-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathalexnet.py
197 lines (163 loc) · 7.2 KB
/
alexnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
################################################################################
#Michael Guerzhoy and Davi Frossard, 2016
#AlexNet implementation in TensorFlow, with weights
#Details:
#http://www.cs.toronto.edu/~guerzhoy/tf_alexnet/
#
#With code from https://github.com/ethereon/caffe-tensorflow
#Model from https://github.com/BVLC/caffe/tree/master/models/bvlc_alexnet
#Weights from Caffe converted using https://github.com/ethereon/caffe-tensorflow
#
#
################################################################################
from numpy import *
from pylab import *
import time
from scipy.misc import imread
import tensorflow as tf
from caffe_classes import class_names
# import os
# import numpy as np
# import matplotlib.pyplot as plt
# import matplotlib.cbook as cbook
# from scipy.misc import imresize
# import matplotlib.image as mpimg
# from scipy.ndimage import filters
# import urllib
# from numpy import random
def AlexNet():
train_x = zeros((1, 227,227,3)).astype(float32)
train_y = zeros((1, 1000))
xdim = train_x.shape[1:]
ydim = train_y.shape[1]
################################################################################
# Read Image
im1 = (imread("poodle.png")[:, :, :3]).astype(float32)
im1 -= mean(im1)
im2 = (imread("laska.png")[:, :, :3]).astype(float32)
im2 -= mean(im2)
################################################################################
# (self.feed('data')
# .conv(11, 11, 96, 4, 4, padding='VALID', name='conv1')
# .lrn(2, 2e-05, 0.75, name='norm1')
# .max_pool(3, 3, 2, 2, padding='VALID', name='pool1')
# .conv(5, 5, 256, 1, 1, group=2, name='conv2')
# .lrn(2, 2e-05, 0.75, name='norm2')
# .max_pool(3, 3, 2, 2, padding='VALID', name='pool2')
# .conv(3, 3, 384, 1, 1, name='conv3')
# .conv(3, 3, 384, 1, 1, group=2, name='conv4')
# .conv(3, 3, 256, 1, 1, group=2, name='conv5')
# .fc(4096, name='fc6')
# .fc(4096, name='fc7')
# .fc(1000, relu=False, name='fc8')
# .softmax(name='prob'))
net_data = load("bvlc_alexnet.npy").item()
x = tf.placeholder(tf.float32, (None,) + xdim)
# conv1
# conv(11, 11, 96, 4, 4, padding='VALID', name='conv1')
k_h = 11; k_w = 11; c_o = 96; s_h = 4; s_w = 4
conv1W = tf.Variable(net_data["conv1"][0])
conv1b = tf.Variable(net_data["conv1"][1])
conv1_in = conv(x, conv1W, conv1b, k_h, k_w, c_o, s_h, s_w, padding="SAME", group=1)
conv1 = tf.nn.relu(conv1_in)
# lrn1
# lrn(2, 2e-05, 0.75, name='norm1')
radius = 2; alpha = 2e-05; beta = 0.75; bias = 1.0
lrn1 = tf.nn.local_response_normalization(conv1,
depth_radius=radius,
alpha=alpha,
beta=beta,
bias=bias)
# maxpool1
# max_pool(3, 3, 2, 2, padding='VALID', name='pool1')
k_h = 3; k_w = 3; s_h = 2; s_w = 2; padding = 'VALID'
maxpool1 = tf.nn.max_pool(lrn1, ksize=[1, k_h, k_w, 1], strides=[1, s_h, s_w, 1], padding=padding)
# conv2
# conv(5, 5, 256, 1, 1, group=2, name='conv2')
k_h = 5; k_w = 5; c_o = 256; s_h = 1; s_w = 1; group = 2
conv2W = tf.Variable(net_data["conv2"][0])
conv2b = tf.Variable(net_data["conv2"][1])
conv2_in = conv(maxpool1, conv2W, conv2b, k_h, k_w, c_o, s_h, s_w, padding="SAME", group=group)
conv2 = tf.nn.relu(conv2_in)
