-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathabout.html
821 lines (763 loc) · 61.8 KB
/
about.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
<!DOCTYPE html>
<html lang="en">
<head>
<!-- Global site tag (gtag.js) - Google Analytics - Personal -->
<script async src="https://www.googletagmanager.com/gtag/js?id=UA-176192306-1"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag(){dataLayer.push(arguments);}
gtag('js', new Date());
gtag('config', 'UA-176192306-1');
</script>
<!-- Global site tag (gtag.js) - Google Analytics - SBRG -->
<script async src="https://www.googletagmanager.com/gtag/js?id=UA-176090948-2"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag(){dataLayer.push(arguments);}
gtag('js', new Date());
gtag('config', 'UA-176090948-2');
</script>
<meta charset="UTF-8">
<title>iModulonDB: About</title>
<link rel="icon" href="favicon.ico" type="image/x-icon" />
<!-- Bootstrap CDN -->
<link rel="stylesheet" href="https://stackpath.bootstrapcdn.com/bootstrap/4.4.1/css/bootstrap.min.css" integrity="sha384-Vkoo8x4CGsO3+Hhxv8T/Q5PaXtkKtu6ug5TOeNV6gBiFeWPGFN9MuhOf23Q9Ifjh" crossorigin="anonymous">
<script src="https://raw.github.com/ftlabs/ftellipsis/master/build/ftellipsis.min.js"></script>
<!-- Font -->
<link href="https://fonts.googleapis.com/css2?family=Roboto:wght@100;300;400;500;700&display=swap" rel="stylesheet">
<!-- FontAwesome Icons -->
<script src="https://kit.fontawesome.com/a27dabf34d.js" crossorigin="anonymous"></script>
<!-- CSS -->
<style>
* {
font-family: 'Roboto', 'Helvetica', 'Segoe UI', sans-serif;
}
.desc-container {
position: relative;
width: 100%;
}
.desc-image {
display: block;
width: 100%;
height: auto;
}
.desc-overlay {
position: absolute;
top: 0;
bottom: 0;
left: 0;
right: 0;
padding: 0.5rem;
height: 100%;
/*width: 100%;*/
opacity: 0;
text-align: center;
transition: .3s ease;
background-color: #5D5C61;
border-radius: 8px;
color: white;
font-size: 16px;
line-height: 1.2;
max-height: 100%;
overflow: hidden;
}
.desc-overlay h6{
font-size: 18px;
}
@media only screen and (max-width: 1200px) {
.desc-overlay{
font-size: 14px;
}
.desc-overlay h6{
font-size: 16px;
}
}
@media only screen and (max-width: 992px) {
.desc-overlay{
font-size: 11px;
line-height: 1.1;
}
.desc-overlay h6{
font-size: 12px;
}
.base-image{
height: 110%;
}
}
@media only screen and (max-width: 768px) {
.desc-overlay {
font-size: 13px;
line-height: 1.1;
}
.desc-overlay h6 {
font-size: 16px;
}
.base-image {
height: 100%;
}
}
@media only screen and (max-width: 576px) {
.desc-overlay{
font-size: 10px;
line-height: 1.1;
}
.desc-overlay h6{
font-size: 11px;
}
.base-image{
height: 100%;
}
}
.desc-container:hover .desc-overlay {
opacity: 0.9;
}
.header {
background-color: #5D5C61;
color: white;
margin-bottom: 0rem;
padding: 0.4rem;
padding-left: 0.7rem;
}
.subheader{
background-color: #A8D0E6;
color: black;
margin-top: 2rem;
margin-bottom: 1rem;
border-radius: 8px;
padding-top: 8px;
}
.base-image{
width: 100%;
}
a{
color: #007bff;
}
.header a {
color: white;
}
.header a:hover {
color: #A8D0E6;
}
h2{
font-size: 36px;
padding: 1rem;
}
h3{
color: #4F5451;
font-size: 24px;
}
.dashboard-container{
border: #5D5C61 0.3rem solid;
border-radius: 8px;
padding: 6px;s
}
.list-group{
border: #5D5C61 0.3rem solid;
border-radius: 8px;
padding: 6px;s
}
.list-group-item{
border: none;
padding: 6px;
padding-left: 16px;
}
.list-group-item:hover {
background-color: #A8D0E6;
}
.title-container {
width: 100%;
}
}
.sub{
vertical-align: sub;
}
.small-text{
font-size: 3px;
color: #15C70C;
}
</style>
</head>
<body>
<!-- Begin HTML -->
<div class="container-fluid" style="min-width: 650px; max-width: 1600px">
<!-- Navbar -->
<div class="header row navbar-dark sticky-top">
<div class="navbar-header">
<a class="navbar-brand" href="index.html">
<img src="images/modulytics_logo.png" width="30" height="30" class="d-inline-block align-top" alt="" loading="lazy">
iModulonDB
</a>
</div>
<ul class="nav navbar-dark">
<li class="nav-item">
<a class="nav-link navbar-dark" href="#introduction">Introduction</a>
</li>
<li class="nav-item">
<a class="nav-link navbar-dark" href="#iModulons">iModulons</a>
</li>
<li class="nav-item">
<a class="nav-link navbar-dark" href="#datasets">Datasets & Code</a>
</li>
<li class="nav-item">
<a class="nav-link navbar-dark" href="#use_site">Using this Site</a>
</li>
<li class="nav-item">
<a class="nav-link navbar-dark" href="#publications">Publications</a>
</li>
</ul>
</div>
<div class="container px-1">
<!-- Title -->
<div class="row">
<div class="col-xs-12 title-container my-2">
<h2 class="text-center">About iModulonDB</h2>
</div>
</div>
<div class="row">
<p>
Welcome to iModulonDB! This is a web-based tool for accessing a database of transcriptomic dataset decompositions. If you are a biologist interested in what machine learning can tell us about the regulation of bacterial gene expression, this site will provide very valuable tools for you.
