forked from panzhang83/catn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlnz.py
270 lines (246 loc) · 11.3 KB
/
lnz.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
"""
Computing LnZ of a graphical model using tensor networks
"""
import torch
import numpy as np
import math
import networkx as nx
import string
import time
import sys
from tensor_network import Tensor_Network
from args import args
from bp_mf import MeanField
def readgraph(D, graph_dir):
with open(graph_dir + '{}nodes.txt'.format(D), 'r') as f:
list1 = f.readlines()
f.close()
num_edges = int(list1[0].split()[1])
edges = np.zeros([len(list1)-1, 2], dtype=int)
for i in range(len(list1)-1):
edges[i] = list1[i+1].split()
neighbors = {}.fromkeys(np.arange(D))
for key in neighbors.keys():
neighbors[key] = []
for edge in edges:
neighbors[edge[0]].append(edge[1])
neighbors[edge[1]].append(edge[0])
'''
for key in neighbors.keys():
neighbors[key] = np.array(neighbors[key])
'''
J = np.loadtxt(graph_dir + 'Jij{}nodes.txt'.format(D), dtype=np.float64)
return num_edges, edges, neighbors, J
if __name__ == '__main__':
torch.autograd.set_detect_anomaly(True)
# torch.set_num_threads(8)
device = torch.device("cpu" if args.cuda < 0 else "cuda:" + str(args.cuda))
if args.graph == 'rrg' or args.graph == 'rer':
graph = nx.random_regular_graph(args.k, args.n, seed=args.seed)
edges = graph.edges
print("regular random graph, n=", args.n, "k=", args.k, "seed=", args.seed, "maxdim=", args.maxdim)
elif args.graph == 'gnp' or args.graph == 'ran' or args.graph == 'er':
graph = nx.gnp_random_graph(args.n, 1.0 * args.c / args.n, seed=args.seed)
edges = list(graph.edges)
print("ER random graph, n=", args.n, "c=", args.c, "seed=", args.seed, "maxdim=", args.maxdim)
elif args.graph == 'line':
edges = [(i, i + 1) for i in range(args.n - 1)]
print("line graph, n=", args.n, "seed=", args.seed, "maxdim=", args.maxdim)
elif args.graph == '2dsquare':
graph = nx.grid_2d_graph(args.n, args.n)
graph = nx.Graph(graph)
edges_2d = list(graph.edges)
edges = [(i[0] * args.n + i[1], j[0] * args.n + j[1]) for i, j in edges_2d]
args.L = args.n
args.n = args.n ** 2
print("2d lattice, L=", args.L, "seed=", args.seed, "maxdim=", args.maxdim)
elif args.graph == 'c60':
A = np.loadtxt('c60.E', dtype=np.int32)
edges = []
for i in range(60):
edges.append([i, A[i, 0] - 1])
edges.append([i, A[i, 1] - 1])
edges.append([i, A[i, 2] - 1])
elif args.graph == 'tree':
graph = nx.random_tree(args.n, seed=args.seed)
edges = list(graph.edges)
print(edges)
elif args.graph == 'complete':
graph = nx.complete_graph(args.n)
edges = list(graph.edges)
elif args.graph == 'scale_free':
graph=nx.barabasi_albert_graph(args.n,args.m,seed=args.seed)
edges=list(graph.edges)
elif args.graph == 'sw':
graph=nx.watts_strogatz_graph(args.n, args.k, args.p, seed=args.seed)
edges=list(graph.edges)
elif args.graph == 'rrgn300k4':
args.beta = 0.8
args.n = 300
_, edges, _, Jraw = readgraph(args.n, '../graph/')
Jraw = torch.from_numpy(Jraw).to(torch.float64).to(device)
weights = Jraw[edges.transpose()]
weights.requires_grad = True
args.Jij = None
args.field = 'zero'
elif args.graph == 'read_from_file':
valtype2,w_file,h_file,n,edges=read_graph_from_file(args.file)
args.n=n
np.random.seed(args.seed)
edges = np.unique(np.array([sorted(a) for a in edges]), axis=0)
