTF::Vertex[vertexCount];
const float wx = 2.0f;
const float wy = 2.0f;
// Generate a two-dimensional vertex patch
for (auto x = 0; x < patchSize; x++) {
for (auto y = 0; y < patchSize; y++) {
uint32_t index = (x + y * patchSize);
vertices[index].pos[0] = x * wx + wx / 2.0f - (float)patchSize * wx / 2.0f;
vertices[index].pos[1] = 0.0f;
vertices[index].pos[2] = y * wy + wy / 2.0f - (float)patchSize * wy / 2.0f;
vertices[index].uv = glm::vec2((float)x / (patchSize - 1), (float)y / (patchSize - 1)) * uvScale;
}
}
// Calculate normals from the height map using a sobel filter
for (auto x = 0; x < patchSize; x++) {
for (auto y = 0; y < patchSize; y++) {
// We get
float heights[3][3];
for (auto sx = -1; sx <= 1; sx++) {
for (auto sy = -1; sy <= 1; sy++) {
// Get height at sampled position from heightmap
glm::ivec2 rpos = glm::ivec2(x + sx, y + sy) * glm::ivec2(scale);
rpos.x = std::max(0, std::min(rpos.x, (int)dim - 1));
rpos.y = std::max(0, std::min(rpos.y, (int)dim - 1));
rpos /= glm::ivec2(scale);
heights[sx + 1][sy + 1] = *(heightdata + (rpos.x + rpos.y * dim) * scale) / 65535.0f;
}
}
glm::vec3 normal;
// Gx sobel filter
normal.x = heights[0][0] - heights[2][0] + 2.0f * heights[0][1] - 2.0f * heights[2][1] + heights[0][2] - heights[2][2];
// Gy sobel filter
normal.z = heights[0][0] + 2.0f * heights[1][0] + heights[2][0] - heights[0][2] - 2.0f * heights[1][2] - heights[2][2];
// Calculate missing up component of the normal using the filtered x and y axis
// The first value controls the bump strength
normal.y = 0.25f * sqrt( 1.0f - normal.x * normal.x - normal.z * normal.z);
vertices[x + y * patchSize].normal = glm::normalize(normal * glm::vec3(2.0f, 1.0f, 2.0f));
}
}
delete[] heightdata;
// Generate indices
const uint32_t w = (patchSize - 1);
const uint32_t indexCount = w * w * 4;
uint32_t *indices = new uint32_t[indexCount];
for (auto x = 0; x < w; x++)
{
for (auto y = 0; y < w; y++)
{
uint32_t index = (x + y * w) * 4;
indices[index] = (x + y * patchSize);
indices[index + 1] = indices[index] + patchSize;
indices[index + 2] = indices[index + 1] + 1;
indices[index + 3] = indices[index] + 1;
}
}
terrain.indices.count = indexCount;
// Upload vertices and indices to device
uint32_t vertexBufferSize = vertexCount * sizeof(vkglTF::Vertex);
uint32_t indexBufferSize = indexCount * sizeof(uint32_t);
struct {
VkBuffer buffer;
VkDeviceMemory memory;
} vertexStaging, indexStaging;
// Stage the terrain vertex data to the device
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_TRANSFER_SRC_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
vertexBufferSize,
&vertexStaging.buffer,
&vertexStaging.memory,
vertices));
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_TRANSFER_SRC_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
indexBufferSize,
&indexStaging.buffer,
&indexStaging.memory,
indices));
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT,
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
vertexBufferSize,
&terrain.vertices.buffer,
&terrain.vertices.memory));
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_INDEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT,
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
indexBufferSize,
&terrain.indices.buffer,
&terrain.indices.memory));
// Copy from staging buffers
VkCommandBuffer copyCmd = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
VkBufferCopy copyRegion = {};
copyRegion.size = vertexBufferSize;
vkCmdCopyBuffer(
copyCmd,
vertexStaging.buffer,
terrain.vertices.buffer,
1,
©Region);
copyRegion.size = indexBufferSize;
vkCmdCopyBuffer(
copyCmd,
indexStaging.buffer,
terrain.indices.buffer,
1,
©Region);
vulkanDevice->flushCommandBuffer(copyCmd, queue, true);
vkDestroyBuffer(device, vertexStaging.buffer, nullptr);
vkFreeMemory(device, vertexStaging.memory, nullptr);
vkDestroyBuffer(device, indexStaging.buffer, nullptr);
vkFreeMemory(device, indexStaging.memory, nullptr);
delete[] vertices;
delete[] indices;
}
void setupDescriptors()
{
// Pool
std::vector<VkDescriptorPoolSize> poolSizes = {
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 3),
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 3)
};
VkDescriptorPoolCreateInfo descriptorPoolInfo = vks::initializers::descriptorPoolCreateInfo(poolSizes, 2);
VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool));
// Layouts
VkDescriptorSetLayoutCreateInfo descriptorLayout;
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings;
// Terrain
setLayoutBindings = {
// Binding 0 : Shared Tessellation shader ubo
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT | VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT, 0),
// Binding 1 : Height map
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT | VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT | VK_SHADER_STAGE_FRAGMENT_BIT, 1),
// Binding 2 : Terrain texture array layers
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 2),
};