</p>
</div>
<div class="row">
<div class="col-12">
<ul class="list-group m-3 pt-2">
<h3>Useful Links</h3>
<a href="https://doi.org/10.1093/nar/gkaa810" class="list-group-item list-group-item-action">
<i class="fa-solid fa-newspaper pr-2"></i>
iModulonDB Paper in Nucleic Acids Research, 2021 Database Issue</a>
<a href="https://youtu.be/UmiHapImBuY" class="list-group-item list-group-item-action">
<i class="fa-brands fa-youtube pr-2"></i>
YouTube Video on iModulons</a>
<a href="https://github.com/avsastry/modulome-workflow" class="list-group-item list-group-item-action">
<i class="fa-brands fa-github pr-2"></i>
Modulome Workflow (the iModulon Processing Pipeline)</a>
<a href="https://pymodulon.readthedocs.io/en/latest/" class="list-group-item list-group-item-action">
<i class="fa-brands fa-python pr-2"></i>
PyModulon (the iModulon Analysis and Visualization Python Package)</a>
<a href="mailto:[email protected]" class="list-group-item list-group-item-action">
<i class="fa-solid fa-envelope pr-2"></i>
Contact Us ([email protected])</a>
</ul>
</div>
</div>
<!-- Introduction -->
<div class="row subheader mt-0">
<div class="col-xs-6 title-container">
<div id="introduction">
<h3 class="text-center">Introduction</h3>
</div>
</div>
</div>
<div class="row">
<div class="col-12">
<p>
All living things need to adapt their gene expression to the situation they are in. The transcriptional regulatory network (TRN) is the system within cells that enables this. For instance, consider the gene <i>glpT</i> in <i>E. coli</i>, which is used to import a specific type of food, glycerol. When glycerol is present in the cell’s media, components of the TRN will sense it and respond by upregulating <i>glpT</i> so that the cell can use it for growth. The TRN controls metabolism, stress responses, growth, and nearly every biological process. It is therefore of particular interest in science to understand how it works.
</p><p>
Traditional methods for studying the TRN have focused on individual genes and regulators, especially in model organisms. Wet lab microbiologists have spent decades deleting or overexpressing particular genes, making hypotheses about the effects, and testing them in drill-down studies. In this way, researchers have built a <b>bottom-up</b> understanding of how the TRN works. This approach is very important for making confident claims about individual systems, but it is time-consuming, costly, and often fails to support mathematical models of global gene expression.
</p><p>
Thus, we have developed a new approach which creates a <b>top-down</b> perspective on the TRN. We start with a transcriptomic dataset, which measures the expression of each gene under several conditions. There are thousands of genes in any given organism, and we hope to understand as much of the data as possible – therefore, we need to use machine learning to look for patterns in that dataset which give us valuable insight into the underlying regulation.
</p>
</div>
</div><div class="row">
<div class="col-12">
<div class="dashboard-container mt-2">
<h5>Applications of this Knowledge</h5>
<p>Why study bacterial transcriptional regulation?</p>
<ul>
<li><b>Disease and Antimicrobials:</b> Some of the bacteria we study, such as <i>tuberculosis</i>, cause important diseases. They make us sick by adapting their gene expression to their host environment, and understanding the process by which they do that can help us to better fight disease. The insights we gain into how bacteria respond to stress also help the field develop new antibiotics.</li>
<li><b>Bacterial cell factories:</b> Bacteria are used to produce a ton of products for humans, such as pharmaceuticals and biofuels, and understanding how they regulate their genes improves the existing efficiency and opens doors to producing new products.</li>
<li><b>Understand evolution:</b> Knowledge of how gene expression changes in small-scale evolution experiments and across the phylogenetic tree can tell us how organisms change in general, which might help us in fighting future pandemics.
<li><b>Future applications to other organisms:</b> Technology developed for bacteria can eventually be useful in more complex organisms, like humans. This would be applicable to understanding any human disease with a genetic component.
</ul>
</div>
</div>
</div>
<div class="row">
<div class="col-12">
<div class="dashboard-container mt-2">
<div class="row">
<div class="col-md-5">
<img src="images/transcriptome_ex.png" class="img-fluid"></img>
</div>
<div class="col-md-7">
<h5>Introduction to Transcriptomic Data</h5>
<p>
This is a transcriptomic dataset. Each column represents an experimental condition that cells were subjected to, and each row represents a gene. Each element is an expression value indicating how active the gene is under the given condition (typically measured using RNA-sequencing or microarrays). This dataset has been normalized such that the entire left column, representing the baseline condition of simple growth on glucose, is zero (white), and positive and negative values in other elements indicate that the gene is more or less expressed than it is in the baseline. At iModulonDB, we generate some of the datasets we analyze in-house and download many of them from online sources such as the Sequence Read Archive.
</p>
<h5>Problems in Transcriptomics</h5>
<ul>
<li>There are an extremely large number of genes - it would be nice if they were grouped together into a smaller number of variables.</li>
<li>We want to know the activity of the underlying genetic regulators, and which regulators are most important.</li>
<li>Some genes are completely unstudied - can we guess their function and regulation?</li>
</ul>
</div>
</div>
</div>
</div>
</div>
<div class="card mt-2">
<h5 class="text-center"><i>glpT</i></h5>
<div id="glpt_bar" style="width: 100%;height: 250px;"></div>
<h5 class="text-center"><i>glpA</i></h5>
<div id="glpa_bar" style="width: 100%;height: 250px;"></div>
<p class="card-body">
Each of these plots represents a row from the dataset as a bar graph. We show two related genes: <i>glpT</i>, which imports glycerol, and <i>glpA</i>, which helps break down glycerol. The x axis labels are names given to the various projects in which the samples were collected (for example, "Acid" refers to a project done in acidic media with deletion of various acid response regulators). Hovering over the tallest bars reveals which conditions cause each of the genes to be upregulated. You will notice that in both graphs, activity is highest when glycerol is the carbon source. It would be convenient to treat both of these genes as part of a single glycerol-consumption unit in the transcriptome - the goal of our approach is to find all such units with unsupervised machine learning.
</div>
<!-- What is an iModulon? -->
<div class="row subheader">
<div class="col-xs-6 title-container">
<div id="iModulons">
<h3 class="text-center">iModulons</h3>
</div>
</div>
</div>
<div class="row">
<p>
Data scientists have developed machine learning algorithms that can address the problems described above. Unsupervised machine learning algorithms can identify patterns and structures underlying big datasets by simply using the information in the dataset itself. Independent Component Analysis (ICA) is one such method, and it has outperformed many other algorithms in detecting co-regulated gene sets.
</p><p>
By running the ICA algorithm on a transcriptomic dataset (see our <a href="https://github.com/avsastry/modulome-workflow">github</a>), we generate a set of iModulons. <b>Each iModulon is a group of genes that represents an <u>i</u>ndependently <u>modul</u>ated signal</b>, which the cell is probably controlling using the same or related regulators. Mathematically, an iModulon has a weight for each gene and an activity for each condition. The highly weighted genes are iModulon members, and the highly active conditions are those that the iModulon is likely performing a function in. We characterize an iModulon by interpreting its gene members and activity levels. For example, the <a href="iModulon.html?organism=e_coli&dataset=precise1&k=1">glpR iModulon</a> contains all the genes that are associated with digesting glycerol, and it is active when glycerol is present in the media. We named it 'GlpR' because that is the name of the transcription factor that co-regulates all of its genes.
