-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTrainingWithGPU.py
138 lines (111 loc) · 5.03 KB
/
TrainingWithGPU.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import argparse
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.autograd import Variable
import cv2
import os
import numpy as np
import random
from skimage import segmentation
import pandas as pd
from pre_processing import mask_and_crop
def seed_everything(seed):
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.deterministic = True
seed = 10
seed_everything(seed)
parser = argparse.ArgumentParser(description='PyTorch Unsupervised Segmentation')
parser.add_argument('--nChannel', metavar='N', default=50, type=int, help='number of channels')
parser.add_argument('--maxIter', metavar='T', default=80, type=int, help='number of maximum iterations')
parser.add_argument('--minLabels', metavar='minL', default=3, type=int, help='minimum number of labels')
parser.add_argument('--lr', metavar='LR', default=0.02, type=float, help='learning rate')
parser.add_argument('--nConv', metavar='M', default=2, type=int, help='number of convolutional layers')
parser.add_argument('--visualize', metavar='1 or 0', default=1, type=int, help='visualization flag')
args = parser.parse_args()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
class MyNet(nn.Module):
def __init__(self, input_dim):
super(MyNet, self).__init__()
self.conv1 = nn.Conv2d(in_channels=input_dim, out_channels=args.nChannel, kernel_size=(3, 3), stride=(1, 1), padding=1)
self.bn1 = nn.BatchNorm2d(args.nChannel)
self.conv2 = nn.ModuleList()
self.bn2 = nn.ModuleList()
for i in range(args.nConv-1):
self.conv2.append(nn.Conv2d(args.nChannel, args.nChannel, kernel_size=(3, 3), stride=(1, 1), padding=1))
self.bn2.append(nn.BatchNorm2d(args.nChannel))
self.conv3 = nn.Conv2d(args.nChannel, args.nChannel, kernel_size=(3, 3), stride=(1, 1), padding=1)
self.bn3 = nn.BatchNorm2d(args.nChannel)
def forward(self, x):
x = self.conv1(x)
x = F.relu(x)
x = self.bn1(x)
for i in range(args.nConv-1):
x = self.conv2[i](x)
x = F.relu(x)
x = self.bn2[i](x)
x = self.conv3(x)
x = self.bn3(x)
return x
def unsupervised_segmentation(im):
loss_lst = []
im_denoise = cv2.fastNlMeansDenoisingColored(im, None, 10, 10, 0, 15)
data = torch.from_numpy(np.array([im.transpose((2, 0, 1)).astype('float32') / 255.])).to(device)
data = Variable(data)
labels = segmentation.felzenszwalb(im_denoise, scale=1, sigma=0.1, min_size=60)
labels = labels.reshape(im.shape[0]*im.shape[1])
u_labels = np.unique(labels)
u_labels = np.sort(u_labels)
l_inds = []
for i in range(len(u_labels)):
l_inds.append(np.where(labels == u_labels[i])[0])
model = MyNet(data.size(1)).to(device)
model.train()
loss_fn = torch.nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=args.lr)
color_seed = 42
np.random.seed(color_seed)
label_colours = np.random.randint(255, size=(args.nChannel, 3))
for batch_idx in range(args.maxIter):
optimizer.zero_grad()
output = model(data)[0]
output = output.permute(1, 2, 0).contiguous().view(-1, args.nChannel)
_, target = torch.max(output, 1)
im_target = target.data.cpu().numpy()
nLabels = len(np.unique(im_target))
for i in range(len(l_inds)):
labels_per_sp = im_target[l_inds[i]]
u_labels_per_sp = np.unique(labels_per_sp)
hist = np.zeros(len(u_labels_per_sp))
for j in range(len(hist)):
hist[j] = len(np.where(labels_per_sp == u_labels_per_sp[j])[0])
im_target[l_inds[i]] = u_labels_per_sp[np.argmax(hist)]
target = torch.from_numpy(im_target).to(device)
if args.visualize:
im_target_rgb = np.array([label_colours[c % args.nChannel] for c in im_target])
im_target_rgb = im_target_rgb.reshape(im.shape).astype(np.uint8)
scale_percent = 50
width = int(im_target_rgb.shape[1] * scale_percent / 100)
height = int(im_target_rgb.shape[0] * scale_percent / 100)
dim = (width, height)
cv2.imshow('output', cv2.resize(im_target_rgb, dim, interpolation=cv2.INTER_AREA))
cv2.waitKey(10)
loss = loss_fn(output, target)
loss.backward()
optimizer.step()
print(batch_idx, '/', args.maxIter, '|', ' label num rgb :', nLabels, 'loss :', loss.item())
loss_lst.append(loss.item())
df = pd.DataFrame({f"Loss Seed {seed}": loss_lst})
df.to_excel(f"seed_{seed}_loss_values.xlsx", index=False)
torch.save(model.state_dict(), os.path.join(r"Trained Models", 'model' + '.pth'))
cv2.imshow('output', cv2.resize(im_target_rgb, dim, interpolation=cv2.INTER_AREA))
cv2.waitKey(0)
img_path = r"Images/DSC01902.JPG"
img = mask_and_crop(img_path)
print("Starting Segmentation...")
unsupervised_segmentation(img)