-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathcac.py
269 lines (240 loc) · 9.3 KB
/
cac.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
import os
import sys
import yaml
import time
import shutil
import torch
import random
import argparse
import datetime
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
# import torchvision.models as models
# import torchvision
import matplotlib.pyplot as plt
import matplotlib.cm as cm
from mpl_toolkits.mplot3d import Axes3D
from sklearn.manifold import TSNE
from sklearn.decomposition import PCA
from PIL import Image
# from visdom import Visdom
_path = os.path.join(os.path.abspath(os.path.dirname(__file__)), 'utils')
sys.path.append(_path)
from torch.utils import data
from tqdm import tqdm
from data import create_dataset
from models import create_model
from utils.utils import get_logger
from augmentations import get_composed_augmentations
from models.adaptation_model import CustomModel, CustomMetrics
from optimizers import get_optimizer
from schedulers import get_scheduler
from metrics import runningScore, averageMeter
from loss import get_loss_function
from utils import sync_batchnorm
from tensorboardX import SummaryWriter
def CAC(cfg, writer, logger):
torch.manual_seed(cfg.get('seed', 1337))
torch.cuda.manual_seed(cfg.get('seed', 1337))
np.random.seed(cfg.get('seed', 1337))
random.seed(cfg.get('seed', 1337))
## create dataset
default_gpu = cfg['model']['default_gpu']
device = torch.device("cuda:{}".format(default_gpu) if torch.cuda.is_available() else 'cpu')
datasets = create_dataset(cfg, writer, logger) #source_train\ target_train\ source_valid\ target_valid + _loader
model = CustomModel(cfg, writer, logger)
# Setup Metrics
running_metrics_val = runningScore(cfg['data']['target']['n_class'])
source_running_metrics_val = runningScore(cfg['data']['target']['n_class'])
val_loss_meter = averageMeter()
source_val_loss_meter = averageMeter()
time_meter = averageMeter()
loss_fn = get_loss_function(cfg)
flag_train = True
epoches = cfg['training']['epoches']
source_train_loader = datasets.source_train_loader
target_train_loader = datasets.target_train_loader
logger.info('source train batchsize is {}'.format(source_train_loader.args.get('batch_size')))
print('source train batchsize is {}'.format(source_train_loader.args.get('batch_size')))
logger.info('target train batchsize is {}'.format(target_train_loader.batch_size))
print('target train batchsize is {}'.format(target_train_loader.batch_size))
val_loader = None
if cfg.get('valset') == 'gta5':
val_loader = datasets.source_valid_loader
logger.info('valset is gta5')
print('valset is gta5')
else:
val_loader = datasets.target_valid_loader
logger.info('valset is cityscapes')
print('valset is cityscapes')
logger.info('val batchsize is {}'.format(val_loader.batch_size))
print('val batchsize is {}'.format(val_loader.batch_size))
# load category anchors
# objective_vectors = torch.load('category_anchors')
# model.objective_vectors = objective_vectors['objective_vectors']
# model.objective_vectors_num = objective_vectors['objective_num']
class_features = Class_Features(numbers=19)
# begin training
model.iter = 0
for epoch in range(epoches):
if not flag_train:
break
if model.iter > cfg['training']['train_iters']:
break
# monitoring the accuracy and recall of CAG-based PLA and probability-based PLA
for (target_image, target_label, target_img_name) in datasets.target_train_loader:
model.iter += 1
i = model.iter
if i > cfg['training']['train_iters']:
break
source_batchsize = cfg['data']['source']['batch_size']
images, labels, source_img_name = datasets.source_train_loader.next()
start_ts = time.time()
images = images.to(device)
labels = labels.to(device)
target_image = target_image.to(device)
target_label = target_label.to(device)
model.scheduler_step()
model.train(logger=logger)