</p>
</div>
<div class="row">
<div class="card">
<div class="row no-gutters">
<div class="col-md-6 col-lg-5 m-auto">
<img src="images/decomposition.png" class="card-img"></img>
</div>
<div class="col-md-6 col-lg-7">
<div class="card-body">
<p class="card-text">
<b>X: Original transcriptomic dataset.</b> We make the assumption that the X matrix results from a mix of underlying signals (iModulons) controlled by regulators like transcription factors (TFs), and we use the ICA algorithm to identify those signals.
</p><p class="card-text">
<b>M: Links genes to iModulons.</b> A gene that is highly weighted is said to be a “member” of the iModulon, and all iModulon members are expressed as a group. If the iModulon is a sports team, the M matrix defines who the players are.
</p><p class="card-text">
<b>A: Links iModulons to conditions.</b> If an iModulon is highly active in a given condition, it is probably carrying out a function that is important in that condition. If the iModulon is a sports team, the A matrix describes its playbook.
</p>
</div>
</div>
</div>
</div>
</div>
<div class="dashboard-container mt-3">
<h5>iModulon Definitions and Properties</h5>
<ul>
<li><b>iModulon:</b> An independently modulated group of genes, often representing the effect of a transcriptional regulator. These are identified by observing patterns in transciptomic datasets.</li>
<li><b>Regulon:</b> A group of genes regulated by the same transcriptional regulator, as defined by literature. iModulons are often nearly identical to regulons, but may also be subsets or combinations of regulons.</li>
<li><b>Gene weights:</b> Each iModulon contains a weighting for each of its constituent genes. Genes with large weightings are more sensitive to changes in the underlying regulator’s activity than genes with small weightings. Genes can also have negative weightings, indicating a tradeoff between those genes and their positive counterparts.</li>
<li><b>iModulon Activity:</b> Analogous to gene expression, iModulon activity represents how much of the iModulon genes are present under a given condition. Input data is normalized so that the base condition always has activity of zero. The units are the same as the initial dataset, but they result from matrix multiplication which makes them dependent on the gene weight distribution.</li>
<li><b>Independence:</b> The underlying assumption behind ICA is that each transcription factor has an independent effect across the genome. This means that merely knowing the targets of one regulator does not provide any information on the targets of another regulator. Unlike other matrix decomposition algorithms like PCA, ICA uses statistical independence to define the iModulons it finds. This means that iModulons are not always orthogonal to one another.</li>
<li><b>Linear Additivity:</b> iModulons obey matrix multiplication rules. A gene can be in more than one iModulon; when this happens, the action of both iModulons add together to determine gene expression, in a manner proportional to the gene weights.</li>
<li><b>Reconstruction:</b> The iModulon matrices “decompose” the transcriptomic matrix. This means we can reconstruct the initial data using the iModulons, and compare them. In our original paper on this topic, the iModulons accounted for 76% of the variance in the original data. The genes in iModulons are the most important ones for explaining what is happening in the original data, and everything else only counts for 24%.</li>
<li><b>PRECISE:</b> <u>P</u>recision <u>R</u>NA-seq <u>E</u>xpression <u>C</u>ompendium for <u>I</u>ndependent <u>S</u>ignal <u>E</u>xtraction, typically followed by the number of included samples. This is the name we use for datasets that were generated in full or part by our lab.
<li><b>Modulome:</b> The set of all computable iModulons from available data, and the name of our project to download publicly available data and analyze it with our pipeline. When a dataset is a combination of samples from other labs, we name it after this project (e.g. <i>M. tuberculosis</i> Modulome).
</ul>
</div>
<div class="row">
<div class="col-md-6">
<div class="card m-3 p-2">
<h5 class="card-title">Where does ICA come from?</h5>
<img src="images/speakers.png" class="card-img"></img>
<div class="card-body">
<p class="card-text">
ICA was originally developed in the 1980s to solve the blind source separation problem, also known as the cocktail party problem. Imagine you place microphones around a crowded, noisy room. Each microphone would pick up different combinations of each speaker. If we apply ICA to the resultant set of recordings, we can identify the original source signals (M) without any other information. In addition, ICA infers the volume of each source in each microphone-measured signal (A).
</p><p class="card-text">
Similarly, a transcriptomic dataset acts like microphones into the cell, measuring the combined effects of different transcriptional regulators with various condition-specific activities. The regulators/iModulons are behaving independently in the cell, the same way that the people in the room behave independently.
</p>
</div>
</div>
</div>
<div class="col-md-6">
<div class="dashboard-container m-3 p-2">
<h5>Examples of iModulons</h5>
<ul>
<li><a href="iModulon.html?organism=e_coli&dataset=precise1&k=12"><b>glpR</b></a>: As discussed on this page, glpR regulates the import and catabolism of glycerol, and it is active when glycerol is present.</li>
<li><a href="iModulon.html?organism=e_coli&dataset=precise1&k=49"><b>Leu/Ile</b></a>: This iModulon is regulated by both leucine-tRNA attenuation and isoleucine-tRNA attenuation. It contains genes for producing the branched chain amino acids, and it is active when they are needed and inactive when they are present.</li>
<li><a href="iModulon.html?organism=e_coli&dataset=precise1&k=69"><b>SoxS</b></a>: This iModulon regulates the response to a type of stress (oxidative stress).
