diff --git a/external/header_only/half/ChangeLog.txt b/external/header_only/half/ChangeLog.txt new file mode 100644 index 0000000000..c7489b2f3c --- /dev/null +++ b/external/header_only/half/ChangeLog.txt @@ -0,0 +1,213 @@ +Release Notes {#changelog} +============= + +2.2.0 release (2021-06-12): +--------------------------- + +- Added `rsqrt` function for inverse square root. +- Improved performance of `pow` function. +- Fixed bug that forgot to include `` for F16C intrinsics. + + +2.1.0 release (2019-08-05): +--------------------------- + +- Added detection of IEEE floating-point exceptions to operators and functions. +- Added configuration options for automatic exception handling. +- Added functions for explicitly managing floating-point exception flags. +- Improved accuracy of `pow` and `atan2` functions. + + +2.0.0 release (2019-07-23): +--------------------------- + +- Made internal implementation independent from built-in floating point + facilities for increased reliability and IEEE-conformance. +- Changed default rounding mode to rounding to nearest. +- Always round ties to even when rounding to nearest. +- Extended `constexpr` support to comparison and classification functions. +- Added support for F16C compiler intrinsics for conversions. +- Enabled C++11 feature detection for Intel compilers. + + +1.12.0 release (2017-03-06): +---------------------------- + +- Changed behaviour of `half_cast` to perform conversions to/from `double` + and `long double` directly according to specified rounding mode, without an + intermediate `float` conversion. +- Added `noexcept` specifiers to constructors. +- Fixed minor portability problem with `logb` and `ilogb`. +- Tested for *VC++ 2015*. + + +1.11.0 release (2013-11-16): +---------------------------- + +- Made tie-breaking behaviour in round to nearest configurable by + `HALF_ROUND_TIES_TO_EVEN` macro. +- Completed support for all C++11 mathematical functions even if single- + precision versions from `` are unsupported. +- Fixed inability to disable support for C++11 mathematical functions on + *VC++ 2013*. + + +1.10.0 release (2013-11-09): +---------------------------- + +- Made default rounding mode configurable by `HALF_ROUND_STYLE` macro. +- Added support for non-IEEE single-precision implementations. +- Added `HALF_ENABLE_CPP11_TYPE_TRAITS` preprocessor flag for checking + support for C++11 type traits and TMP features. +- Restricted `half_cast` to support built-in arithmetic types only. +- Changed behaviour of `half_cast` to respect rounding mode when casting + to/from integer types. + + +1.9.2 release (2013-11-01): +--------------------------- + +- Tested for *gcc 4.8*. +- Tested and fixed for *VC++ 2013*. +- Removed unnecessary warnings in *MSVC*. + + +1.9.1 release (2013-08-08): +--------------------------- + +- Fixed problems with older gcc and MSVC versions. +- Small fix to non-C++11 implementations of `remainder` and `remquo`. + + +1.9.0 release (2013-08-07): +--------------------------- + +- Changed behaviour of `nearbyint`, `rint`, `lrint` and `llrint` to use + rounding mode of half-precision implementation (which is + truncating/indeterminate) instead of single-precision rounding mode. +- Added support for more C++11 mathematical functions even if single- + precision versions from `` are unsupported, in particular + `remainder`, `remquo` and `cbrt`. +- Minor implementation changes. + + +1.8.1 release (2013-01-22): +--------------------------- + +- Fixed bug resulting in multiple definitions of the `nanh` function due to + a missing `inline` specification. + + +1.8.0 release (2013-01-19): +--------------------------- + +- Added support for more C++11 mathematical functions even if single- + precision versions from `` are unsupported, in particular + exponential and logarithm functions, hyperbolic area functions and the + hypotenuse function. +- Made `fma` function use default implementation if single-precision version + from `` is not faster and thus `FP_FAST_FMAH` to be defined always. +- Fixed overload resolution issues when invoking certain mathematical + functions by unqualified calls. + + +1.7.0 release (2012-10-26): +--------------------------- + +- Added support for C++11 `noexcept` specifiers. +- Changed C++11 `long long` to be supported on *VC++ 2003* and up. + + +1.6.1 release (2012-09-13): +--------------------------- + +- Made `fma` and `fdim` functions available even if corresponding + single-precision functions are not. + + +1.6.0 release (2012-09-12): +--------------------------- + +- Added `HALF_ENABLE_CPP11_LONG_LONG` to control support for `long long` + integers and corresponding mathematical functions. +- Fixed C++98 compatibility on non-VC compilers. + + +1.5.1 release (2012-08-17): +--------------------------- + +- Recorrected `std::numeric_limits::round_style` to always return + `std::round_indeterminate`, due to overflow-handling deviating from + correct round-toward-zero behaviour. + + +1.5.0 release (2012-08-16): +--------------------------- + +- Added `half_cast` for explicitly casting between half and any type + convertible to/from `float` and allowing the explicit specification of + the rounding mode to use. + + +1.4.0 release (2012-08-12): +--------------------------- + +- Added support for C++11 generalized constant expressions (`constexpr`). + + +1.3.1 release (2012-08-11): +--------------------------- + +- Fixed requirement for `std::signbit` and `std::isnan` (even if C++11 + `` functions disabled) on non-VC compilers. + + +1.3.0 release (2012-08-10): +--------------------------- + +- Made requirement for `` and `static_assert` optional and thus + made the library C++98-compatible. +- Made support for C++11 features user-overridable through explicit + definition of corresponding preprocessor symbols to either 0 or 1. +- Renamed `HALF_ENABLE_HASH` to `HALF_ENABLE_CPP11_HASH` in correspondence + with other C++11 preprocessor symbols. + + +1.2.0 release (2012-08-07): +--------------------------- + +- Added proper preprocessor definitions for `HUGE_VALH` and `FP_FAST_FMAH` + in correspondence with their single-precision counterparts from ``. +- Fixed internal preprocessor macros to be properly undefined after use. + + +1.1.2 release (2012-08-07): +--------------------------- + +- Revised `std::numeric_limits::round_style` to return + `std::round_toward_zero` if the `float` version also does and + `std::round_indeterminate` otherwise. +- Fixed `std::numeric_limits::round_error` to reflect worst-case round + toward zero behaviour. + + +1.1.1 release (2012-08-06): +--------------------------- + +- Fixed `std::numeric_limits::min` to return smallest positive normal + number, instead of subnormal number. +- Fixed `std::numeric_limits::round_style` to return + `std::round_indeterminate` due to mixture of separately rounded + single-precision arithmetics with truncating single-to-half conversions. + + +1.1.0 release (2012-08-06): +--------------------------- + +- Added half-precision literals. + + +1.0.0 release (2012-08-05): +--------------------------- + +- First release. diff --git a/external/header_only/half/LICENSE.txt b/external/header_only/half/LICENSE.txt new file mode 100644 index 0000000000..6023222b0a --- /dev/null +++ b/external/header_only/half/LICENSE.txt @@ -0,0 +1,21 @@ +The MIT License + +Copyright (c) 2012-2021 Christian Rau + +Permission is hereby granted, free of charge, to any person obtaining a copy +of this software and associated documentation files (the "Software"), to deal +in the Software without restriction, including without limitation the rights +to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +copies of the Software, and to permit persons to whom the Software is +furnished to do so, subject to the following conditions: + +The above copyright notice and this permission notice shall be included in +all copies or substantial portions of the Software. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN +THE SOFTWARE. diff --git a/external/header_only/half/README.txt b/external/header_only/half/README.txt new file mode 100644 index 0000000000..c7bf315fa1 --- /dev/null +++ b/external/header_only/half/README.txt @@ -0,0 +1,317 @@ +HALF-PRECISION FLOATING-POINT LIBRARY (Version 2.2.0) +----------------------------------------------------- + +This is a C++ header-only library to provide an IEEE 754 conformant 16-bit +half-precision floating-point type along with corresponding arithmetic +operators, type conversions and common mathematical functions. It aims for both +efficiency and ease of use, trying to accurately mimic the behaviour of the +built-in floating-point types at the best performance possible. + + +INSTALLATION AND REQUIREMENTS +----------------------------- + +Conveniently, the library consists of just a single header file containing all +the functionality, which can be directly included by your projects, without the +neccessity to build anything or link to anything. + +Whereas this library is fully C++98-compatible, it can profit from certain +C++11 features. Support for those features is checked automatically at compile +(or rather preprocessing) time, but can be explicitly enabled or disabled by +predefining the corresponding preprocessor symbols to either 1 or 0 yourself +before including half.hpp. This is useful when the automatic detection fails +(for more exotic implementations) or when a feature should be explicitly +disabled: + + - 'long long' integer type for mathematical functions returning 'long long' + results (enabled for VC++ 2003 and icc 11.1 and newer, gcc and clang, + overridable with 'HALF_ENABLE_CPP11_LONG_LONG'). + + - Static assertions for extended compile-time checks (enabled for VC++ 2010, + gcc 4.3, clang 2.9, icc 11.1 and newer, overridable with + 'HALF_ENABLE_CPP11_STATIC_ASSERT'). + + - Generalized constant expressions (enabled for VC++ 2015, gcc 4.6, clang 3.1, + icc 14.0 and newer, overridable with 'HALF_ENABLE_CPP11_CONSTEXPR'). + + - noexcept exception specifications (enabled for VC++ 2015, gcc 4.6, + clang 3.0, icc 14.0 and newer, overridable with 'HALF_ENABLE_CPP11_NOEXCEPT'). + + - User-defined literals for half-precision literals to work (enabled for + VC++ 2015, gcc 4.7, clang 3.1, icc 15.0 and newer, overridable with + 'HALF_ENABLE_CPP11_USER_LITERALS'). + + - Thread-local storage for per-thread floating-point exception flags (enabled + for VC++ 2015, gcc 4.8, clang 3.3, icc 15.0 and newer, overridable with + 'HALF_ENABLE_CPP11_THREAD_LOCAL'). + + - Type traits and template meta-programming features from + (enabled for VC++ 2010, libstdc++ 4.3, libc++ and newer, overridable with + 'HALF_ENABLE_CPP11_TYPE_TRAITS'). + + - Special integer types from (enabled for VC++ 2010, libstdc++ 4.3, + libc++ and newer, overridable with 'HALF_ENABLE_CPP11_CSTDINT'). + + - Certain C++11 single-precision mathematical functions from for + floating-point classification during conversions from higher precision types + (enabled for VC++ 2013, libstdc++ 4.3, libc++ and newer, overridable with + 'HALF_ENABLE_CPP11_CMATH'). + + - Floating-point environment control from for possible exception + propagation to the built-in floating-point platform (enabled for VC++ 2013, + libstdc++ 4.3, libc++ and newer, overridable with 'HALF_ENABLE_CPP11_CFENV'). + + - Hash functor 'std::hash' from (enabled for VC++ 2010, + libstdc++ 4.3, libc++ and newer, overridable with 'HALF_ENABLE_CPP11_HASH'). + +The library has been tested successfully with Visual C++ 2005-2015, gcc 4-8 +and clang 3-8 on 32- and 64-bit x86 systems. Please contact me if you have any +problems, suggestions or even just success testing it on other platforms. + + +DOCUMENTATION +------------- + +What follows are some general words about the usage of the library and its +implementation. For a complete documentation of its interface consult the +corresponding website http://half.sourceforge.net. You may also generate the +complete developer documentation from the library's only include file's doxygen +comments, but this is more relevant to developers rather than mere users. + +BASIC USAGE + +To make use of the library just include its only header file half.hpp, which +defines all half-precision functionality inside the 'half_float' namespace. The +actual 16-bit half-precision data type is represented by the 'half' type, which +uses the standard IEEE representation with 1 sign bit, 5 exponent bits and 11 +mantissa bits (including the hidden bit) and supports all types of special +values, like subnormal values, infinity and NaNs. This type behaves like the +built-in floating-point types as much as possible, supporting the usual +arithmetic, comparison and streaming operators, which makes its use pretty +straight-forward: + + using half_float::half; + half a(3.4), b(5); + half c = a * b; + c += 3; + if(c > a) + std::cout << c << std::endl; + +Additionally the 'half_float' namespace also defines half-precision versions +for all mathematical functions of the C++ standard library, which can be used +directly through ADL: + + half a(-3.14159); + half s = sin(abs(a)); + long l = lround(s); + +You may also specify explicit half-precision literals, since the library +provides a user-defined literal inside the 'half_float::literal' namespace, +which you just need to import (assuming support for C++11 user-defined literals): + + using namespace half_float::literal; + half x = 1.0_h; + +Furthermore the library provides proper specializations for +'std::numeric_limits', defining various implementation properties, and +'std::hash' for hashing half-precision numbers (assuming support for C++11 +'std::hash'). Similar to the corresponding preprocessor symbols from +the library also defines the 'HUGE_VALH' constant and maybe the 'FP_FAST_FMAH' +symbol. + +CONVERSIONS AND ROUNDING + +The half is explicitly constructible/convertible from a single-precision float +argument. Thus it is also explicitly constructible/convertible from any type +implicitly convertible to float, but constructing it from types like double or +int will involve the usual warnings arising when implicitly converting those to +float because of the lost precision. On the one hand those warnings are +intentional, because converting those types to half neccessarily also reduces +precision. But on the other hand they are raised for explicit conversions from +those types, when the user knows what he is doing. So if those warnings keep +bugging you, then you won't get around first explicitly converting to float +before converting to half, or use the 'half_cast' described below. In addition +you can also directly assign float values to halfs. + +In contrast to the float-to-half conversion, which reduces precision, the +conversion from half to float (and thus to any other type implicitly +convertible from float) is implicit, because all values represetable with +half-precision are also representable with single-precision. This way the +half-to-float conversion behaves similar to the builtin float-to-double +conversion and all arithmetic expressions involving both half-precision and +single-precision arguments will be of single-precision type. This way you can +also directly use the mathematical functions of the C++ standard library, +though in this case you will invoke the single-precision versions which will +also return single-precision values, which is (even if maybe performing the +exact same computation, see below) not as conceptually clean when working in a +half-precision environment. + +The default rounding mode for conversions between half and more precise types +as well as for rounding results of arithmetic operations and mathematical +functions rounds to the nearest representable value. But by predefining the +'HALF_ROUND_STYLE' preprocessor symbol this default can be overridden with one +of the other standard rounding modes using their respective constants or the +equivalent values of 'std::float_round_style' (it can even be synchronized with +the built-in single-precision implementation by defining it to +'std::numeric_limits::round_style'): + + - 'std::round_indeterminate' (-1) for the fastest rounding. + + - 'std::round_toward_zero' (0) for rounding toward zero. + + - 'std::round_to_nearest' (1) for rounding to the nearest value (default). + + - 'std::round_toward_infinity' (2) for rounding toward positive infinity. + + - 'std::round_toward_neg_infinity' (3) for rounding toward negative infinity. + +In addition to changing the overall default rounding mode one can also use the +'half_cast'. This converts between half and any built-in arithmetic type using +a configurable rounding mode (or the default rounding mode if none is +specified). In addition to a configurable rounding mode, 'half_cast' has +another big difference to a mere 'static_cast': Any conversions are performed +directly using the given rounding mode, without any intermediate conversion +to/from 'float'. This is especially relevant for conversions to integer types, +which don't necessarily truncate anymore. But also for conversions from +'double' or 'long double' this may produce more precise results than a +pre-conversion to 'float' using the single-precision implementation's current +rounding mode would. + + half a = half_cast(4.2); + half b = half_cast::round_style>(4.2f); + assert( half_cast( 0.7_h ) == 1 ); + assert( half_cast( 4097 ) == 4096.0_h ); + assert( half_cast( 4097 ) == 4100.0_h ); + assert( half_cast( std::numeric_limits::min() ) > 0.0_h ); + +ACCURACY AND PERFORMANCE + +From version 2.0 onward the library is implemented without employing the +underlying floating-point implementation of the system (except for conversions, +of course), providing an entirely self-contained half-precision implementation +with results independent from the system's existing single- or double-precision +implementation and its rounding behaviour. + +As to accuracy, many of the operators and functions provided by this library +are exact to rounding for all rounding modes, i.e. the error to the exact +result is at most 0.5 ULP (unit in the last place) for rounding to nearest and +less than 1 ULP for