if cfg['training'].get('freeze_bn') == True:
model.freeze_bn_apply()
model.optimizer_zerograd()
if model.PredNet.training:
model.PredNet.eval()
with torch.no_grad():
_, _, feat_cls, output = model.PredNet_Forward(images)
batch, w, h = labels.size()
newlabels = labels.reshape([batch, 1, w, h]).float()
newlabels = F.interpolate(newlabels, size=feat_cls.size()[2:], mode='nearest')
vectors, ids = class_features.calculate_mean_vector(feat_cls, output, newlabels, model)
for t in range(len(ids)):
model.update_objective_SingleVector(ids[t], vectors[t].detach().cpu().numpy(), 'mean')
time_meter.update(time.time() - start_ts)
if model.iter % 20 == 0:
print("Iter [{:d}] Time {:.4f}".format(model.iter, time_meter.avg))
if (i + 1) == cfg['training']['train_iters']:
flag = False
break
save_path = os.path.join(writer.file_writer.get_logdir(),
"anchors_on_{}_from_{}".format(
cfg['data']['source']['name'],
cfg['model']['arch'],))
torch.save(model.objective_vectors, save_path)
class Class_Features:
def __init__(self, numbers = 19):
self.class_numbers = numbers
self.tsne_data = 0
self.pca_data = 0
# self.class_features = np.zeros((19, 256))
self.class_features = [[] for i in range(self.class_numbers)]
self.num = np.zeros(numbers)
self.all_vectors = []
self.pred_ids = []
self.ids = []
self.pred_num = np.zeros(numbers + 1)
self.labels = [
"road",
"sidewalk",
"building",
"wall",
"fence",
"pole",
"traffic_light",
"traffic_sign",
"vegetation",
"terrain",
"sky",
"person",
"rider",
"car",
"truck",
"bus",
"train",
"motorcycle",
"bicycle",
'ignored',]
self.markers = [".",
",",
"o",
"v",
"^",
"<",
">",
"1",
"2",
"3",
"4",
"8",
"p",
"P",
"*",
"h",
"H",
"+",
"x",
"|",]
return
def calculate_mean_vector(self, feat_cls, outputs, labels_val, model):
outputs_softmax = F.softmax(outputs, dim=1)
outputs_argmax = outputs_softmax.argmax(dim=1, keepdim=True)
outputs_argmax = model.process_label(outputs_argmax.float())
# outputs_pred = model.process_pred(outputs_softmax, 0.5)
# outputs_pred = outputs_argmax[:, 0:19, :, :] * outputs_softmax
labels_expanded = model.process_label(labels_val)
outputs_pred = labels_expanded * outputs_argmax
scale_factor = F.adaptive_avg_pool2d(outputs_pred, 1)
vectors = []
ids = []
for n in range(feat_cls.size()[0]):
for t in range(self.class_numbers):
if scale_factor[n][t].item()==0:
continue
if (outputs_pred[n][t] > 0).sum() < 10:
continue
s = feat_cls[n] * outputs_pred[n][t]
# if (torch.sum(outputs_pred[n][t] * labels_expanded[n][t]).item() < 30):
# continue
s = F.adaptive_avg_pool2d(s, 1) / scale_factor[n][t]
# self.update_cls_feature(vector=s, id=t)
vectors.append(s)
ids.append(t)
return vectors, ids
def calculate_mean(self,):
out = [[] for i in range(self.class_numbers)]
for i in range(self.class_numbers):
out[i] = self.class_features[i] / max(self.num[i], 1)
return out
def calculate_dis(self, vector, id):
if isinstance(vector, torch.Tensor): vector = vector.detach().cpu().numpy().squeeze()
mean = self.calculate_mean()
dis = []
for i in range(self.class_numbers):
dis_vec = [x - y for x,y in zip(mean[i], vector)]
dis.append(np.linalg.norm(dis_vec, 2))
return dis
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="config")
parser.add_argument(
"--config",
nargs="?",
type=str,
# default="configs/pspnet_cityscapes.yml",
# default="configs/pspnet_gta5.yml",
default='configs/CAC_from_gta_to_city.yml',
help="Configuration file to use"
)
args = parser.parse_args()
with open(args.config) as fp:
cfg = yaml.load(fp)
run_id = random.randint(1, 100000)
# path = cfg['training']['save_path']
logdir = os.path.join('runs', os.path.basename(args.config)[:-4], str(run_id))
writer = SummaryWriter(log_dir=logdir)
print('RUNDIR: {}'.format(logdir))
shutil.copy(args.config, logdir)
logger = get_logger(logdir)
logger.info('Let the games begin')
# train(cfg, writer, logger)
CAC(cfg, writer, logger)