<li><a href="iModulon.html?organism=e_coli&dataset=precise1&k=78"><b>FlhDC</b></a>: This iModulon encodes flagella assembly. If it is active, the cell is likely to be motile. If not, the cell is probably stationary.</li>
<li><a href="iModulon.html?organism=e_coli&dataset=precise1&k=29"><b>Fur-KO</b></a>: Not all iModulons represent transcription factors. They can also capture genomic alterations in the dataset. Here, the <i>fur</i> gene was knocked out, and an iModulon captured the change to the transcriptome that resulted.</li>
</ul>
</div>
</div>
</div>
<div id="iM_uses" class="dashboard-container m-3 p-2">
<h5>Uses of iModulons</h5>
<ul>
<li><b>Systems-level view of the transcriptome:</b> We now have approximately 100 variables which we know have some importance in the dataset, as opposed to the 1000s of genes we started with. What those variables are tells us a lot about how cells regulate themselves.</li>
<li><b>Grouping genes together:</b> Let’s say you’re a biologist interested in a specific gene. Check out the database (by using the <a href="search.html?organism=e_coli&dataset=precise1"> search functionality</a> for your organism of choice) to learn which other genes share an iModulon with it - now you know which other players are on its team, so to speak. This assists with characterizing unknown genes and better understanding biological responses. <a href="https://www.nature.com/articles/s41467-019-13483-w#figure-2">We have used our gene groupings to identify new gene-regulator relationships, and validated them using chip-exo.</a></li>
<li><b>Discovering new regulators:</b> Uncharacterized groups of genes that show up in iModulons together are likely co-regulated by some unknown mechanism. <a href="https://doi.org/10.1101/2020.05.03.074617">We have discovered new regulators this way.</a> <a href="https://doi.org/10.1101/2020.06.23.168344">We have also used iModulons to identify novel relationships among two-component regulators, impying cross-regulation.</a></li>
<li><b>Understanding cellular function and activity:</b> When faced with the activity profile of an iModulon, we can try to connect its function and activity. This was easy in the case of glycerol: any time glycerol is present, the glpR iModulon becomes activated. Other cases are not so self-explanatory, and may point to interesting hypotheses. <a href="https://doi.org/10.1101/2020.04.26.062638">Many of them were explored in <i>Bacillus subtilis.</i></a></li>
<li><b>Projecting new data:</b> If you have your own datasets for one of the organisms we have analyzed, you can <a hre="https://pymodulon.readthedocs.io/en/latest/tutorials/inferring_imodulon_activities_for_new_data.html">easily calculate the iModulon activities</a>. You can then perform <a href="https://pymodulon.readthedocs.io/en/latest/tutorials/plotting_functions.html#Differential-iModulon-activity">differential iModulon activity calculations between your conditions of interest</a> and visit our web pages to learn about your most significant iModulons. Instead of analyzing hundreds of differentially expressed genes, this will simplify your analysis to only a handful of iModulons.
</ul>
</div>
<div class="dashboard-container m-3 p-2">
<div class="row">
<div class="col-md-9">
<h5>What is a regulon, and how is it different?</h5>
<ul>
<li>Regulons are the closest existing concept to an iModulon. They are groups of genes known to be co-regulated by a given transcription factor based mostly on the location of known binding sites.</li>
<li>The identification of binding sites is a costly and difficult experimental procedure, and it often doesn’t capture the full picture since promoter binding is complicated and condition-dependent.</li>
<li>By matching iModulons to regulons (we say the iModulon is <b>enriched</b> for the given regulon), we can easily learn what likely regulates the iModulon. We can also look at the differences between regulons and iModulons to identify gaps in the field’s current knowledge. <a href="https://www.nature.com/articles/s41467-019-13483-w#figure-2">MetJ is one example</a>, in which we showed that the extra iModulon genes were in fact regulated by MetJ and the genes the iModulon missed did not have MetJ binding sites.</li>
<li>The strength of an enrichment is quantified by precision and recall. If both precision and recall are high, then the iModulon has captured a regulon that is well understood by the existing literature.</li>
<li>Precision (or iModulon Recall) is the fraction of iModulon genes that are known to be in the regulon. If precision is low, the iModulon may contain extra genes that are unexpectedly co-regulated with the regulon.</li>
<li>Recall (or Regulon Recall) is the fraction of regulon genes that are in the iModulon. If recall is low, the iModulon contains a subset of the regulon, which may be because there are additional nuances to the regulation or that the iModulon genes respond the strongest to the given regulator.</li>
</ul>
</div>
<div class="col-md-3">
<h6 class="text-center"><a href="iModulon.html?organism=e_coli&dataset=precise1&k=19">MetJ</a> Example</h6>
<div id="venn" style="width: 100%;height: 200px;"></div>
<p class="text-center">Precision = 11/17 = 64.7%</p>
<p class="text-center">Recall = 11/15 = 73.3%</p>
</div>
</div>
</div>
<!-- Datasets & Code-->
<div class="row subheader">
<div class="col-xs-6 title-container">
<div id="datasets">
<h3 class="text-center">Datasets & Code</h3>
</div>
</div>
</div>
<div class="row">
<div class="col-12">
<p>
iModulon structures are computed from datasets, so the quality and breadth of the data is extremely important.For our original analysis, we developed PRECISE-278 (Formerly PRECISE 1), the <u>P</u>recision <u>R</u>NA-seq <u>E</u>xpression <u>C</u>ompendium for <u>I</u>ndependent <u>S</u>ignal <u>E</u>xtraction with 278 diverse samples from <i>E. coli</i> K-12. We have also developed PRECISE datasets in other organisms, such as <i>S. aureus</i>.
</p><p>
One of the strengths of ICA is that it requires only transcriptomic data, which means we can also re-use existing, publicly available data. We analyzed a single-lab microarray dataset on <i>B. subtilis</i> and <a href="https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1008647">showed that different datasets and transcriptomic technologies generally return similar iModulons.</a>
</p><p>
Next, we sought to apply this approach across the evolutionary tree of prokaryotes. We scraped the Sequence Read Archive for datasets from its most popular prokaryotic strains, and combined all high quality data for analysis. Since this works towards the goal of finding the set of all computable iModulons, we named these projects “Modulome”. iModulonDB rapidly expanded in its first two years thanks to this project. See our home page for the list of all organisms we have analyzed so far.
</p>
</div>
</div>
<div id="good_dataset" class="dashboard-container m-3 p-2">
<h5>What Makes a Good Dataset?</h5>
<ul>
<li><b>High quality:</b> We use rigorous quality control to ensure that the original sequencing reads are not degraded or contaminated, that they align well to the genome of the organism, and that samples collected from the same experimental conditions have highly correlated values.</li>
<li><b>Consistent underlying TRN:</b> Datasets are mostly strain-specific. Though we often include mutants from adaptive laboratory evolution studies or closely related strains, we don’t analyze distantly related organisms in the same iModulon decomposition. Doing so might include differences in the underlying TRN, which would muddy the gene-iModulon relationships. When small strain differences are present in the dataset, we typically observe an iModulon which captures the difference between the strains.</li>
<li><b>Large number of unique conditions:</b> We suggest that a dataset include at least 100 different conditions which should include various media compositions, stress conditions, and any experiments of particular interest. If there are too few conditions or they are all too similar, then ICA will recover a small number of iModulons which will mostly contain many genes each, representing combined effects of many regulators. As more samples are added, the large iModulons split and resolve into more biologically accurate individual signals. </li>
<li><b>Minimal batch effects:</b> Data generated from a single protocol can be normalized to one reference condition (for instance, <i>E. coli</i> PRECISE, which was all generated by our group). When we download data from multiple labs, we normalize each project’s data to its own reference condition. This will remove many batch effects such that ICA can capture the signals underlying all changes from reference, not the changes based on batch. However, if there are a few batch effects remaining in the data, ICA will also separate them into their own technical iModulons.</li>
</ul>
</div>
<div class="row">
<div class="col-12">
<ul class="list-group m-3 pt-2">
<h3>Our Codebases</h3>
<a href="https://github.com/avsastry/modulome-workflow" class="list-group-item list-group-item-action">
<i class="fa-brands fa-github pr-2"></i><b>Modulome-Workflow:</b> contains the pipeline for scraping publicly available data for an organism, aligning reads, quality control, and computing iModulons</a>
<a href="https://github.com/SBRG/pymodulon" class="list-group-item list-group-item-action">
<i class="fa-brands fa-github pr-2"></i><b>Pymodulon:</b> saves iModulon-related data, performs computations such as threshold determination, TRN enrichment analysis, and explained variance, generates plots, and also generates the files needed to create iModulonDB web pages. See our ReadTheDocs for more information.</a>
</ul>
</div>
</div>
<!-- Using this Site -->
<div class="row subheader">
<div class="col-xs-6 title-container">
<div id="use_site">
<h3 class="text-center">Using this Site</h3>
</div>
</div>
</div>
<div class="row">
<p>
The purpose of this site is to share the powerful top-down approach of ICA with other systems biologists and microbiologists. We hope that searching for the genes and functions relevant to your research will point you toward iModulons that expand your understanding of which genes are most important to your application. We are currently working on decomposing additional datasets to compute transcriptional regulatory networks across many organisms, which will advance our knowledge significantly in the age of big data.