all other rounding modes. This holds for all the operations +required by the IEEE 754 standard and many more. Specifically the following +functions might exhibit a deviation from the correctly rounded exact result by +1 ULP for a select few input values: 'expm1', 'log1p', 'pow', 'atan2', 'erf', +'erfc', 'lgamma', 'tgamma' (for more details see the documentation of the +individual functions). All other functions and operators are always exact to +rounding or independent of the rounding mode altogether. + +The increased IEEE-conformance and cleanliness of this implementation comes +with a certain performance cost compared to doing computations and mathematical +functions in hardware-accelerated single-precision. On average and depending on +the platform, the arithemtic operators are about 75% as fast and the +mathematical functions about 33-50% as fast as performing the corresponding +operations in single-precision and converting between the inputs and outputs. +However, directly computing with half-precision values is a rather rare +use-case and usually using actual 'float' values for all computations and +temproraries and using 'half's only for storage is the recommended way. But +nevertheless the goal of this library was to provide a complete and +conceptually clean IEEE-confromant half-precision implementation and in the few +cases when you do need to compute directly in half-precision you do so for a +reason and want accurate results. + +If necessary, this internal implementation can be overridden by predefining the +'HALF_ARITHMETIC_TYPE' preprocessor symbol to one of the built-in +floating-point types ('float', 'double' or 'long double'), which will cause the +library to use this type for computing arithmetic operations and mathematical +functions (if available). However, due to using the platform's floating-point +implementation (and its rounding behaviour) internally, this might cause +results to deviate from the specified half-precision rounding mode. It will of +course also inhibit the automatic exception detection described below. + +The conversion operations between half-precision and single-precision types can +also make use of the F16C extension for x86 processors by using the +corresponding compiler intrinsics from . Support for this is +checked at compile-time by looking for the '__F16C__' macro which at least gcc +and clang define based on the target platform. It can also be enabled manually +by predefining the 'HALF_ENABLE_F16C_INTRINSICS' preprocessor symbol to 1, or 0 +for explicitly disabling it. However, this will directly use the corresponding +intrinsics for conversion without checking if they are available at runtime +(possibly crashing if they are not), so make sure they are supported on the +target platform before enabling this. + +EXCEPTION HANDLING + +The half-precision implementation supports all 5 required floating-point +exceptions from the IEEE standard to indicate erroneous inputs or inexact +results during operations. These are represented by exception flags which +actually use the same values as the corresponding 'FE_...' flags defined in +C++11's header if supported, specifically: + + - 'FE_INVALID' for invalid inputs to an operation. + - 'FE_DIVBYZERO' for finite inputs producing infinite results. + - 'FE_OVERFLOW' if a result is too large to represent finitely. + - 'FE_UNDERFLOW' for a subnormal or zero result after rounding. + - 'FE_INEXACT' if a result needed rounding to be representable. + - 'FE_ALL_EXCEPT' as a convenient OR of all possible exception flags. + +The internal exception flag state will start with all flags cleared and is +maintained per thread if C++11 thread-local storage is supported, otherwise it +will be maintained globally and will theoretically NOT be thread-safe (while +practically being as thread-safe as a simple integer variable can be). These +flags can be managed explicitly using the library's error handling functions, +which again try to mimic the built-in functions for handling floating-point +exceptions from . You can clear them with 'feclearexcept' (which is the +only way a flag can be cleared), test them with 'fetestexcept', explicitly +raise errors with 'feraiseexcept' and save and restore their state using +'fegetexceptflag' and 'fesetexceptflag'. You can also throw corresponding C++ +exceptions based on the current flag state using 'fethrowexcept'. + +However, any automatic exception detection and handling during half-precision +operations and functions is DISABLED by default, since it comes with a minor +performance overhead due to runtime checks, and reacting to IEEE floating-point +exceptions is rarely ever needed in application code. But the library fully +supports IEEE-conformant detection of floating-point exceptions and various +ways for handling them, which can be enabled by pre-defining the corresponding +preprocessor symbols to 1. They can be enabled individually or all at once and +they will be processed in the order they are listed here: + + - 'HALF_ERRHANDLING_FLAGS' sets the internal exception flags described above + whenever the corresponding exception occurs. + - 'HALF_ERRHANDLING_ERRNO' sets the value of 'errno' from similar to + the behaviour of the built-in floating-point types when 'MATH_ERRNO' is used. + - 'HALF_ERRHANDLING_FENV' will propagate exceptions to the built-in + floating-point implementation using 'std::feraiseexcept' if support for + C++11 floating-point control is enabled. However, this does not synchronize + exceptions: neither will clearing propagate nor will it work in reverse. + - 'HALF_ERRHANDLING_THROW_...' can be defined to a string literal which will + be used as description message for a C++ exception that is thrown whenever + a 'FE_...' exception occurs, similar to the behaviour of 'fethrowexcept'. + +If any of the above error handling is activated, non-quiet operations on +half-precision values will also raise a 'FE_INVALID' exception whenever +they encounter a signaling NaN value, in addition to transforming the value +into a quiet NaN. If error handling is disabled, signaling NaNs will be +treated like quiet NaNs (while still getting explicitly quieted if propagated +to the result). There can also be additional treatment of overflow and +underflow errors after they have been processed as above, which is ENABLED by +default (but of course only takes effect if any other exception handling is +activated) unless overridden by pre-defining the corresponding preprocessor +symbol to 0: + + - 'HALF_ERRHANDLING_OVERFLOW_TO_INEXACT' will cause overflow errors to also + raise a 'FE_INEXACT' exception. + - 'HALF_ERRHANDLING_UNDERFLOW_TO_INEXACT' will cause underflow errors to also + raise a 'FE_INEXACT' exception. This will also slightly change the + behaviour of the underflow exception, which will ONLY be raised if the + result is actually inexact due to underflow. If this is disabled, underflow + exceptions will be raised for ANY (possibly exact) subnormal result. + + +CREDITS AND CONTACT +------------------- + +This library is developed by CHRISTIAN RAU and released under the MIT License +(see LICENSE.txt). If you have any questions or problems with it, feel free to +contact me at rauy@users.sourceforge.net. + +Additional credit goes to JEROEN VAN DER ZIJP for his paper on "Fast Half Float +Conversions", whose algorithms have been used in the library for converting +between half-precision and single-precision values. diff --git a/external/header_only/half/half.hpp b/external/header_only/half/half.hpp new file mode 100644 index 0000000000..d0a882dd64 --- /dev/null +++ b/external/header_only/half/half.hpp @@ -0,0 +1,4601 @@ +// half - IEEE 754-based half-precision floating-point library. +// +// Copyright (c) 2012-2021 Christian Rau +// +// Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation +// files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, +// modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the +// Software is furnished to do so, subject to the following conditions: +// +// The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. +// +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE +// WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR +// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, +// ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + +// Version 2.2.0 + +/// \file +/// Main header file for half-precision functionality. + +#ifndef HALF_HALF_HPP +#define HALF_HALF_HPP + +#define HALF_GCC_VERSION (__GNUC__*100+__GNUC_MINOR__) + +#if defined(__INTEL_COMPILER) + #define HALF_ICC_VERSION __INTEL_COMPILER +#elif defined(__ICC) + #define HALF_ICC_VERSION __ICC +#elif defined(__ICL) + #define HALF_ICC_VERSION __ICL +#else + #define HALF_ICC_VERSION 0 +#endif + +// check C++11 language features +#if defined(__clang__) // clang + #if __has_feature(cxx_static_assert) && !defined(HALF_ENABLE_CPP11_STATIC_ASSERT) + #define HALF_ENABLE_CPP11_STATIC_ASSERT 1 + #endif + #if __has_feature(cxx_constexpr) && !defined(HALF_ENABLE_CPP11_CONSTEXPR) + #define