# lrn2
# lrn(2, 2e-05, 0.75, name='norm2')
radius = 2; alpha = 2e-05; beta = 0.75; bias = 1.0
lrn2 = tf.nn.local_response_normalization(conv2,
depth_radius=radius,
alpha=alpha,
beta=beta,
bias=bias)
# maxpool2
# max_pool(3, 3, 2, 2, padding='VALID', name='pool2')
k_h = 3; k_w = 3; s_h = 2; s_w = 2; padding = 'VALID'
maxpool2 = tf.nn.max_pool(lrn2, ksize=[1, k_h, k_w, 1], strides=[1, s_h, s_w, 1], padding=padding)
# conv3
# conv(3, 3, 384, 1, 1, name='conv3')
k_h = 3; k_w = 3; c_o = 384; s_h = 1; s_w = 1; group = 1
conv3W = tf.Variable(net_data["conv3"][0])
conv3b = tf.Variable(net_data["conv3"][1])
conv3_in = conv(maxpool2, conv3W, conv3b, k_h, k_w, c_o, s_h, s_w, padding="SAME", group=group)
conv3 = tf.nn.relu(conv3_in)
# conv4
# conv(3, 3, 384, 1, 1, group=2, name='conv4')
k_h = 3; k_w = 3; c_o = 384; s_h = 1; s_w = 1; group = 2
conv4W = tf.Variable(net_data["conv4"][0])
conv4b = tf.Variable(net_data["conv4"][1])
conv4_in = conv(conv3, conv4W, conv4b, k_h, k_w, c_o, s_h, s_w, padding="SAME", group=group)
conv4 = tf.nn.relu(conv4_in)
# conv5
# conv(3, 3, 256, 1, 1, group=2, name='conv5')
k_h = 3; k_w = 3; c_o = 256; s_h = 1; s_w = 1; group = 2
conv5W = tf.Variable(net_data["conv5"][0])
conv5b = tf.Variable(net_data["conv5"][1])
conv5_in = conv(conv4, conv5W, conv5b, k_h, k_w, c_o, s_h, s_w, padding="SAME", group=group)
conv5 = tf.nn.relu(conv5_in)
# maxpool5
# max_pool(3, 3, 2, 2, padding='VALID', name='pool5')
k_h = 3; k_w = 3; s_h = 2; s_w = 2; padding = 'VALID'
maxpool5 = tf.nn.max_pool(conv5, ksize=[1, k_h, k_w, 1], strides=[1, s_h, s_w, 1], padding=padding)
# fc6
# fc(4096, name='fc6')
fc6W = tf.Variable(net_data["fc6"][0])
fc6b = tf.Variable(net_data["fc6"][1])
fc6 = tf.nn.relu_layer(tf.reshape(maxpool5, [-1, int(prod(maxpool5.get_shape()[1:]))]), fc6W, fc6b)
# fc7
# fc(4096, name='fc7')
fc7W = tf.Variable(net_data["fc7"][0])
fc7b = tf.Variable(net_data["fc7"][1])
fc7 = tf.nn.relu_layer(fc6, fc7W, fc7b)
# fc8
# fc(1000, relu=False, name='fc8')
fc8W = tf.Variable(net_data["fc8"][0])
fc8b = tf.Variable(net_data["fc8"][1])
fc8 = tf.nn.xw_plus_b(fc7, fc8W, fc8b)
# prob
# softmax(name='prob'))
prob = tf.nn.softmax(fc8)
init = tf.initialize_all_variables()
sess = tf.Session()
sess.run(init)
t = time.time()
output = sess.run(prob, feed_dict={x: [im1, im2]})
################################################################################
# Output:
for input_im_ind in range(output.shape[0]):
inds = argsort(output)[input_im_ind, :]
print("Image", input_im_ind)
for i in range(5):
print(class_names[inds[-1 - i]], output[input_im_ind, inds[-1 - i]])
print(time.time() - t)
def conv(input, kernel, biases, k_h, k_w, c_o, s_h, s_w, padding="VALID", group=1):
# From https://github.com/ethereon/caffe-tensorflow
c_i = input.get_shape()[-1]
assert c_i % group == 0
assert c_o % group == 0
convolve = lambda i, k: tf.nn.conv2d(i, k, [1, s_h, s_w, 1], padding=padding)
if group == 1:
convl = convolve(input, kernel)
else:
input_groups = tf.split(3, group, input)
kernel_groups = tf.split(3, group, kernel)
output_groups = [convolve(i, k) for i, k in zip(input_groups, kernel_groups)]
convl = tf.concat(3, output_groups)
return tf.reshape(tf.nn.bias_add(convl, biases), [-1] + convl.get_shape().as_list()[1:])