descriptorLayout = vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings.data(), static_cast<uint32_t>(setLayoutBindings.size()));
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayouts.terrain));
// Skysphere
setLayoutBindings = {
// Binding 0 : Vertex shader ubo
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT, 0),
// Binding 1 : Color map
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 1),
};
descriptorLayout = vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings.data(), static_cast<uint32_t>(setLayoutBindings.size()));
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayouts.skysphere));
// Sets
VkDescriptorSetAllocateInfo allocInfo;
std::vector<VkWriteDescriptorSet> writeDescriptorSets;
// Terrain
allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayouts.terrain, 1);
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.terrain));
writeDescriptorSets = {
// Binding 0 : Shared tessellation shader ubo
vks::initializers::writeDescriptorSet(descriptorSets.terrain, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformBuffers.terrainTessellation.descriptor),
// Binding 1 : Height map
vks::initializers::writeDescriptorSet(descriptorSets.terrain, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, &textures.heightMap.descriptor),
// Binding 2 : Terrain texture array layers
vks::initializers::writeDescriptorSet(descriptorSets.terrain, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 2, &textures.terrainArray.descriptor),
};
vkUpdateDescriptorSets(device, static_cast<uint32_t>(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, nullptr);
// Skysphere
allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayouts.skysphere, 1);
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.skysphere));
writeDescriptorSets = {
// Binding 0 : Vertex shader ubo
vks::initializers::writeDescriptorSet(descriptorSets.skysphere, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformBuffers.skysphereVertex.descriptor),
// Binding 1 : Fragment shader color map
vks::initializers::writeDescriptorSet(descriptorSets.skysphere, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, &textures.skySphere.descriptor),
};
vkUpdateDescriptorSets(device, static_cast<uint32_t>(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, nullptr);
}
void preparePipelines()
{
// Layouts
VkPipelineLayoutCreateInfo pipelineLayoutCreateInfo;
pipelineLayoutCreateInfo = vks::initializers::pipelineLayoutCreateInfo(&descriptorSetLayouts.terrain, 1);
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCreateInfo, nullptr, &pipelineLayouts.terrain));
pipelineLayoutCreateInfo = vks::initializers::pipelineLayoutCreateInfo(&descriptorSetLayouts.skysphere, 1);
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCreateInfo, nullptr, &pipelineLayouts.skysphere));
// Pipelines
VkPipelineRasterizationStateCreateInfo rasterizationState = vks::initializers::pipelineRasterizationStateCreateInfo(VK_POLYGON_MODE_FILL, VK_CULL_MODE_BACK_BIT, VK_FRONT_FACE_COUNTER_CLOCKWISE, 0);
VkPipelineColorBlendAttachmentState blendAttachmentState = vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE);
VkPipelineColorBlendStateCreateInfo colorBlendState = vks::initializers::pipelineColorBlendStateCreateInfo(1, &blendAttachmentState);
VkPipelineDepthStencilStateCreateInfo depthStencilState = vks::initializers::pipelineDepthStencilStateCreateInfo(VK_TRUE, VK_TRUE, VK_COMPARE_OP_LESS_OR_EQUAL);
VkPipelineViewportStateCreateInfo viewportState = vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
VkPipelineMultisampleStateCreateInfo multisampleState = vks::initializers::pipelineMultisampleStateCreateInfo(VK_SAMPLE_COUNT_1_BIT, 0);
std::vector<VkDynamicState> dynamicStateEnables = {VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR, VK_DYNAMIC_STATE_LINE_WIDTH };
VkPipelineDynamicStateCreateInfo dynamicState = vks::initializers::pipelineDynamicStateCreateInfo(dynamicStateEnables);
std::array<VkPipelineShaderStageCreateInfo, 4> shaderStages;
// We render the terrain as a grid of quad patches
VkPipelineInputAssemblyStateCreateInfo inputAssemblyState = vks::initializers::pipelineInputAssemblyStateCreateInfo(VK_PRIMITIVE_TOPOLOGY_PATCH_LIST, 0, VK_FALSE);
VkPipelineTessellationStateCreateInfo tessellationState = vks::initializers::pipelineTessellationStateCreateInfo(4);
// Terrain tessellation pipeline
shaderStages[0] = loadShader(getShadersPath() + "terraintessellation/terrain.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getShadersPath() + "terraintessellation/terrain.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
shaderStages[2] = loadShader(getShadersPath() + "terraintessellation/terrain.tesc.spv", VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT);
shaderStages[3] = loadShader(getShadersPath() + "terraintessellation/terrain.tese.spv", VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT);
VkGraphicsPipelineCreateInfo pipelineCI = vks::initializers::pipelineCreateInfo(pipelineLayouts.terrain, renderPass);