HALF_ENABLE_CPP11_CONSTEXPR 1 + #endif + #if __has_feature(cxx_noexcept) && !defined(HALF_ENABLE_CPP11_NOEXCEPT) + #define HALF_ENABLE_CPP11_NOEXCEPT 1 + #endif + #if __has_feature(cxx_user_literals) && !defined(HALF_ENABLE_CPP11_USER_LITERALS) + #define HALF_ENABLE_CPP11_USER_LITERALS 1 + #endif + #if __has_feature(cxx_thread_local) && !defined(HALF_ENABLE_CPP11_THREAD_LOCAL) + #define HALF_ENABLE_CPP11_THREAD_LOCAL 1 + #endif + #if (defined(__GXX_EXPERIMENTAL_CXX0X__) || __cplusplus >= 201103L) && !defined(HALF_ENABLE_CPP11_LONG_LONG) + #define HALF_ENABLE_CPP11_LONG_LONG 1 + #endif +#elif HALF_ICC_VERSION && defined(__INTEL_CXX11_MODE__) // Intel C++ + #if HALF_ICC_VERSION >= 1500 && !defined(HALF_ENABLE_CPP11_THREAD_LOCAL) + #define HALF_ENABLE_CPP11_THREAD_LOCAL 1 + #endif + #if HALF_ICC_VERSION >= 1500 && !defined(HALF_ENABLE_CPP11_USER_LITERALS) + #define HALF_ENABLE_CPP11_USER_LITERALS 1 + #endif + #if HALF_ICC_VERSION >= 1400 && !defined(HALF_ENABLE_CPP11_CONSTEXPR) + #define HALF_ENABLE_CPP11_CONSTEXPR 1 + #endif + #if HALF_ICC_VERSION >= 1400 && !defined(HALF_ENABLE_CPP11_NOEXCEPT) + #define HALF_ENABLE_CPP11_NOEXCEPT 1 + #endif + #if HALF_ICC_VERSION >= 1110 && !defined(HALF_ENABLE_CPP11_STATIC_ASSERT) + #define HALF_ENABLE_CPP11_STATIC_ASSERT 1 + #endif + #if HALF_ICC_VERSION >= 1110 && !defined(HALF_ENABLE_CPP11_LONG_LONG) + #define HALF_ENABLE_CPP11_LONG_LONG 1 + #endif +#elif defined(__GNUC__) // gcc + #if defined(__GXX_EXPERIMENTAL_CXX0X__) || __cplusplus >= 201103L + #if HALF_GCC_VERSION >= 408 && !defined(HALF_ENABLE_CPP11_THREAD_LOCAL) + #define HALF_ENABLE_CPP11_THREAD_LOCAL 1 + #endif + #if HALF_GCC_VERSION >= 407 && !defined(HALF_ENABLE_CPP11_USER_LITERALS) + #define HALF_ENABLE_CPP11_USER_LITERALS 1 + #endif + #if HALF_GCC_VERSION >= 406 && !defined(HALF_ENABLE_CPP11_CONSTEXPR) + #define HALF_ENABLE_CPP11_CONSTEXPR 1 + #endif + #if HALF_GCC_VERSION >= 406 && !defined(HALF_ENABLE_CPP11_NOEXCEPT) + #define HALF_ENABLE_CPP11_NOEXCEPT 1 + #endif + #if HALF_GCC_VERSION >= 403 && !defined(HALF_ENABLE_CPP11_STATIC_ASSERT) + #define HALF_ENABLE_CPP11_STATIC_ASSERT 1 + #endif + #if !defined(HALF_ENABLE_CPP11_LONG_LONG) + #define HALF_ENABLE_CPP11_LONG_LONG 1 + #endif + #endif + #define HALF_TWOS_COMPLEMENT_INT 1 +#elif defined(_MSC_VER) // Visual C++ + #if _MSC_VER >= 1900 && !defined(HALF_ENABLE_CPP11_THREAD_LOCAL) + #define HALF_ENABLE_CPP11_THREAD_LOCAL 1 + #endif + #if _MSC_VER >= 1900 && !defined(HALF_ENABLE_CPP11_USER_LITERALS) + #define HALF_ENABLE_CPP11_USER_LITERALS 1 + #endif + #if _MSC_VER >= 1900 && !defined(HALF_ENABLE_CPP11_CONSTEXPR) + #define HALF_ENABLE_CPP11_CONSTEXPR 1 + #endif + #if _MSC_VER >= 1900 && !defined(HALF_ENABLE_CPP11_NOEXCEPT) + #define HALF_ENABLE_CPP11_NOEXCEPT 1 + #endif + #if _MSC_VER >= 1600 && !defined(HALF_ENABLE_CPP11_STATIC_ASSERT) + #define HALF_ENABLE_CPP11_STATIC_ASSERT 1 + #endif + #if _MSC_VER >= 1310 && !defined(HALF_ENABLE_CPP11_LONG_LONG) + #define HALF_ENABLE_CPP11_LONG_LONG 1 + #endif + #define HALF_TWOS_COMPLEMENT_INT 1 + #define HALF_POP_WARNINGS 1 + #pragma warning(push) + #pragma warning(disable : 4099 4127 4146) //struct vs class, constant in if, negative unsigned +#endif + +// check C++11 library features +#include +#if defined(_LIBCPP_VERSION) // libc++ + #if defined(__GXX_EXPERIMENTAL_CXX0X__) || __cplusplus >= 201103 + #ifndef HALF_ENABLE_CPP11_TYPE_TRAITS + #define HALF_ENABLE_CPP11_TYPE_TRAITS 1 + #endif + #ifndef HALF_ENABLE_CPP11_CSTDINT + #define HALF_ENABLE_CPP11_CSTDINT 1 + #endif + #ifndef HALF_ENABLE_CPP11_CMATH + #define HALF_ENABLE_CPP11_CMATH 1 + #endif + #ifndef HALF_ENABLE_CPP11_HASH + #define HALF_ENABLE_CPP11_HASH 1 + #endif + #ifndef HALF_ENABLE_CPP11_CFENV + #define HALF_ENABLE_CPP11_CFENV 1 + #endif + #endif +#elif defined(__GLIBCXX__) // libstdc++ + #if defined(__GXX_EXPERIMENTAL_CXX0X__) || __cplusplus >= 201103 + #ifdef __clang__ + #if __GLIBCXX__ >= 20080606 && !defined(HALF_ENABLE_CPP11_TYPE_TRAITS) + #define HALF_ENABLE_CPP11_TYPE_TRAITS 1 + #endif + #if __GLIBCXX__ >= 20080606 && !defined(HALF_ENABLE_CPP11_CSTDINT) + #define HALF_ENABLE_CPP11_CSTDINT 1 + #endif + #if __GLIBCXX__ >= 20080606 && !defined(HALF_ENABLE_CPP11_CMATH) + #define HALF_ENABLE_CPP11_CMATH 1 + #endif + #if __GLIBCXX__ >= 20080606 && !defined(HALF_ENABLE_CPP11_HASH) + #define HALF_ENABLE_CPP11_HASH 1 + #endif + #if __GLIBCXX__ >= 20080606 && !defined(HALF_ENABLE_CPP11_CFENV) + #define HALF_ENABLE_CPP11_CFENV 1 + #endif + #else + #if HALF_GCC_VERSION >= 403 && !defined(HALF_ENABLE_CPP11_TYPE_TRAITS) + #define HALF_ENABLE_CPP11_TYPE_TRAITS 1 + #endif + #if HALF_GCC_VERSION >= 403 && !defined(HALF_ENABLE_CPP11_CSTDINT) + #define HALF_ENABLE_CPP11_CSTDINT 1 + #endif + #if HALF_GCC_VERSION >= 403 && !defined(HALF_ENABLE_CPP11_CMATH) + #define HALF_ENABLE_CPP11_CMATH 1 + #endif + #if HALF_GCC_VERSION >= 403 && !defined(HALF_ENABLE_CPP11_HASH) + #define HALF_ENABLE_CPP11_HASH 1 + #endif + #if HALF_GCC_VERSION >= 403 && !defined(HALF_ENABLE_CPP11_CFENV) + #define HALF_ENABLE_CPP11_CFENV 1 + #endif + #endif + #endif +#elif defined(_CPPLIB_VER) // Dinkumware/Visual C++ + #if _CPPLIB_VER >= 520 && !defined(HALF_ENABLE_CPP11_TYPE_TRAITS) + #define HALF_ENABLE_CPP11_TYPE_TRAITS 1 + #endif + #if _CPPLIB_VER >= 520 && !defined(HALF_ENABLE_CPP11_CSTDINT) + #define HALF_ENABLE_CPP11_CSTDINT 1 + #endif + #if _CPPLIB_VER >= 520 && !defined(HALF_ENABLE_CPP11_HASH) + #define HALF_ENABLE_CPP11_HASH 1 + #endif + #if _CPPLIB_VER >= 610 && !defined(HALF_ENABLE_CPP11_CMATH) + #define HALF_ENABLE_CPP11_CMATH 1 + #endif + #if _CPPLIB_VER >= 610 && !defined(HALF_ENABLE_CPP11_CFENV) + #define HALF_ENABLE_CPP11_CFENV 1 + #endif +#endif +#undef HALF_GCC_VERSION +#undef HALF_ICC_VERSION + +// any error throwing C++ exceptions? +#if defined(HALF_ERRHANDLING_THROW_INVALID) || defined(HALF_ERRHANDLING_THROW_DIVBYZERO) || defined(HALF_ERRHANDLING_THROW_OVERFLOW) || defined(HALF_ERRHANDLING_THROW_UNDERFLOW) || defined(HALF_ERRHANDLING_THROW_INEXACT) +#define HALF_ERRHANDLING_THROWS 1 +#endif + +// any error handling enabled? +#define HALF_ERRHANDLING (HALF_ERRHANDLING_FLAGS||HALF_ERRHANDLING_ERRNO||HALF_ERRHANDLING_FENV||HALF_ERRHANDLING_THROWS) + +#if HALF_ERRHANDLING + #define HALF_UNUSED_NOERR(name) name +#else + #define HALF_UNUSED_NOERR(name) +#endif + +// support constexpr +#if HALF_ENABLE_CPP11_CONSTEXPR + #define HALF_CONSTEXPR constexpr + #define HALF_CONSTEXPR_CONST constexpr + #if HALF_ERRHANDLING + #define HALF_CONSTEXPR_NOERR + #else + #define HALF_CONSTEXPR_NOERR constexpr + #endif +#else + #define HALF_CONSTEXPR + #define HALF_CONSTEXPR_CONST const + #define HALF_CONSTEXPR_NOERR +#endif + +// support noexcept +#if HALF_ENABLE_CPP11_NOEXCEPT + #define HALF_NOEXCEPT noexcept + #define HALF_NOTHROW noexcept +#else + #define HALF_NOEXCEPT + #define HALF_NOTHROW throw() +#endif + +// support thread storage +#if HALF_ENABLE_CPP11_THREAD_LOCAL + #define HALF_THREAD_LOCAL thread_local +#else + #define HALF_THREAD_LOCAL static +#endif + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#if HALF_ENABLE_CPP11_TYPE_TRAITS + #include +#endif +#if HALF_ENABLE_CPP11_CSTDINT + #include +#endif +#if HALF_ERRHANDLING_ERRNO + #include +#endif +#if HALF_ENABLE_CPP11_CFENV + #include +#endif +#if HALF_ENABLE_CPP11_HASH + #include +#endif + + +#ifndef HALF_ENABLE_F16C_INTRINSICS + /// Enable F16C intruction set intrinsics. + /// Defining this to 1 enables the use of [F16C compiler intrinsics](https://en.wikipedia.org/wiki/F16C) for converting between + /// half-precision and single-precision values which may result in improved performance. This will not perform additional checks + /// for support of the F16C instruction set, so an appropriate target platform is required when enabling this feature. + /// + /// Unless predefined it will be enabled automatically when the `__F16C__` symbol is defined, which some compilers do on supporting platforms. + #define HALF_ENABLE_F16C_INTRINSICS __F16C__ +#endif +#if HALF_ENABLE_F16C_INTRINSICS + #include +#endif + +#ifdef HALF_DOXYGEN_ONLY +/// Type for internal floating-point computations. +/// This can be predefined to a built-in floating-point type (`float`, `double` or `long double`) to override the internal +/// half-precision implementation to use this type for computing arithmetic operations and mathematical function (if available). +/// This can result in improved performance for arithmetic operators and mathematical functions but might cause results to +/// deviate from the specified half-precision rounding mode and inhibits proper detection of half-precision exceptions. +#define HALF_ARITHMETIC_TYPE (undefined) + +/// Enable internal exception flags. +/// Defining this to 1 causes operations on half-precision values to raise internal floating-point exception flags according to +/// the IEEE 754 standard. These can then be cleared and checked with clearexcept(), testexcept(). +#define HALF_ERRHANDLING_FLAGS 0 + +/// Enable exception propagation to `errno`. +/// Defining this to 1 causes operations on half-precision values to