</p><p>
To use this site, select your favorite organism from the list on our home page. This will take you to a dataset page, which contains a list of the iModulons we have computed and characterized, as well as the publication in which we describe the set. Click on a row in the iModulon table to see its dashboard, where you can learn about its gene members, activity, and regulator enrichments.
</p><p>
Alternatively, select 'Gene Search' from the dataset page and type in your genes of interest. This will bring you to a similar dashboard, listing the most relevant iModulons for your gene. Note that some genes are removed prior to running ICA if they are never expressed or shown to be extremely noisy within conditions; if that is the case, your gene will not show up in our search.
</p>
</div>
<div class="row">
<p>
For a description of each of the figures shown on the iModulon dashboards <b>hover over</b> the various components of <a href="iModulon.html?organism=e_coli&dataset=precise1&k=12">the example “MalT” iModulon</a> below:
</p>
</div>
<div class="dashboard-container">
<hr>
<div class="row">
<div class="col-md-4 col-xs-12">
<div class="desc-container base-image">
<img src="images/mod_name.png" class="desc-image">
<div class="desc-overlay" >
<h6>Name and Description</h6>
<p>
Here, the iModulon name is given in large font. Below, several descriptors are given, including the biological function and category of iModulon. If the iModulon is found to map to a known regulator, then the "Regulated by" descriptor will be followed by the regulator name. If available, the regulator name will appear as a link to the appropriate database (e.g. RegulonDB). Other statistics, such as the Precision, Recall, and Explained Variance are also shown.
</p>
</div>
</div>
</div>
<div class="col-md-8 col-xs-12">
<div class="desc-container base-image">
<img src="images/mod_table.png" class="desc-image">
<div class="desc-overlay">
<h6>Gene Table</h6>
<p class="mb-0" style="font-size: 12px">
The gene table lists the genes in an iModulon. Clicking a row will take you to the gene page for that gene. This table is scrollable in both directions. Clicking the arrows in the header sorts the contents by the given feature, and right clicking on the header allows columns to be moved to the right end or hidden. This table is also downloadable from the "Download" dropdown menu in the site header.
</p>
<ul class="text-left mt-0">
<li>Gene locus tag</li>
<li>(M<sub>i</sub>): ICA-determined gene weight</li>
<li>Name: Gene Name</li>
<li>Regulated by transcription factor (or other regulator): Green checks indicate that the relationship between the gene and the iModulon’s regulator is known in other databases or literature. </li>
<li>Product: Description of gene product from other databases</li>
<li>Operon: If available, genes in the same operon</li>
<li>Regulators: List of known regulators for this gene</li>
</ul>
</div>
</div>
</div>
</div>
<hr>
<div class="row">
<div class="col-xs-12 title-container">
<h4 class="text-center">Genes</h4>
</div>
</div>
<div class="row">
<div class="col-md-6 col-xs-12">
<div class="desc-container base-image">
<img src="images/mod_hist.png" class="desc-image">
<div class="desc-overlay">
<h6>Gene Weight Histogram</h6>
<p>
For each statistically-determined signal, each gene has a "weight" that represents its importance towards the signal. Genes with weights that occur above a determined threshold (outside the vertical lines) are considered to be a part of the iModulon. Note that the y-axis has a logarithmic scale. Hover over the bars to see the associated genes. If the iModulon has a regulator enrichment, the genes in the regulon will be shown in color. Click the elements in the legend to hide or show the associated bars.
</p>
</div>
</div>
</div>
<div class="col-md-6 col-xs-12">
<div class="desc-container base-image">
<img src="images/mod_scatter.png" class="desc-image">
<div class="desc-overlay">
<h6>Gene Weight Scatter Plot</h6>
<p>
Similar to the gene histogram, the gene weight scatter plot shows the weight of each gene towards the signal. In this figure, the gene weights are plotted against the gene start site. They are colored by category. Again, genes outside the horizontal lines are in the iModulon – click on them to access their gene pages. Gene names, values, and categories can be displayed by hovering over each point.
</p>
</div>
</div>
</div>
</div>
<hr>
<div class="row">
<div class="col-xs-12 title-container">
<h4 class="text-center">Activity</h4>
</div>
</div>
<div>
<div class="col-xs-12">
<div class="desc-container base-image">
<img src="images/mod_activity.png" class="desc-image">
<div class="desc-overlay">
<h6>Activity Bar Graph</h6>
<p>
The activity bar graph shows the relative activity level of the iModulon across all the experimental samples included in the dataset. The plot is divided by the source study for the dataset, and clicking a bar will take you to the associated publication. The black points represent each biological replicate for the sample, and the blue bars represent the averaged activity from the biological replicates. Hovering over the data shows the sample name, the activity value, and some associated metadata. The menu in the top right of the figure includes additional options to download the figure or underlying data. The wrench icon allows you to see all the metadata we have for these samples; metadata with a checkmark will be displayed when you hover over a given bar. Click the ink button to color the samples in the bar by that metadata. For example, clicking the pH ink will color each sample by pH to easily reveal which samples are under acid or base stress.