pipelineCI.pInputAssemblyState = &inputAssemblyState;
pipelineCI.pRasterizationState = &rasterizationState;
pipelineCI.pColorBlendState = &colorBlendState;
pipelineCI.pMultisampleState = &multisampleState;
pipelineCI.pViewportState = &viewportState;
pipelineCI.pDepthStencilState = &depthStencilState;
pipelineCI.pDynamicState = &dynamicState;
pipelineCI.pTessellationState = &tessellationState;
pipelineCI.stageCount = static_cast<uint32_t>(shaderStages.size());
pipelineCI.pStages = shaderStages.data();
pipelineCI.pVertexInputState = vkglTF::Vertex::getPipelineVertexInputState({ vkglTF::VertexComponent::Position, vkglTF::VertexComponent::Normal, vkglTF::VertexComponent::UV });
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipelines.terrain));
// Terrain wireframe pipeline (if devie supports it)
if (deviceFeatures.fillModeNonSolid) {
rasterizationState.polygonMode = VK_POLYGON_MODE_LINE;
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipelines.wireframe));
};
// Skysphere pipeline
rasterizationState.cullMode = VK_CULL_MODE_FRONT_BIT;
rasterizationState.polygonMode = VK_POLYGON_MODE_FILL;
// Revert to triangle list topology
inputAssemblyState.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST;
// Reset tessellation state
pipelineCI.pTessellationState = nullptr;
// Don't write to depth buffer
depthStencilState.depthWriteEnable = VK_FALSE;
pipelineCI.stageCount = 2;
pipelineCI.layout = pipelineLayouts.skysphere;
shaderStages[0] = loadShader(getShadersPath() + "terraintessellation/skysphere.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getShadersPath() + "terraintessellation/skysphere.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipelines.skysphere));
}
// Prepare and initialize uniform buffer containing shader uniforms
void prepareUniformBuffers()
{
// Shared tessellation shader stages uniform buffer
VK_CHECK_RESULT(vulkanDevice->createBuffer(VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &uniformBuffers.terrainTessellation, sizeof(UniformDataTessellation)));
// Skysphere vertex shader uniform buffer
VK_CHECK_RESULT(vulkanDevice->createBuffer(VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &uniformBuffers.skysphereVertex, sizeof(UniformDataVertex)));
// Map persistent
VK_CHECK_RESULT(uniformBuffers.terrainTessellation.map());
VK_CHECK_RESULT(uniformBuffers.skysphereVertex.map());
}
void updateUniformBuffers()
{
// Tessellation
uniformDataTessellation.projection = camera.matrices.perspective;
uniformDataTessellation.modelview = camera.matrices.view * glm::mat4(1.0f);
uniformDataTessellation.lightPos.y = -0.5f - uniformDataTessellation.displacementFactor; // todo: Not uesed yet
uniformDataTessellation.viewportDim = glm::vec2((float)width, (float)height);
frustum.update(uniformDataTessellation.projection * uniformDataTessellation.modelview);
memcpy(uniformDataTessellation.frustumPlanes, frustum.planes.data(), sizeof(glm::vec4) * 6);
float savedFactor = uniformDataTessellation.tessellationFactor;
if (!tessellation)
{
// Setting this to zero sets all tessellation factors to 1.0 in the shader
uniformDataTessellation.tessellationFactor = 0.0f;
}
memcpy(uniformBuffers.terrainTessellation.mapped, &uniformDataTessellation, sizeof(UniformDataTessellation));
if (!tessellation)
{
uniformDataTessellation.tessellationFactor = savedFactor;
}
// Vertex shader
uniformDataVertex.mvp = camera.matrices.perspective * glm::mat4(glm::mat3(camera.matrices.view));
memcpy(uniformBuffers.skysphereVertex.mapped, &uniformDataVertex, sizeof(UniformDataVertex));
}
void prepare()
{
VulkanExampleBase::prepare();
loadAssets();
generateTerrain();
if (deviceFeatures.pipelineStatisticsQuery) {
setupQueryResultBuffer();
}
prepareUniformBuffers();
setupDescriptors();
preparePipelines();
buildCommandBuffers();
prepared = true;
}
void draw()
{
VulkanExampleBase::prepareFrame();
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer];
VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE));
// Read query results for displaying in next frame (if the device supports pipeline statistics)
if (deviceFeatures.pipelineStatisticsQuery) {
getQueryResults();
}
VulkanExampleBase::submitFrame();
}
virtual void render()
{
if (!prepared)
return;
updateUniformBuffers();
draw();
}
virtual void OnUpdateUIOverlay(vks::UIOverlay *overlay)
{
if (overlay->header("Settings")) {
if (overlay->checkBox("Tessellation", &tessellation)) {
updateUniformBuffers();
}
if (overlay->inputFloat("Factor", &uniformDataTessellation.tessellationFactor, 0.05f, 2)) {
updateUniformBuffers();
}
if (deviceFeatures.fillModeNonSolid) {
if (overlay->checkBox("Wireframe", &wireframe)) {
buildCommandBuffers();
}
}
}
if (deviceFeatures.pipelineStatisticsQuery) {
if (overlay->header("Pipeline statistics")) {
overlay->text("VS invocations: %d", pipelineStats[0]);
overlay->text("TE invocations: %d", pipelineStats[1]);
}
}
}
};
VULKAN_EXAMPLE_MAIN()