propagate floating-point exceptions to +/// [errno](https://en.cppreference.com/w/cpp/error/errno) from ``. Specifically this will propagate domain errors as +/// [EDOM](https://en.cppreference.com/w/cpp/error/errno_macros) and pole, overflow and underflow errors as +/// [ERANGE](https://en.cppreference.com/w/cpp/error/errno_macros). Inexact errors won't be propagated. +#define HALF_ERRHANDLING_ERRNO 0 + +/// Enable exception propagation to built-in floating-point platform. +/// Defining this to 1 causes operations on half-precision values to propagate floating-point exceptions to the built-in +/// single- and double-precision implementation's exception flags using the +/// [C++11 floating-point environment control](https://en.cppreference.com/w/cpp/numeric/fenv) from ``. However, this +/// does not work in reverse and single- or double-precision exceptions will not raise the corresponding half-precision +/// exception flags, nor will explicitly clearing flags clear the corresponding built-in flags. +#define HALF_ERRHANDLING_FENV 0 + +/// Throw C++ exception on domain errors. +/// Defining this to a string literal causes operations on half-precision values to throw a +/// [std::domain_error](https://en.cppreference.com/w/cpp/error/domain_error) with the specified message on domain errors. +#define HALF_ERRHANDLING_THROW_INVALID (undefined) + +/// Throw C++ exception on pole errors. +/// Defining this to a string literal causes operations on half-precision values to throw a +/// [std::domain_error](https://en.cppreference.com/w/cpp/error/domain_error) with the specified message on pole errors. +#define HALF_ERRHANDLING_THROW_DIVBYZERO (undefined) + +/// Throw C++ exception on overflow errors. +/// Defining this to a string literal causes operations on half-precision values to throw a +/// [std::overflow_error](https://en.cppreference.com/w/cpp/error/overflow_error) with the specified message on overflows. +#define HALF_ERRHANDLING_THROW_OVERFLOW (undefined) + +/// Throw C++ exception on underflow errors. +/// Defining this to a string literal causes operations on half-precision values to throw a +/// [std::underflow_error](https://en.cppreference.com/w/cpp/error/underflow_error) with the specified message on underflows. +#define HALF_ERRHANDLING_THROW_UNDERFLOW (undefined) + +/// Throw C++ exception on rounding errors. +/// Defining this to 1 causes operations on half-precision values to throw a +/// [std::range_error](https://en.cppreference.com/w/cpp/error/range_error) with the specified message on general rounding errors. +#define HALF_ERRHANDLING_THROW_INEXACT (undefined) +#endif + +#ifndef HALF_ERRHANDLING_OVERFLOW_TO_INEXACT +/// Raise INEXACT exception on overflow. +/// Defining this to 1 (default) causes overflow errors to automatically raise inexact exceptions in addition. +/// These will be raised after any possible handling of the underflow exception. +#define HALF_ERRHANDLING_OVERFLOW_TO_INEXACT 1 +#endif + +#ifndef HALF_ERRHANDLING_UNDERFLOW_TO_INEXACT +/// Raise INEXACT exception on underflow. +/// Defining this to 1 (default) causes underflow errors to automatically raise inexact exceptions in addition. +/// These will be raised after any possible handling of the underflow exception. +/// +/// **Note:** This will actually cause underflow (and the accompanying inexact) exceptions to be raised *only* when the result +/// is inexact, while if disabled bare underflow errors will be raised for *any* (possibly exact) subnormal result. +#define HALF_ERRHANDLING_UNDERFLOW_TO_INEXACT 1 +#endif + +/// Default rounding mode. +/// This specifies the rounding mode used for all conversions between [half](\ref half_float::half)s and more precise types +/// (unless using half_cast() and specifying the rounding mode directly) as well as in arithmetic operations and mathematical +/// functions. It can be redefined (before including half.hpp) to one of the standard rounding modes using their respective +/// constants or the equivalent values of +/// [std::float_round_style](https://en.cppreference.com/w/cpp/types/numeric_limits/float_round_style): +/// +/// `std::float_round_style` | value | rounding +/// ---------------------------------|-------|------------------------- +/// `std::round_indeterminate` | -1 | fastest +/// `std::round_toward_zero` | 0 | toward zero +/// `std::round_to_nearest` | 1 | to nearest (default) +/// `std::round_toward_infinity` | 2 | toward positive infinity +/// `std::round_toward_neg_infinity` | 3 | toward negative infinity +/// +/// By default this is set to `1` (`std::round_to_nearest`), which rounds results to the nearest representable value. It can even +/// be set to [std::numeric_limits::round_style](https://en.cppreference.com/w/cpp/types/numeric_limits/round_style) to synchronize +/// the rounding mode with that of the built-in single-precision implementation (which is likely `std::round_to_nearest`, though). +#ifndef HALF_ROUND_STYLE + #define HALF_ROUND_STYLE 1 // = std::round_to_nearest +#endif + +/// Value signaling overflow. +/// In correspondence with `HUGE_VAL[F|L]` from `` this symbol expands to a positive value signaling the overflow of an +/// operation, in particular it just evaluates to positive infinity. +/// +/// **See also:** Documentation for [HUGE_VAL](https://en.cppreference.com/w/cpp/numeric/math/HUGE_VAL) +#define HUGE_VALH std::numeric_limits::infinity() + +/// Fast half-precision fma function. +/// This symbol is defined if the fma() function generally executes as fast as, or faster than, a separate +/// half-precision multiplication followed by an addition, which is always the case. +/// +/// **See also:** Documentation for [FP_FAST_FMA](https://en.cppreference.com/w/cpp/numeric/math/fma) +#define FP_FAST_FMAH 1 + +/// Half rounding mode. +/// In correspondence with `FLT_ROUNDS` from `` this symbol expands to the rounding mode used for +/// half-precision operations. It is an alias for [HALF_ROUND_STYLE](\ref HALF_ROUND_STYLE). +/// +/// **See also:** Documentation for [FLT_ROUNDS](https://en.cppreference.com/w/cpp/types/climits/FLT_ROUNDS) +#define HLF_ROUNDS HALF_ROUND_STYLE + +#ifndef FP_ILOGB0 + #define FP_ILOGB0 INT_MIN +#endif +#ifndef FP_ILOGBNAN + #define FP_ILOGBNAN INT_MAX +#endif +#ifndef FP_SUBNORMAL + #define FP_SUBNORMAL 0 +#endif +#ifndef FP_ZERO + #define FP_ZERO 1 +#endif +#ifndef FP_NAN + #define FP_NAN 2 +#endif +#ifndef FP_INFINITE + #define FP_INFINITE 3 +#endif +#ifndef FP_NORMAL + #define FP_NORMAL 4 +#endif + +#if !HALF_ENABLE_CPP11_CFENV && !defined(FE_ALL_EXCEPT) + #define FE_INVALID 0x10 + #define FE_DIVBYZERO 0x08 + #define FE_OVERFLOW 0x04 + #define FE_UNDERFLOW 0x02 + #define FE_INEXACT 0x01 + #define FE_ALL_EXCEPT (FE_INVALID|FE_DIVBYZERO|FE_OVERFLOW|FE_UNDERFLOW|FE_INEXACT) +#endif + + +/// Main namespace for half-precision functionality. +/// This namespace contains all the functionality provided by the library. +namespace half_float +{ + class half; + +#if HALF_ENABLE_CPP11_USER_LITERALS + /// Library-defined half-precision literals. + /// Import this namespace to enable half-precision floating-point literals: + /// ~~~~{.cpp} + /// using namespace half_float::literal; + /// half_float::half = 4.2_h; + /// ~~~~ + namespace literal + { + half operator "" _h(long double); + } +#endif + + /// \internal + /// \brief Implementation details. + namespace detail + { + #if HALF_ENABLE_CPP11_TYPE_TRAITS + /// Conditional type. + template struct conditional : std::conditional {}; + + /// Helper for tag dispatching. + template struct bool_type : std::integral_constant {}; + using std::true_type; + using std::false_type; + + /// Type traits for floating-point types. + template struct is_float : std::is_floating_point {}; + #else + /// Conditional type. + template struct conditional { typedef T type; }; + template struct conditional { typedef F type; }; + + /// Helper for tag dispatching. + template struct bool_type {}; + typedef bool_type true_type; + typedef bool_type false_type; + + /// Type traits for floating-point types. + template struct is_float : false_type {}; + template struct is_float : is_float {}; + template struct is_float : is_float {}; + template struct is_float : is_float {}; + template<> struct is_float : true_type {}; + template<> struct is_float : true_type {}; + template<> struct is_float : true_type {}; + #endif + + /// Type traits for floating-point bits. + template struct bits { typedef unsigned char type; }; + template struct bits : bits {}; + template struct bits : bits {}; + template struct bits : bits {}; + + #if HALF_ENABLE_CPP11_CSTDINT + /// Unsigned integer of (at least) 16 bits width. + typedef std::uint_least16_t uint16; + + /// Fastest unsigned integer of (at least) 32 bits width. + typedef std::uint_fast32_t uint32; + + /// Fastest signed integer of (at least) 32 bits width. + typedef std::int_fast32_t int32; + + /// Unsigned integer of (at least) 32 bits width. + template<> struct bits { typedef std::uint_least32_t type; }; + + /// Unsigned integer of (at least) 64 bits width. + template<> struct