命题1. 设 $\displaystyle{ a,b }$ 是整数, $\displaystyle{ \ \gcd \left( a,b \right) =d }$ , 那么对于任意的整数 $\displaystyle{ \operatorname{Li} \left( x \right) \operatorname{Li} x }$ , $\displaystyle{ d| ax+by }$
由整除的性质易得证. $\displaystyle{ \int _ { 0 } ^ { \infty } \frac{ 1 }{ x } \left \lceil \left( a \right) \right \rceil \mathrm{d}x }$
abc $\displaystyle{ 6. 5 \mathtt{ a. 5 } }$