</p>
</div>
</div>
</div>
</div>
<hr>
<div class="row">
<div class="col-xs-12 title-container">
<h4 class="text-center">Regulation</h4>
</div>
</div>
<div class="row">
<div class="col-md-4 col-xs-12">
<div class="desc-container base-image">
<img src="images/mod_venn.png" class="desc-image">
<div class="desc-overlay">
<h6>iModulon and Regulon Venn Diagram</h6>
<p>
If the iModulon is mapped to a regulator, the venn diagram shows the overlap between the genes in the iModulon and the literature-derived regulon. On the dashboard page, you can hover over each part of the venn diagram to see the number of genes and gene names associated with each group in the diagram.
</p>
</div>
</div>
</div>
<div class="col-md-4 col-xs-12">
<div class="desc-container base-image">
<img src="images/mod_corr.png" class="desc-image">
<div class="desc-overlay">
<h6>Correlation with Regulator Expression</h6>
<p style="font-size: 12px">
The correlation scatter plot appears if the iModulon can be mapped to a transcription factor or sigma factor. The plot shows the relationship between the iModulon activity level and the expression of the regulator across conditions. There are three major relationships: linear correlation, broken linear correlation (shown here), and uncorrelated. Linear or broken linear correlations usually indicate that the regulator is in the iModulon or lacks post-transcriptional regulation, while uncorrelated regulator expression plots indicate that the iModulon responds to post-transcriptional regulation (such as ligand binding).
</p>
</div>
</div>
</div>
</div>
<hr>
</div>
<!-- Citation -->
<div class="row subheader">
<div class="col-xs-6 title-container">
<div id="publications">
<h3 class="text-center">Publications</h3>
</div>
</div>
</div>
<div class="row">
<div class="col-12">
<ul class="list-group m-3 pt-2">
<h3>iModulonDB</h3>
<a href="https://doi.org/10.1093/nar/gkaa810" class="list-group-item list-group-item-action">
<i class="fa-solid fa-newspaper pr-2"></i>Rychel, K., Decker, K., Sastry, A.V. et al. iModulonDB: a knowledgebase of microbial transcriptional regulation derived from machine learning. Nucleic Acids Research 49, D112 (2021).</a>
</ul>
<ul class="list-group m-3 pt-2">
<h3>Datasets on iModulonDB</h3>
<a href="https://doi.org/10.1038/s41467-019-13483-w" class="list-group-item list-group-item-action"><i class="fa-solid fa-newspaper pr-2"></i><b><i>E. coli</i> PRECISE-278 (1.0):</b> Sastry, A.V., Gao, Y., Szubin, R. et al. The Escherichia coli transcriptome mostly consists of independently regulated modules. Nat Commun 10, 5536 (2019).</a>
<a href="https://doi.org/10.1073/pnas.2008413117" class="list-group-item list-group-item-action"><i class="fa-solid fa-newspaper pr-2"></i><b><i>S. aureus Staph</i>PRECISE:</b> Poudel, S., Tsunemoto, H., Seif, Y. et al. Revealing 29 sets of independently modulated genes in Staphylococcus aureus, their regulators and role in key physiological responses. PNAS 117 (29) 17228-17239 (2020).</a>
<a href="https://doi.org/10.1038/s41467-020-20153-9" class="list-group-item list-group-item-action"><i class="fa-solid fa-newspaper pr-2"></i><b><i>B. subtilis</i> Microarray:</b> Rychel, K., Sastry, A.V., Palsson, B.O. Machine learning uncovers independently regulated modules in the Bacillus subtilis transcriptome. Nat Commun 11, 6338 (2020).</a>
<a href="https://doi.org/10.3389/fmicb.2021.753521" class="list-group-item list-group-item-action"><i class="fa-solid fa-newspaper pr-2"></i><b><i>S. acidocaldarius</i> Modulome:</b> Chauhan, S.M., Poudel, S., Rychel, K. et al. Machine Learning Uncovers a Data-Driven Transcriptional Regulatory Network for the Crenarchaeal Thermoacidophile <i>Sulfolobus acidocaldarius</i>. Front. Microbiol. 12, 753521 (2021).</a>
<a href="https://doi.org/10.1128/msphere.00033-22" class="list-group-item list-group-item-action"><i class="fa-solid fa-newspaper pr-2"></i><b><i>M.tuberculosis</i> Modulome:</b> Yoo, R., Rychel, K., Sastry, A.V., et al. Machine Learning of All <i>Mycobacterium tuberculosis</i> H37Rv RNA-seq Data Reveals a Structured Interplay between Metabolism, Stress Response, and Infection. mSphere. 7(2):e0003322 (2022).</a>
<a href="https://doi.org/10.1093/nar/gkac187" class="list-group-item list-group-item-action"><i class="fa-solid fa-newspaper pr-2"></i><b><i>P. aeruginosa aeru</i>PRECISE-364:</b> Rajput, A., Tsunemoto, H., Sastry, A.V. et al. Machine Learning of <i>Pseudomonas aeruginosa</i> transcriptomes identifies independently modulated sets of genes associated with known transcriptional regulators. Nucleic Acids Research 50, 3658 (2022)</a>
<a href="https://doi.org/10.1016/j.ymben.2022.04.004" class="list-group-item list-group-item-action"><i class="fa-solid fa-newspaper pr-2"></i><b><i>P. putida putida</i>PRECISE-321:</b> Lim, H.G., Rychel, K., Sastry, A.V. et al. Machine-learning from <i>Pseudomonas putida</i> KT2440 transcriptomes reveals its transcriptional regulatory network. Metab Eng 27, 297 (2022)</a>
<a href="https://doi.org/10.1093/nar/gkac743" class="list-group-item list-group-item-action"><i class="fa-solid fa-newspaper pr-2"></i><b><i>P. aeruginosa aeru</i>PRECISE-411:</b> Rajput, A., Tsunemoto, H., Sastry, A.V. et al. Advanced transcriptomic analysis reveals the role of efflux pumps and media composition in antibiotic responses of <i>Pseudomonas aeruginosa</i>. Nucleic Acids Research, 50, 9675 (2022).</a>
<a href="https://doi.org/10.1128/msystems.00467-22" class="list-group-item list-group-item-action"><i class="fa-solid fa-newspaper pr-2"></i><b><i>S. Enterica</i> Modulome:</b> Yuan, Y., Seif, Y., Rychel, K. et al. Pan-genomic analysis of transcriptional modules across Salmonella Typhimurium reveals the regulatory landscape of different strains. mSystems (2022).</a>