idx_i,idx_j=edges[1]
spin=np.ones(args.n)
spin[idx_i]=-1
spin[idx_j]=-1
spin1=np.ones(args.n)
spin1[idx_i]=1
spin1[idx_j]=-1
valtype=2*np.ones([args.n],int)
valtype1=2*np.ones([args.n],int)
valtype[idx_i]=1
valtype[idx_j]=1
if args.Jij == 'ferro':
weights = np.ones(len(edges))
elif args.Jij == 'rand':
weights = np.random.rand(len(edges))
elif args.Jij == 'randn':
weights = np.random.randn(len(edges))
elif args.Jij == 'sk':
weights = np.random.randn(len(edges)) / np.sqrt(args.n)
elif args.Jij == 'binary':
weights = np.random.randint(0, 2, len(edges)) * 2 - 1
elif args.Jij == 'normal':
weights = np.random.normal(0,1/args.L,len(edges))
#print(weights)
if args.field == 'zero':
fields = np.zeros(args.n)
elif args.field == 'one':
fields = np.ones(args.n)
elif args.field == 'rand':
fields = np.random.rand(args.n)
elif args.field == 'randn':
fields = np.random.randn(args.n)
elif args.field=='normal':
fields=np.random.normal(0,1/args.L,args.n)
fields = fields * args.gamma
G = nx.Graph()
G.add_nodes_from(np.arange(args.n))
G.add_edges_from(edges)
G_backup = G.copy()
t0 = time.time()
if args.seed2 < 0:
args.seed2 = args.seed
beta = torch.tensor([args.beta], dtype=torch.float64, device=device)
J = torch.zeros(args.n, args.n, dtype=torch.float64, device=device)
idx = np.array(edges)
W = torch.tensor(weights, dtype=torch.float64, device=device)
J[idx[:, 0], idx[:, 1]] = W
J[idx[:, 1], idx[:, 0]] = W
#print(J)
H = torch.tensor(fields, dtype=torch.float64, device=device)
h=[]
h1=[]
for i in range (args.n):
if i!=idx_i and i!=idx_j:
h.append(torch.exp(H[i] *beta* torch.tensor([1, -1], dtype=torch.float64, device=device)))
h1.append(torch.exp(H[i] * beta*torch.tensor([1, -1], dtype=torch.float64, device=device)))
else:
h.append(torch.exp(H[i] * beta*torch.tensor([spin[i]], dtype=torch.float64, device=device)))
h1.append(torch.exp(H[i] * beta*torch.tensor([spin1[i]], dtype=torch.float64, device=device)))
w=[]
w1=[]
for edge in range (len(edges)):
m,n=edges[edge]
if m==idx_i and n==idx_j:
w.append(torch.exp(W[edge] * beta * torch.tensor([spin[m]*spin[n]], dtype=torch.float64, device=device)).reshape(1,1))
w1.append(torch.exp(W[edge] * beta * torch.tensor([spin1[m]*spin1[n]], dtype=torch.float64, device=device)).reshape(1,1))
elif m==idx_i and n!=idx_j:
w.append(torch.exp(W[edge] * beta * torch.tensor([spin[m],-spin[m]], dtype=torch.float64, device=device)).reshape(1,2))
w1.append(torch.exp(W[edge] * beta * torch.tensor([spin1[m],-spin1[m]], dtype=torch.float64, device=device)).reshape(1,2))
elif m==idx_j:
w.append(torch.exp(W[edge] * beta * torch.tensor([spin[m],-spin[m]], dtype=torch.float64, device=device)).reshape(1,2))
w1.append(torch.exp(W[edge] * beta * torch.tensor([spin1[m],-spin1[m]], dtype=torch.float64, device=device)).reshape(1,2))
elif n==idx_i:
w.append(torch.exp(W[edge] * beta * torch.tensor([spin[n],-spin[n]], dtype=torch.float64, device=device)).reshape(2,1))
w1.append(torch.exp(W[edge] * beta * torch.tensor([spin1[n],-spin1[n]], dtype=torch.float64, device=device)).reshape(2,1))
elif m!=idx_i and n==idx_j:
w.append(torch.exp(W[edge] * beta * torch.tensor([spin[n],-spin[n]], dtype=torch.float64, device=device)).reshape(2,1))
w1.append(torch.exp(W[edge] * beta * torch.tensor([spin1[n],-spin1[n]], dtype=torch.float64, device=device)).reshape(2,1))
else:
w.append(torch.exp(W[edge] * beta * torch.tensor([[1, -1], [-1, 1]],
dtype=torch.float64, device=device)))
w1.append(torch.exp(W[edge] * beta * torch.tensor([[1, -1], [-1, 1]],
dtype=torch.float64, device=device)))
if (args.graph=='read_from_file'):
w=w_file
h=h_file
valtype=vartype2
'''
if args.raw:
args.node = "raw"
'''
tn = Tensor_Network(args.n, valtype1,edges, W, H, beta, seed=args.seed2, maxdim=args.maxdim,
verbose=args.verbose, Dmax=args.Dmax, chi=args.chi, node_type=args.node)
#tn_ij_1=Tensor_Network(args.n, valtype,edges, w, h, beta, seed=args.seed2, maxdim=args.maxdim,
#verbose=args.verbose, Dmax=args.Dmax, chi=args.chi, node_type=args.node)
#tn_ij_2=Tensor_Network(args.n, valtype,edges, w1, h1, beta, seed=args.seed2, maxdim=args.maxdim,
#verbose=args.verbose, Dmax=args.Dmax, chi=args.chi, node_type=args.node)
t0 = time.time()
lnZ_tn = tn.contraction()
time_tn=time.time()-t0
if args.backward:
(lnZ_tn / beta).backward()
lnZ_tn = lnZ_tn / tn.n
print("lnZ_tn = {:.15g}, time: {:.2g} Sec. maxdim_inter={:d}".format(lnZ_tn.item(), time.time() - t0,
int(tn.maxdim_intermediate)))
print("free energy ={:.15g}".format(-lnZ_tn.item()/args.beta))
if args.graph == 'rrgn300k4':
print("F = {:.15g}".format(-lnZ_tn.item() / args.beta))
if args.graph == '2dsquare':
from exact import kacward
t0 = time.time()
exact_solution = kacward(args.L, J, args.beta)
lnZ_exact = exact_solution.lnZ / args.L ** 2
print("lnZ_Exact_kacward = {:.15g}, time: {:.2g} Sec.".format(lnZ_exact, time.time() - t0))
print("Error of lnZ: %.3g" % (lnZ_tn - lnZ_exact))
if args.fvsenum:
from exact import exact
t0 = time.time()
exact1 = exact(G_backup, J, H,args.beta, device, args.seed)
lnZ_exact = exact1.lnZ_fvs() / len(tn.tensors)
print("lnZ_Exact = {:.15g}, Free energy_Exact={:.15g}, time: {:.2g} Sec.".format(lnZ_exact,-lnZ_exact/args.beta, time.time() - t0))
print("Error of lnZ: %.3g" % (lnZ_tn - lnZ_exact))
print("Error of free energy: %.3g" % -(lnZ_tn - lnZ_exact)/args.beta)
if args.mf:
mf=MeanField(G_backup,J,H,args.beta,device)
t0=time.time()
fe_BP, energy_BP, entropy_BP, mag_BP, correlation_BP, step=mf.BP()
time_bp=time.time()-t0
t0=time.time()
F_tap, E_tap, S_tap,iter_count_tap=mf.F_tap(0.3)
time_tap=time.time()-t0
t0=time.time()
F_nmf, E_nmf, S_nmf,iter_count_nmf=mf.F_nmf(0.3)
time_nmf=time.time()-t0
if args.backward:
correlation_tn = W.grad
# print('entropy: ', (-beta ** 2 * beta.grad).item())
# print('energy: ', (-(lnZ_tn * tn.n) / beta - beta * beta.grad).item())
# print(correlation_tn)
# print(H.grad)
# print(edges)
if args.fvsenum:
F_exact=-lnZ_exact/args.beta
F_tn=-lnZ_tn/args.beta
print(F_tn)
with open('{}_{}_Dmax={}_chi={}_Jij={}.txt'.format(args.graph,args.n,args.Dmax,args.chi,args.Jij), 'a') as fp:
#f.write('{} {}\n'.format(args.n, len(edges)))
#fp.write('{} {:.15g} {:.15g} {:.3g}\n'.format(args.n ,lnZ_exact, lnZ_tn - lnZ_exact,time_tn))
if args.fvsenum:
fp.write('{} {:.15g} {:.15g} {:.3g} '.format(args.beta,F_exact, (F_tn-F_exact).item(),time_tn))
else:
fp.write('{} {:.15g} {:.15g} {:.3g}\n '.format(args.beta,args.beta, (F_tn).item(),time_tn))
if args.mf:
fp.write('{:.15g} {:.3g} {:.15g} {:.3g} {:.15g} {:.3g} '.format(F_nmf-F_exact,time_nmf,F_tap-F_exact,time_tap,fe_BP-F_exact,time_bp))
fp.write('{} {} {}\n'.format(iter_count_nmf,iter_count_tap,step))
fp.close()