bits { typedef std::uint_least64_t type; }; + #else + /// Unsigned integer of (at least) 16 bits width. + typedef unsigned short uint16; + + /// Fastest unsigned integer of (at least) 32 bits width. + typedef unsigned long uint32; + + /// Fastest unsigned integer of (at least) 32 bits width. + typedef long int32; + + /// Unsigned integer of (at least) 32 bits width. + template<> struct bits : conditional::digits>=32,unsigned int,unsigned long> {}; + + #if HALF_ENABLE_CPP11_LONG_LONG + /// Unsigned integer of (at least) 64 bits width. + template<> struct bits : conditional::digits>=64,unsigned long,unsigned long long> {}; + #else + /// Unsigned integer of (at least) 64 bits width. + template<> struct bits { typedef unsigned long type; }; + #endif + #endif + + #ifdef HALF_ARITHMETIC_TYPE + /// Type to use for arithmetic computations and mathematic functions internally. + typedef HALF_ARITHMETIC_TYPE internal_t; + #endif + + /// Tag type for binary construction. + struct binary_t {}; + + /// Tag for binary construction. + HALF_CONSTEXPR_CONST binary_t binary = binary_t(); + + /// \name Implementation defined classification and arithmetic + /// \{ + + /// Check for infinity. + /// \tparam T argument type (builtin floating-point type) + /// \param arg value to query + /// \retval true if infinity + /// \retval false else + template bool builtin_isinf(T arg) + { + #if HALF_ENABLE_CPP11_CMATH + return std::isinf(arg); + #elif defined(_MSC_VER) + return !::_finite(static_cast(arg)) && !::_isnan(static_cast(arg)); + #else + return arg == std::numeric_limits::infinity() || arg == -std::numeric_limits::infinity(); + #endif + } + + /// Check for NaN. + /// \tparam T argument type (builtin floating-point type) + /// \param arg value to query + /// \retval true if not a number + /// \retval false else + template bool builtin_isnan(T arg) + { + #if HALF_ENABLE_CPP11_CMATH + return std::isnan(arg); + #elif defined(_MSC_VER) + return ::_isnan(static_cast(arg)) != 0; + #else + return arg != arg; + #endif + } + + /// Check sign. + /// \tparam T argument type (builtin floating-point type) + /// \param arg value to query + /// \retval true if signbit set + /// \retval false else + template bool builtin_signbit(T arg) + { + #if HALF_ENABLE_CPP11_CMATH + return std::signbit(arg); + #else + return arg < T() || (arg == T() && T(1)/arg < T()); + #endif + } + + /// Platform-independent sign mask. + /// \param arg integer value in two's complement + /// \retval -1 if \a arg negative + /// \retval 0 if \a arg positive + inline uint32 sign_mask(uint32 arg) + { + static const int N = std::numeric_limits::digits - 1; + #if HALF_TWOS_COMPLEMENT_INT + return static_cast(arg) >> N; + #else + return -((arg>>N)&1); + #endif + } + + /// Platform-independent arithmetic right shift. + /// \param arg integer value in two's complement + /// \param i shift amount (at most 31) + /// \return \a arg right shifted for \a i bits with possible sign extension + inline uint32 arithmetic_shift(uint32 arg, int i) + { + #if HALF_TWOS_COMPLEMENT_INT + return static_cast(arg) >> i; + #else + return static_cast(arg)/(static_cast(1)<>(std::numeric_limits::digits-1))&1); + #endif + } + + /// \} + /// \name Error handling + /// \{ + + /// Internal exception flags. + /// \return reference to global exception flags + inline int& errflags() { HALF_THREAD_LOCAL int flags = 0; return flags; } + + /// Raise floating-point exception. + /// \param flags exceptions to raise + /// \param cond condition to raise exceptions for + inline void raise(int HALF_UNUSED_NOERR(flags), bool HALF_UNUSED_NOERR(cond) = true) + { + #if HALF_ERRHANDLING + if(!cond) + return; + #if HALF_ERRHANDLING_FLAGS + errflags() |= flags; + #endif + #if HALF_ERRHANDLING_ERRNO + if(flags & FE_INVALID) + errno = EDOM; + else if(flags & (FE_DIVBYZERO|FE_OVERFLOW|FE_UNDERFLOW)) + errno = ERANGE; + #endif + #if HALF_ERRHANDLING_FENV && HALF_ENABLE_CPP11_CFENV + std::feraiseexcept(flags); + #endif + #ifdef HALF_ERRHANDLING_THROW_INVALID + if(flags & FE_INVALID) + throw std::domain_error(HALF_ERRHANDLING_THROW_INVALID); + #endif + #ifdef HALF_ERRHANDLING_THROW_DIVBYZERO + if(flags & FE_DIVBYZERO) + throw std::domain_error(HALF_ERRHANDLING_THROW_DIVBYZERO); + #endif + #ifdef HALF_ERRHANDLING_THROW_OVERFLOW + if(flags & FE_OVERFLOW) + throw std::overflow_error(HALF_ERRHANDLING_THROW_OVERFLOW); + #endif + #ifdef HALF_ERRHANDLING_THROW_UNDERFLOW + if(flags & FE_UNDERFLOW) + throw std::underflow_error(HALF_ERRHANDLING_THROW_UNDERFLOW); + #endif + #ifdef HALF_ERRHANDLING_THROW_INEXACT + if(flags & FE_INEXACT) + throw std::range_error(HALF_ERRHANDLING_THROW_INEXACT); + #endif + #if HALF_ERRHANDLING_UNDERFLOW_TO_INEXACT + if((flags & FE_UNDERFLOW) && !(flags & FE_INEXACT)) + raise(FE_INEXACT); + #endif + #if HALF_ERRHANDLING_OVERFLOW_TO_INEXACT + if((flags & FE_OVERFLOW) && !(flags & FE_INEXACT)) + raise(FE_INEXACT); + #endif + #endif + } + + /// Check and signal for any NaN. + /// \param x first half-precision value to check + /// \param y second half-precision value to check + /// \retval true if either \a x or \a y is NaN + /// \retval false else + /// \exception FE_INVALID if \a x or \a y is NaN + inline HALF_CONSTEXPR_NOERR bool compsignal(unsigned int x, unsigned int y) + { + #if HALF_ERRHANDLING + raise(FE_INVALID, (x&0x7FFF)>0x7C00 || (y&0x7FFF)>0x7C00); + #endif + return (x&0x7FFF) > 0x7C00 || (y&0x7FFF) > 0x7C00; + } + + /// Signal and silence signaling NaN. + /// \param nan half-precision NaN value + /// \return quiet NaN + /// \exception FE_INVALID if \a nan is signaling NaN + inline HALF_CONSTEXPR_NOERR unsigned int signal(unsigned int nan) + { + #if HALF_ERRHANDLING + raise(FE_INVALID, !(nan&0x200)); + #endif + return nan | 0x200; + } + + /// Signal and silence signaling NaNs. + /// \param x first half-precision value to check + /// \param y second half-precision value to check + /// \return quiet NaN + /// \exception FE_INVALID if \a x or \a y is signaling NaN + inline HALF_CONSTEXPR_NOERR unsigned int signal(unsigned int x, unsigned int y) + { + #if HALF_ERRHANDLING + raise(FE_INVALID, ((x&0x7FFF)>0x7C00 && !(x&0x200)) || ((y&0x7FFF)>0x7C00 && !(y&0x200))); + #endif + return ((x&0x7FFF)>0x7C00) ? (x|0x200) : (y|0x200); + } + + /// Signal and silence signaling NaNs. + /// \param x first half-precision value to check + /// \param y second half-precision value to check + /// \param z third half-precision value to check + /// \return quiet NaN + /// \exception FE_INVALID if \a x, \a y or \a z is signaling NaN + inline HALF_CONSTEXPR_NOERR unsigned int signal(unsigned int x, unsigned int y, unsigned int z) + { + #if HALF_ERRHANDLING + raise(FE_INVALID, ((x&0x7FFF)>0x7C00 && !(x&0x200)) || ((y&0x7FFF)>0x7C00 && !(y&0x200)) || ((z&0x7FFF)>0x7C00 && !(z&0x200))); + #endif + return ((x&0x7FFF)>0x7C00) ? (x|0x200) : ((y&0x7FFF)>0x7C00) ? (y|0x200) : (z|0x200); + } + + /// Select value or signaling NaN. + /// \param x preferred half-precision value + /// \param y ignored half-precision value except for signaling NaN + /// \return \a y if signaling NaN, \a x otherwise + /// \exception FE_INVALID if \a y is signaling NaN + inline HALF_CONSTEXPR_NOERR unsigned int select(unsigned int x, unsigned int HALF_UNUSED_NOERR(y)) + { + #if HALF_ERRHANDLING + return (((y&0x7FFF)>0x7C00) && !(y&0x200)) ? signal(y) : x; + #else + return x; + #endif + } + + /// Raise domain error and return NaN. + /// return quiet NaN + /// \exception FE_INVALID + inline HALF_CONSTEXPR_NOERR unsigned int invalid() + { + #if HALF_ERRHANDLING + raise(FE_INVALID); + #endif + return 0x7FFF; + } + + /// Raise pole error and return infinity. + /// \param sign half-precision value with sign bit only + /// \return half-precision infinity with sign of \a sign + /// \exception FE_DIVBYZERO + inline HALF_CONSTEXPR_NOERR unsigned int pole(unsigned int sign = 0) + { + #if HALF_ERRHANDLING + raise(FE_DIVBYZERO); + #endif + return sign | 0x7C00; + } + + /// Check value for underflow. + /// \param arg non-zero half-precision value to check + /// \return \a arg + /// \exception FE_UNDERFLOW if arg is subnormal + inline HALF_CONSTEXPR_NOERR unsigned int check_underflow(unsigned int arg) + { + #if HALF_ERRHANDLING && !HALF_ERRHANDLING_UNDERFLOW_TO_INEXACT + raise(FE_UNDERFLOW, !