<a href="https://doi.org/10.1101/2021.04.08.439047" class="list-group-item list-group-item-action"><i class="fa-solid fa-newspaper pr-2"></i><b><i>E. coli</i> PRECISE-815 (2.0) & Modulome:</b> Lamoureux, C.R., Decker, K.T., Sastry, A.V. et al. PRECISE 2.0 - an expanded high-quality RNA-seq compendium for Escherichia coli K-12 reveals high-resolution transcriptional regulatory structure. BioRxiv.</a>
<a href="https://doi.org/10.1101/2021.07.01.450581" class="list-group-item list-group-item-action"><i class="fa-solid fa-newspaper pr-2"></i><b><i>B. subtilis</i> Modulome:</b> Sastry, A.V., Poudel, S., Rychel, K., et al. Mining all publicly available expression data to compute dynamic microbial transcriptional regulatory networks. BioRxiv.</a>
<a href="https://www.biorxiv.org/content/10.1101/2022.08.04.502797v1" class="list-group-item list-group-item-action"><i class="fa-solid fa-newspaper pr-2"></i><b><i>S. pyogenes</i> Modulome:</b> Hirose, Y., Poudel, S., Sastry, A.V., et al. Elucidation of independently modulated genes in Streptococcus pyogenes reveals carbon sources that control its expression of hemolytic toxins. Forthcoming.</a>
<a href="https://doi.org/10.1101/2021.04.08.439047" class="list-group-item list-group-item-action"><i class="fa-solid fa-newspaper pr-2"></i><b><i>E. coli</i> PRECISE-1K:</b> Lamoureux, C.R., Decker, K.T., Sastry, A.V., et al. A multi-scale transcriptional regulatory network knowledge base for <i>Escherichia coli</i>. Forthcoming.</a>
</ul>
<ul class="list-group m-3 pt-2">
<h3>Additional iModulon-related Papers</h3>
<a href="https://doi.org/10.1073/pnas.1909987116" class="list-group-item list-group-item-action"><i class="fa-solid fa-newspaper pr-2"></i>Anand, A. et al. Adaptive evolution reveals a tradeoff between growth rate and oxidative stress during naphthoquinone-based aerobic respiration. PNAS 116 (50) 25287-25292 (2019).</a>
<a href="https://doi.org/10.1093/molbev/msz251" class="list-group-item list-group-item-action"><i class="fa-solid fa-newspaper pr-2"></i>Anand, A. et al. OxyR Is a Convergent Target for Mutations Acquired during Adaptation to Oxidative Stress-Prone Metabolic States. Mol Biol Evol 37 (3) 660-667 (2020).</a>
<a href="https://doi.org/10.1016/j.ymben.2020.07.002" class="list-group-item list-group-item-action"><i class="fa-solid fa-newspaper pr-2"></i>Tan, J. et al. Independent component analysis of <i>E. coli</i>'s transcriptome reveals the cellular processes that respond to heterologous gene expression. Metab Eng 61 360-368 (2020).</a>
<a href="https://doi.org/10.1128/mSystems.00980-20" class="list-group-item list-group-item-action"><i class="fa-solid fa-newspaper pr-2"></i>Choudhary, K.S. et al. Elucidation of Regulatory Modes for Five Two-Component Systems in <i>Escherichia coli</i> Reveals Novel Relationships. mSystems 5(6):e00980 (2020).</a>
<a href="https://doi.org/10.1371/journal.pcbi.1008647" class="list-group-item list-group-item-action"><i class="fa-solid fa-newspaper pr-2"></i>Sastry, A.V. et al. Independent component analysis recovers consistent regulatory signals from disparate datasets. PLoS Comput Biol 17(2):e1008647 (2021).</a>
<a href="https://doi.org/10.1016/j.celrep.2021.108961" class="list-group-item list-group-item-action"><i class="fa-solid fa-newspaper pr-2"></i>Anand, A. et al. Restoration of fitness lost due to dysregulation of the pyruvate dehydrogenase complex is triggered by ribosomal binding site modifications. Cell Rep 35(1) 108961 (2021).</a>
<a href="https://doi.org/10.1038/s42003-021-02516-0" class="list-group-item list-group-item-action"><i class="fa-solid fa-newspaper pr-2"></i>Rodionova, I.A. et al. Identification of a transcription factor, PunR, that regulates the purine and purine nucleoside transporter <i>punC</i> in <i>E. coli</i>. Commun Biol. 4 (1) 991 (2021).</a>
<a href="https://doi.org/10.1128/mSphere.00443-21" class="list-group-item list-group-item-action"><i class="fa-solid fa-newspaper pr-2"></i>Sastry, A.V. et al. Machine Learning of Bacterial Transcriptomes Reveals Responses Underlying Differential Antibiotic Susceptibility. mSphere 6(4):e0044321 (2021).</a>
<a href="https://doi.org/10.1186/s12859-021-04497-7" class="list-group-item list-group-item-action"><i class="fa-solid fa-newspaper pr-2"></i>McConn, J.L. et al. Optimal dimensionality selection for independent component analysis of transcriptomic data. BMC Bioinformatics 22 (1) 584 (2021).</a>
<a href="https://doi.org/10.1038/s41598-022-11134-7" class="list-group-item list-group-item-action"><i class="fa-solid fa-newspaper pr-2"></i>Rodionova, A.I., Gao, Y. et al. A systems approach discovers the role and characteristics of seven LysR type transcription factors in <i>Escherichia coli</i>. Sci Rep 12 (1) 7274 (2022).</a>
<a href="https://doi.org/10.1101/2020.05.19.104992" class="list-group-item list-group-item-action"><i class="fa-solid fa-newspaper pr-2"></i>Kavvas, E.S. et al. Laboratory evolution of multiple E. coli strains reveals unifying principles of adaptation but diversity in driving genotypes. Forthcoming.</a>
</div>
</div>
<!--
<div class="row">
<h5>iModulonDB: Rychel, et al.</h5>
<p>
<a href="https://doi.org/10.1093/nar/gkaa810">Rychel, K., Decker, K., Sastry, A.V. et al. iModulonDB: a knowledgebase of microbial transcriptional regulation derived from machine learning. Nucleic Acids Research 49, D112 (2021).</a>
</p>
</div>
<hr>
<div class="row">
<h5><i>E. coli</i> PRECISE 1.0: Sastry, et al.</h5>
<p>
<a href="https://doi.org/10.1038/s41467-019-13483-w">Sastry, A.V., Gao, Y., Szubin, R. et al. The Escherichia coli transcriptome mostly consists of independently regulated modules. Nat Commun 10, 5536 (2019).</a>
</p>
<h5><i>S. aureus Staph</i>PRECISE: Poudel, et al.</i></h5>
<p>
