forked from panzhang83/catn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbp_mf.py
199 lines (172 loc) · 7.05 KB
/
bp_mf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import numpy as np
import networkx as nx
import torch
def atanh(x):
return 0.5*torch.log((1+x)/(1-x))
class MeanField():
def __init__(self, graph,J,H,beta,mydevice):
self.J=J
self.H=H
self.conv_crit = 1e-6
self.max_iter = 2*10**3
self.beta=beta
self.C_model=[]
self.n=J.shape[0]
self.graph=graph
self.device = mydevice
def get_entropy_fact(self, m):
return -torch.sum((1 + m) / 2 * torch.log((1 + m) / 2) +
(1 - m) / 2 * torch.log((1 - m) / 2))
def get_free_energy_nmf(self, m):
S = self.get_entropy_fact(m) / self.n
E = (-1 / 2 * m @ self.J @ m +self.H@ m)/ self.n
F = E - S / self.beta
return F, E, S
def F_nmf(self, damping=0.3):
m = torch.tanh(torch.randn([self.n], dtype=torch.float64,device=self.device))
for iter_count in range(self.max_iter):
m_new = (damping * m +
(1 - damping) * torch.tanh(self.beta * self.J @ m+self.beta * self.H))
diff = (m_new - m).norm()
if diff < self.conv_crit:
break
m = m_new
else:
print('conv_crit not meet, diff = {}'.format(diff))
F, E, S = self.get_free_energy_nmf(m)
print('NMF:\tF = {:.15g}\tE = {:.15g}\tS = {:.15g}\titer = {}'.format(
F, E, S, iter_count))
return F, E, S,iter_count
def get_free_energy_tap(self, m):
S = self.get_entropy_fact(m) / self.n
E = (-1 / 2 * m @ self.J @ m + self.H @ m )/ self.n
G2 = -self.beta / 4 * (1 - m**2) @ (self.J**2) @ (1 - m**2) / self.n
E += G2
F = E - S / self.beta
return F, E, S
def F_tap(self, damping=0.3):
m = torch.tanh(torch.randn([self.n],dtype=torch.float64, device=self.device))
for iter_count in range(self.max_iter):
m_new = (damping * m + (1 - damping) *
torch.tanh(self.beta * self.J @ m + self.beta * self.H -m *
(self.beta * self.J)**2 @ (1 - m**2)))
diff = (m_new - m).norm()
if diff < self.conv_crit:
break
m = m_new
else:
print('conv_crit not meet, diff = {}'.format(diff))
F, E, S = self.get_free_energy_tap(m)
print('TAP:\tF = {:.15g}\tE = {:.15g}\tS = {:.15g}\titer = {}'.format(
F, E, S, iter_count))
return F, E, S,iter_count
def BP(self):
stepmax = 1000
epsilon = 1e-6
difference_max = 10
damping_factor = 0
beta=self.beta
num_edges=len(list(self.graph.edges()))
neighbors=[]
for i in range(self.n):
neighbors.append(list(self.graph.adj[i]))
edges=list(self.graph.edges())
J=self.J.detach().numpy()
D=self.n
h = np.random.randn(D, D)
# belief propagation
for step in range(stepmax):
for i in range(D):
for j in range(len(neighbors[i])):
a = neighbors[i][j]
B = list(neighbors[i])
B.remove(a)
temp = (np.arctanh(
np.tanh(beta * J[i, B]) * np.tanh(beta * h[B, i])
) / (beta)).sum()
temp = damping_factor*h[i][a] + (1-damping_factor)*temp
difference = abs(temp - h[i][a])
h[i][a] = temp
if i == 0 and j == 0:
difference_max = difference
elif difference > difference_max:
difference_max = difference
if difference_max <= epsilon:
break
# calculate free energy
fe_node = np.zeros(D)
for i in range(D):
B = list(neighbors[i])
temp1 = (np.cosh(beta * (J[i, B] + h[B, i])) /
np.cosh(beta * h[B, i])).prod()
temp2 = (np.cosh(beta * (-J[i, B] + h[B, i])) /
np.cosh(beta * h[B, i])).prod()
fe_node[i] = - np.log(temp1 + temp2) / beta
fe_node_sum = np.sum(fe_node)
fe_edge = np.zeros(num_edges)
edge_count = 0
for edge in edges:
i, j = edge
temp1 = np.exp(beta*J[i,j]) * np.cosh(beta*(h[i,j]+h[j,i])) + \
np.exp(-beta*J[i,j]) * np.cosh(beta*(h[i,j]-h[j,i]))
temp2 = 2*np.cosh(beta*h[i,j])*np.cosh(beta*h[j,i])
fe_edge[edge_count] = - np.log(temp1/temp2) / beta
edge_count += 1
fe_edge_sum = np.sum(fe_edge)
fe_sum = fe_node_sum - fe_edge_sum
# calculate energy
energy_BP = np.zeros(num_edges)
edge_count = 0
for edge in edges:
i, j = edge
temp1 = -J[i,j]*np.exp(beta*J[i,j])*np.cosh(beta*(h[i,j]+h[j,i])) + \
J[i,j]*np.exp(-beta*J[i,j])*np.cosh(beta*(h[i,j]-h[j,i]))
temp2 = np.exp(beta*J[i,j])*np.cosh(beta*(h[i,j]+h[j,i])) + \
np.exp(-beta*J[i,j])*np.cosh(beta*(h[i,j]-h[j,i]))
energy_BP[edge_count] = temp1 / temp2
edge_count += 1
energy_BP = np.sum(energy_BP)
# calculate entropy
entropy_BP = beta*(energy_BP - fe_sum)
# calcualte magnetzation
mag_BP = np.zeros(D)
for i in range(D):
B = list(neighbors[i])
temp = np.arctanh(
np.tanh(beta*J[i, B]) * np.tanh(beta*h[B,i])
).sum()
mag_BP[i] = np.tanh(temp)
# calculate connected correlation
correlation_BP = np.empty(num_edges)
edge_count = 0
for edge in edges:
i, j = edge
temp1 = np.exp(beta*J[i,j])*np.cosh(beta*(h[i,j]+h[j,i]))
temp2 = np.exp(-beta*J[i,j])*np.cosh(beta*(h[i,j]-h[j,i]))
correlation_BP[edge_count] = (temp1 - temp2) / (temp1 + temp2) - \
mag_BP[i] * mag_BP[j]
edge_count += 1
print('BP:\tF = {:.15g}\tE = {:.15g}\tS = {:.15g}\titer = {}'.format(
fe_sum/D, energy_BP/D, entropy_BP/D,step))
return fe_sum/D, energy_BP/D, entropy_BP/D, mag_BP, correlation_BP, step
if __name__ =='__main__' :
n=60
graph = nx.random_regular_graph(3, n, seed=1)
edges = graph.edges
edges = np.unique(np.array([a for a in edges]), axis=0)
np.random.seed(1)
device = torch.device("cpu" )
weights = np.random.randn(len(edges))
print(weights)
fields = np.zeros(n)
J = torch.zeros(n, n, dtype=torch.float64)
idx = np.array(edges)
W = torch.tensor(weights, dtype=torch.float64)
J[idx[:, 0], idx[:, 1]] = W
J[idx[:, 1], idx[:, 0]] = W
H = torch.tensor(fields, dtype=torch.float64, requires_grad=True)
beta=1
mf=MeanField(graph,J,H,beta,device)
fe_sum, energy_BP, entropy_BP, mag_BP, correlation_BP, step=mf.BP()
F, E, S,iter=mf.F_tap(0.3)
F, E, S,iter=mf.F_nmf(0.3)