(arg&0x7C00)); + #endif + return arg; + } + + /// \} + /// \name Conversion and rounding + /// \{ + + /// Half-precision overflow. + /// \tparam R rounding mode to use + /// \param sign half-precision value with sign bit only + /// \return rounded overflowing half-precision value + /// \exception FE_OVERFLOW + template HALF_CONSTEXPR_NOERR unsigned int overflow(unsigned int sign = 0) + { + #if HALF_ERRHANDLING + raise(FE_OVERFLOW); + #endif + return (R==std::round_toward_infinity) ? (sign+0x7C00-(sign>>15)) : + (R==std::round_toward_neg_infinity) ? (sign+0x7BFF+(sign>>15)) : + (R==std::round_toward_zero) ? (sign|0x7BFF) : + (sign|0x7C00); + } + + /// Half-precision underflow. + /// \tparam R rounding mode to use + /// \param sign half-precision value with sign bit only + /// \return rounded underflowing half-precision value + /// \exception FE_UNDERFLOW + template HALF_CONSTEXPR_NOERR unsigned int underflow(unsigned int sign = 0) + { + #if HALF_ERRHANDLING + raise(FE_UNDERFLOW); + #endif + return (R==std::round_toward_infinity) ? (sign+1-(sign>>15)) : + (R==std::round_toward_neg_infinity) ? (sign+(sign>>15)) : + sign; + } + + /// Round half-precision number. + /// \tparam R rounding mode to use + /// \tparam I `true` to always raise INEXACT exception, `false` to raise only for rounded results + /// \param value finite half-precision number to round + /// \param g guard bit (most significant discarded bit) + /// \param s sticky bit (or of all but the most significant discarded bits) + /// \return rounded half-precision value + /// \exception FE_OVERFLOW on overflows + /// \exception FE_UNDERFLOW on underflows + /// \exception FE_INEXACT if value had to be rounded or \a I is `true` + template HALF_CONSTEXPR_NOERR unsigned int rounded(unsigned int value, int g, int s) + { + #if HALF_ERRHANDLING + value += (R==std::round_to_nearest) ? (g&(s|value)) : + (R==std::round_toward_infinity) ? (~(value>>15)&(g|s)) : + (R==std::round_toward_neg_infinity) ? ((value>>15)&(g|s)) : 0; + if((value&0x7C00) == 0x7C00) + raise(FE_OVERFLOW); + else if(value & 0x7C00) + raise(FE_INEXACT, I || (g|s)!=0); + else + raise(FE_UNDERFLOW, !(HALF_ERRHANDLING_UNDERFLOW_TO_INEXACT) || I || (g|s)!=0); + return value; + #else + return (R==std::round_to_nearest) ? (value+(g&(s|value))) : + (R==std::round_toward_infinity) ? (value+(~(value>>15)&(g|s))) : + (R==std::round_toward_neg_infinity) ? (value+((value>>15)&(g|s))) : + value; + #endif + } + + /// Round half-precision number to nearest integer value. + /// \tparam R rounding mode to use + /// \tparam E `true` for round to even, `false` for round away from zero + /// \tparam I `true` to raise INEXACT exception (if inexact), `false` to never raise it + /// \param value half-precision value to round + /// \return half-precision bits for nearest integral value + /// \exception FE_INVALID for signaling NaN + /// \exception FE_INEXACT if value had to be rounded and \a I is `true` + template unsigned int integral(unsigned int value) + { + unsigned int abs = value & 0x7FFF; + if(abs < 0x3C00) + { + raise(FE_INEXACT, I); + return ((R==std::round_to_nearest) ? (0x3C00&-static_cast(abs>=(0x3800+E))) : + (R==std::round_toward_infinity) ? (0x3C00&-(~(value>>15)&(abs!=0))) : + (R==std::round_toward_neg_infinity) ? (0x3C00&-static_cast(value>0x8000)) : + 0) | (value&0x8000); + } + if(abs >= 0x6400) + return (abs>0x7C00) ? signal(value) : value; + unsigned int exp = 25 - (abs>>10), mask = (1<>exp)&E)) : + (R==std::round_toward_infinity) ? (mask&((value>>15)-1)) : + (R==std::round_toward_neg_infinity) ? (mask&-(value>>15)) : + 0) + value) & ~mask; + } + + /// Convert fixed point to half-precision floating-point. + /// \tparam R rounding mode to use + /// \tparam F number of fractional bits in [11,31] + /// \tparam S `true` for signed, `false` for unsigned + /// \tparam N `true` for additional normalization step, `false` if already normalized to 1.F + /// \tparam I `true` to always raise INEXACT exception, `false` to raise only for rounded results + /// \param m mantissa in Q1.F fixed point format + /// \param exp biased exponent - 1 + /// \param sign half-precision value with sign bit only + /// \param s sticky bit (or of all but the most significant already discarded bits) + /// \return value converted to half-precision + /// \exception FE_OVERFLOW on overflows + /// \exception FE_UNDERFLOW on underflows + /// \exception FE_INEXACT if value had to be rounded or \a I is `true` + template unsigned int fixed2half(uint32 m, int exp = 14, unsigned int sign = 0, int s = 0) + { + if(S) + { + uint32 msign = sign_mask(m); + m = (m^msign) - msign; + sign = msign & 0x8000; + } + if(N) + for(; m<(static_cast(1)<(sign+(m>>(F-10-exp)), (m>>(F-11-exp))&1, s|((m&((static_cast(1)<<(F-11-exp))-1))!=0)); + return rounded(sign+(exp<<10)+(m>>(F-10)), (m>>(F-11))&1, s|((m&((static_cast(1)<<(F-11))-1))!=0)); + } + + /// Convert IEEE single-precision to half-precision. + /// Credit for this goes to [Jeroen van der Zijp](ftp://ftp.fox-toolkit.org/pub/fasthalffloatconversion.pdf). + /// \tparam R rounding mode to use + /// \param value single-precision value to convert + /// \return rounded half-precision value + /// \exception FE_OVERFLOW on overflows + /// \exception FE_UNDERFLOW on underflows + /// \exception FE_INEXACT if value had to be rounded + template unsigned int float2half_impl(float value, true_type) + { + #if HALF_ENABLE_F16C_INTRINSICS + return _mm_cvtsi128_si32(_mm_cvtps_ph(_mm_set_ss(value), + (R==std::round_to_nearest) ? _MM_FROUND_TO_NEAREST_INT : + (R==std::round_toward_zero) ? _MM_FROUND_TO_ZERO : + (R==std::round_toward_infinity) ? _MM_FROUND_TO_POS_INF : + (R==std::round_toward_neg_infinity) ? _MM_FROUND_TO_NEG_INF : + _MM_FROUND_CUR_DIRECTION)); + #else + bits::type fbits; + std::memcpy(&fbits, &value, sizeof(float)); + #if 1 + unsigned int sign = (fbits>>16) & 0x8000; + fbits &= 0x7FFFFFFF; + if(fbits >= 0x7F800000) + return sign | 0x7C00 | ((fbits>0x7F800000) ? (0x200|((fbits>>13)&0x3FF)) : 0); + if(fbits >= 0x47800000) + return overflow(sign); + if(fbits >= 0x38800000) + return rounded(sign|(((fbits>>23)-112)<<10)|((fbits>>13)&0x3FF), (fbits>>12)&1, (fbits&0xFFF)!=0); + if(fbits >= 0x33000000) + { + int i = 125 - (fbits>>23); + fbits = (fbits&0x7FFFFF) | 0x800000; + return rounded(sign|(fbits>>(i+1)), (fbits>>i)&1, (fbits&((static_cast(1)<(sign); + return sign; + #else + static const uint16 base_table[512] = { + 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, + 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, + 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, + 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, + 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, + 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, + 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080, 0x0100, + 0x0200, 0x0400, 0x0800, 0x0C00, 0x1000, 0x1400, 0x1800, 0x1C00, 0x2000, 0x2400, 0x2800, 0x2C00, 0x3000, 0x3400, 0x3800, 0x3C00, + 0x4000, 0x4400, 0x4800, 0x4C00, 0x5000, 0x5400, 0x5800, 0x5C00, 0x6000, 0x6400, 0x6800, 0x6C00, 0x7000, 0x7400, 0x7800, 0x7BFF, + 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, + 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, + 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, + 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, + 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, + 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, + 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7C00, + 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, + 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, + 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, + 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, + 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, + 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, + 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8001, 0x8002, 0x8004, 0x8008, 0x8010, 0x8020, 0x8040, 0x8080, 0x8100, + 0x8200, 0x8400, 0x8800, 0x8C00, 0x9000, 0x9400, 0x9800, 0x9C00, 0xA000, 0xA400, 0xA800, 0xAC00, 0xB000, 0xB400, 0xB800, 0xBC00, + 0xC000, 0xC400, 0xC800, 0xCC00, 0xD000, 0xD400, 0xD800, 0xDC00, 0xE000, 0xE400, 0xE800, 0xEC00, 0xF000, 0xF400, 0xF800, 0xFBFF, + 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, + 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, + 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, + 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, + 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, + 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, + 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFC00 }; + static const unsigned char shift_table[256] = { + 24, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, + 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, + 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, + 25, 25, 25, 25, 25, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, + 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, + 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, + 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, + 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 13 }; + int sexp = fbits >> 23, exp = sexp & 0xFF, i = shift_table[exp]; + fbits &= 0x7FFFFF; + uint32 m = (fbits|((exp!=0)<<23)) & -static_cast(exp!=0xFF); + return rounded(base_table[sexp]+(fbits>>i), (m>>(i-1))&1, (((static_cast(1)<<(i-1))-1)&m)!