<a href="https://doi.org/10.1073/pnas.2008413117">Poudel, S., Tsunemoto, H., Seif, Y. et al. Revealing 29 sets of independently modulated genes in Staphylococcus aureus, their regulators and role in key physiological responses. PNAS 117 (29) 17228-17239 (2020).</a>
</p>
<h5><i>B. subtilis</i> Microarray: Rychel, et al.</i></h5>
<p>
<a href="https://doi.org/10.1038/s41467-020-20153-9">Rychel, K., Sastry, A.V., Palsson, B.O. Machine learning uncovers independently regulated modules in the Bacillus subtilis transcriptome. Nat Commun 11, 6338 (2020).</a>
</p>
<h5><i>E. coli</i> PRECISE 2.0: Lamoureux, et al.</h5>
<p>
<a href="https://doi.org/10.1101/2021.04.08.439047">Lamoureux, C.R., Decker, K.T., Sastry, A.V. et al. PRECISE 2.0 - an expanded high-quality RNA-seq compendium for Escherichia coli K-12 reveals high-resolution transcriptional regulatory structure. Forthcoming.</a>
</p>
<h5><i>E. coli</i> Modulome: Lamoureux, et al.</h5>
<p>
<a href="https://doi.org/10.1101/2021.04.08.439047">Lamoureux, C.R., Decker, K.T., Sastry, A.V. et al. PRECISE 2.0 - an expanded high-quality RNA-seq compendium for Escherichia coli K-12 reveals high-resolution transcriptional regulatory structure. Forthcoming.</a>
</p>
<h5><i>M. tuberculosis</i> Modulome: Yoo, et al.</h5>
<p>
<a href="https://doi.org/10.1101/2021.07.01.450045">Yoo, R., Rychel, K., Poudel S. et al. Machine learning of all Mycobacterium tuberculosis H37Rv RNA-seq data reveals a structured interplay between metabolism, stress response, and infection. Forthcoming.</a>
</p>
<h5><i>P. aeruginosa aeru</i>PRECISE364: Rajput, et al.</h5>
<p>
<a href="https://doi.org/10.1101/2021.07.28.454220">Rajput, A., Tsunemoto, H., Sastry A.V. et al. Machine Learning of Pseudomonas aeruginosa transcriptomes identifies independently modulated sets of genes associated with known transcriptional regulators. Forthcoming.</a>
</p>
<h5><i>B. subtilis</i> Modulome: Sastry, et al.</h5>
<p>
<a href="https://doi.org/10.1101/2021.07.01.450581">Sastry, A.V., Poudel, S., Rychel, K., et al. Mining all publicly available expression data to compute dynamic microbial transcriptional regulatory networks. Forthcoming.</a>
</p>
<h5><i>S. acidocaldarius</i> Modulome: Chauhan, et al.</h5>
<p>
<a href="https://doi.org/10.3389/fmicb.2021.753521">Chauhan, S.M., Poudel, S., Rychel, K. et al. Machine Learning Uncovers a Data-Driven Transcriptional Regulatory Network for the Crenarchaeal Thermoacidophile <i>Sulfolobus acidocaldarius</i>. Front. Microbiol. 12, 753521 (2021).</a>
</p>
<h5><i>P. putida putida</i>PRECISE321: Lim, et al.</h5>
<p>
<a href="https://doi.org/10.1101/2022.01.11.475908">Lim, H.G., Rychel, K., Sastry, A.V. et al. Machine-learning from <i>Pseudomonas putida</i> transcriptomes reveals its transcriptional regulatory network. Forthcoming.</a>
</p>
<h5><i>S. enterica</i> Modulome Core: Yuan, et al.</h5>
<p>
<a href="https://doi.org/10.1101/2022.01.11.475931">Yuan, Y., Seif, Y., Rychel, K. et al. Pan-genomic analysis of transcriptional modules across Salmonella Typhimurium reveals the regulatory landscape of different strains. Forthcoming.</a>
</p>
</div>
-->
<!-- Contact -->
<div class="row subheader">
<div class="col-xs-6 title-container">
<div id="contact">
<h3 class="text-center">Contact Us</h3>
</div>
</div>
</div>
<div class="row">
<p>
For questions, comments, feedback, or to collaborate with us, please send an email to Kevin Rychel (<a href="mailto:[email protected]">[email protected]</a>).
</p>
<p>
For more information on the Systems Biology Research Group (SBRG) at the University of California,
San Diego, please see our website <a href="http://systemsbiology.ucsd.edu/">here</a>.
</p>
<p>
</p>
</div>
<!-- Footer -->
<hr>
<footer>
<div class="container">
<div class="row">
<div class="col">
<p class="copyright text-muted small">
iModulonDB is maintained by the Systems Biology Research Group at the University of California, San Diego. <br/>
</p>
</div>
</div>
</div>
</footer>
</div>
</div>
<!-- Scripts for bootstrap -->
<script src="https://code.jquery.com/jquery-3.5.1.min.js"></script>
<script src="https://cdn.jsdelivr.net/npm/[email protected]/dist/umd/popper.min.js"
integrity="sha384-Q6E9RHvbIyZFJoft+2mJbHaEWldlvI9IOYy5n3zV9zzTtmI3UksdQRVvoxMfooAo"
crossorigin="anonymous"></script>
<script src="https://stackpath.bootstrapcdn.com/bootstrap/4.5.0/js/bootstrap.min.js"
integrity="sha384-OgVRvuATP1z7JjHLkuOU7Xw704+h835Lr+6QL9UvYjZE3Ipu6Tp75j7Bh/kR0JKI"
crossorigin="anonymous"></script>
<!-- Required CDNs: Highcharts, Papa Parse -->
<script src="https://code.highcharts.com/stock/highstock.js"></script>
<script src="https://code.highcharts.com/modules/data.src.js"></script>
<script src="https://code.highcharts.com/modules/exporting.src.js"></script>
<script src="https://code.highcharts.com/modules/venn.src.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/PapaParse/5.1.0/papaparse.min.js"></script>
<!-- Custom Scripts -->
<script src="js/gene_activity_bar.js"></script>
<script src="js/regulon_venn.js"></script>
<!-- Populate the page -->
<script>
org_folder = "organisms/e_coli/precise1/"
glpt = org_folder + "gene_page_files/b2240/b2240_activity_bar.csv";
glpa = org_folder + "gene_page_files/b2241/b2241_activity_bar.csv";
venn = org_folder + "iModulon_files/19/19_reg_venn.csv";
// populate the activity bar plots
$.get(org_folder + 'data_files/sample_table.csv', function (metadata) {
$.get(glpt, function (activity_bar_data) {
generateGeneActivityBar(metadata, activity_bar_data, 'glpt_bar');
});
$.get(glpa, function (activity_bar_data) {
generateGeneActivityBar(metadata, activity_bar_data, 'glpa_bar');
});
});
// populate the venn diagram
$.get(venn, function (venn_data) {
generateVenn(venn_data, "venn");
});
</script>
</body>
</html>