=0); + #endif + #endif + } + + /// Convert IEEE double-precision to half-precision. + /// \tparam R rounding mode to use + /// \param value double-precision value to convert + /// \return rounded half-precision value + /// \exception FE_OVERFLOW on overflows + /// \exception FE_UNDERFLOW on underflows + /// \exception FE_INEXACT if value had to be rounded + template unsigned int float2half_impl(double value, true_type) + { + #if HALF_ENABLE_F16C_INTRINSICS + if(R == std::round_indeterminate) + return _mm_cvtsi128_si32(_mm_cvtps_ph(_mm_cvtpd_ps(_mm_set_sd(value)), _MM_FROUND_CUR_DIRECTION)); + #endif + bits::type dbits; + std::memcpy(&dbits, &value, sizeof(double)); + uint32 hi = dbits >> 32, lo = dbits & 0xFFFFFFFF; + unsigned int sign = (hi>>16) & 0x8000; + hi &= 0x7FFFFFFF; + if(hi >= 0x7FF00000) + return sign | 0x7C00 | ((dbits&0xFFFFFFFFFFFFF) ? (0x200|((hi>>10)&0x3FF)) : 0); + if(hi >= 0x40F00000) + return overflow(sign); + if(hi >= 0x3F100000) + return rounded(sign|(((hi>>20)-1008)<<10)|((hi>>10)&0x3FF), (hi>>9)&1, ((hi&0x1FF)|lo)!=0); + if(hi >= 0x3E600000) + { + int i = 1018 - (hi>>20); + hi = (hi&0xFFFFF) | 0x100000; + return rounded(sign|(hi>>(i+1)), (hi>>i)&1, ((hi&((static_cast(1)<(sign); + return sign; + } + + /// Convert non-IEEE floating-point to half-precision. + /// \tparam R rounding mode to use + /// \tparam T source type (builtin floating-point type) + /// \param value floating-point value to convert + /// \return rounded half-precision value + /// \exception FE_OVERFLOW on overflows + /// \exception FE_UNDERFLOW on underflows + /// \exception FE_INEXACT if value had to be rounded + template unsigned int float2half_impl(T value, ...) + { + unsigned int hbits = static_cast(builtin_signbit(value)) << 15; + if(value == T()) + return hbits; + if(builtin_isnan(value)) + return hbits | 0x7FFF; + if(builtin_isinf(value)) + return hbits | 0x7C00; + int exp; + std::frexp(value, &exp); + if(exp > 16) + return overflow(hbits); + if(exp < -13) + value = std::ldexp(value, 25); + else + { + value = std::ldexp(value, 12-exp); + hbits |= ((exp+13)<<10); + } + T ival, frac = std::modf(value, &ival); + int m = std::abs(static_cast(ival)); + return rounded(hbits+(m>>1), m&1, frac!=T()); + } + + /// Convert floating-point to half-precision. + /// \tparam R rounding mode to use + /// \tparam T source type (builtin floating-point type) + /// \param value floating-point value to convert + /// \return rounded half-precision value + /// \exception FE_OVERFLOW on overflows + /// \exception FE_UNDERFLOW on underflows + /// \exception FE_INEXACT if value had to be rounded + template unsigned int float2half(T value) + { + return float2half_impl(value, bool_type::is_iec559&&sizeof(typename bits::type)==sizeof(T)>()); + } + + /// Convert integer to half-precision floating-point. + /// \tparam R rounding mode to use + /// \tparam T type to convert (builtin integer type) + /// \param value integral value to convert + /// \return rounded half-precision value + /// \exception FE_OVERFLOW on overflows + /// \exception FE_INEXACT if value had to be rounded + template unsigned int int2half(T value) + { + unsigned int bits = static_cast(value<0) << 15; + if(!value) + return bits; + if(bits) + value = -value; + if(value > 0xFFFF) + return overflow(bits); + unsigned int m = static_cast(value), exp = 24; + for(; m<0x400; m<<=1,--exp) ; + for(; m>0x7FF; m>>=1,++exp) ; + bits |= (exp<<10) + m; + return (exp>24) ? rounded(bits, (value>>(exp-25))&1, (((1<<(exp-25))-1)&value)!=0) : bits; + } + + /// Convert half-precision to IEEE single-precision. + /// Credit for this goes to [Jeroen van der Zijp](ftp://ftp.fox-toolkit.org/pub/fasthalffloatconversion.pdf). + /// \param value half-precision value to convert + /// \return single-precision value + inline float half2float_impl(unsigned int value, float, true_type) + { + #if HALF_ENABLE_F16C_INTRINSICS + return _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(value))); + #else + #if 0 + bits::type fbits = static_cast::type>(value&0x8000) << 16; + int abs = value & 0x7FFF; + if(abs) + { + fbits |= 0x38000000 << static_cast(abs>=0x7C00); + for(; abs<0x400; abs<<=1,fbits-=0x800000) ; + fbits += static_cast::type>(abs) << 13; + } + #else + static const bits::type mantissa_table[2048] = { + 0x00000000, 0x33800000, 0x34000000, 0x34400000, 0x34800000, 0x34A00000, 0x34C00000, 0x34E00000, 0x35000000, 0x35100000, 0x35200000, 0x35300000, 0x35400000, 0x35500000, 0x35600000, 0x35700000, + 0x35800000, 0x35880000, 0x35900000, 0x35980000, 0x35A00000, 0x35A80000, 0x35B00000, 0x35B80000, 0x35C00000, 0x35C80000, 0x35D00000, 0x35D80000, 0x35E00000, 0x35E80000, 0x35F00000, 0x35F80000, + 0x36000000, 0x36040000, 0x36080000, 0x360C0000, 0x36100000, 0x36140000, 0x36180000, 0x361C0000, 0x36200000, 0x36240000, 0x36280000, 0x362C0000, 0x36300000, 0x36340000, 0x36380000, 0x363C0000, + 0x36400000, 0x36440000, 0x36480000, 0x364C0000, 0x36500000, 0x36540000, 0x36580000, 0x365C0000, 0x36600000, 0x36640000, 0x36680000, 0x366C0000, 0x36700000, 0x36740000, 0x36780000, 0x367C0000, + 0x36800000, 0x36820000, 0x36840000, 0x36860000, 0x36880000, 0x368A0000, 0x368C0000, 0x368E0000, 0x36900000, 0x36920000, 0x36940000, 0x36960000, 0x36980000, 0x369A0000, 0x369C0000, 0x369E0000, + 0x36A00000, 0x36A20000, 0x36A40000, 0x36A60000, 0x36A80000, 0x36AA0000, 0x36AC0000, 0x36AE0000, 0x36B00000, 0x36B20000, 0x36B40000, 0x36B60000, 0x36B80000, 0x36BA0000, 0x36BC0000, 0x36BE0000, + 0x36C00000, 0x36C20000, 0x36C40000, 0x36C60000, 0x36C80000, 0x36CA0000, 0x36CC0000, 0x36CE0000, 0x36D00000, 0x36D20000, 0x36D40000, 0x36D60000, 0x36D80000, 0x36DA0000, 0x36DC0000, 0x36DE0000, + 0x36E00000, 0x36E20000, 0x36E40000, 0x36E60000, 0x36E80000, 0x36EA0000, 0x36EC0000, 0x36EE0000, 0x36F00000, 0x36F20000, 0x36F40000, 0x36F60000, 0x36F80000, 0x36FA0000, 0x36FC0000, 0x36FE0000, + 0x37000000, 0x37010000, 0x37020000, 0x37030000, 0x37040000, 0x37050000, 0x37060000, 0x37070000, 0x37080000, 0x37090000, 0x370A0000, 0x370B0000, 0x370C0000, 0x370D0000, 0x370E0000, 0x370F0000, + 0x37100000, 0x37110000, 0x37120000, 0x37130000, 0x37140000, 0x37150000, 0x37160000, 0x37170000, 0x37180000, 0x37190000, 0x371A0000, 0x371B0000, 0x371C0000, 0x371D0000, 0x371E0000, 0x371F0000, + 0x37200000, 0x37210000, 0x37220000, 0x37230000, 0x37240000, 0x37250000, 0x37260000, 0x37270000, 0x37280000, 0x37290000, 0x372A0000, 0x372B0000, 0x372C0000, 0x372D0000, 0x372E0000, 0x372F0000, + 0x37300000, 0x37310000, 0x37320000, 0x37330000, 0x37340000, 0x37350000, 0x37360000, 0x37370000, 0x37380000, 0x37390000, 0x373A0000, 0x373B0000, 0x373C0000, 0x373D0000, 0x373E0000, 0x373F0000, + 0x37400000, 0x37410000, 0x37420000, 0x37430000, 0x37440000, 0x37450000, 0x37460000, 0x37470000, 0x37480000, 0x37490000, 0x374A0000, 0x374B0000, 0x374C0000, 0x374D0000, 0x374E0000, 0x374F0000, + 0x37500000, 0x37510000, 0x37520000, 0x37530000, 0x37540000, 0x37550000, 0x37560000, 0x37570000, 0x37580000, 0x37590000, 0x375A0000, 0x375B0000, 0x375C0000, 0x375D0000, 0x375E0000, 0x375F0000, + 0x37600000, 0x37610000, 0x37620000, 0x37630000, 0x37640000, 0x37650000, 0x37660000, 0x37670000, 0x37680000, 0x37690000, 0x376A0000, 0x376B0000, 0x376C0000, 0x376D0000, 0x376E0000, 0x376F0000, + 0x37700000, 0x37710000, 0x37720000, 0x37730000, 0x37740000, 0x37750000, 0x37760000, 0x37770000, 0x37780000, 0x37790000, 0x377A0000, 0x377B0000, 0x377C0000, 0x377D0000, 0x377E0000, 0x377F0000, + 0x37800000, 0x37808000, 0x37810000, 0x37818000, 0x37820000, 0x37828000, 0x37830000, 0x37838000, 0x37840000, 0x37848000, 0x37850000, 0x37858000, 0x37860000, 0x37868000, 0x37870000, 0x37878000, + 0x37880000, 0x37888000, 0x37890000, 0x37898000, 0x378A0000, 0x378A8000, 0x378B0000, 0x378B8000, 0x378C0000, 0x378C8000, 0x378D0000, 0x378D8000, 0x378E0000, 0x378E8000, 0x378F0000, 0x378F8000, + 0x37900000, 0x37908000, 0x37910000, 0x37918000, 0x37920000, 0x37928000, 0x37930000, 0x37938000, 0x37940000, 0x37948000, 0x37950000, 0x37958000, 0x37960000, 0x37968000, 0x37970000, 0x37978000, + 0x37980000, 0x37988000, 0x37990000, 0x37998000, 0x379A0000, 0x379A8000, 0x379B0000, 0x379B8000, 0x379C0000, 0x379C8000, 0x379D0000, 0x379D8000, 0x379E0000, 0x379E8000, 0x379F0000, 0x379F8000, + 0x37A00000, 0x37A08000, 0x37A10000, 0x37A18000, 0x37A20000, 0x37A28000, 0x37A30000, 0x37A38000, 0x37A40000, 0x37A48000, 0x37A50000, 0x37A58000, 0x37A60000, 0x37A68000, 0x37A70000, 0x37A78000, + 0x37A80000, 0x37A88000, 0x37A90000, 0x37A98000, 0x37AA0000, 0x37AA8000, 0x37AB0000, 0x37AB8000, 0x37AC0000, 0x37AC8000, 0x37AD0000, 0x37AD8000, 0x37AE0000, 0x37AE8000, 0x37AF0000, 0x37AF8000, + 0x37B00000, 0x37B08000, 0x37B10000, 0x37B18000, 0x37B20000, 0x37B28000, 0x37B30000, 0x37B38000, 0x37B40000, 0x37B48000, 0x37B50000, 0x37B58000, 0x37B60000, 0x37B68000, 0x37B70000, 0x37B78000, + 0x37B80000, 0x37B88000, 0x37B90000, 0x37B98000, 0x37BA0000, 0x37BA8000, 0x37BB0000, 0x37BB8000, 0x37BC0000, 0x37BC8000, 0x37BD0000, 0x37BD8000, 0x37BE0000, 0x37BE8000, 0x37BF0000, 0x37BF8000, + 0x37C00000, 0x37C08000, 0x37C10000, 0x37C18000, 0x37C20000, 0x37C28000, 0x37C30000, 0x37C38000, 0x37C40000, 0x37C48000, 0x37C50000, 0x37C58000, 0x37C60000, 0x37C68000, 0x37C70000, 0x37C78000, + 0x37C80000, 0x37C88000, 0x37C90000, 0x37C98000, 0x37CA0000, 0x37CA8000, 0x37CB0000, 0x37CB8000, 0x37CC0000, 0x37CC8000, 0x37CD0000, 0x37CD8000, 0x37CE0000, 0x37CE8000, 0x37CF0000, 0x37CF8000, + 0x37D00000, 0x37D08000, 0x37D10000, 0x37D18000, 0x37D20000, 0x37D28000, 0x37D30000, 0x37D38000, 0x37D40000, 0x37D48000, 0x37D50000, 0x37D58000, 0x37D60000, 0x37D68000, 0x37D70000, 0x37D78000, + 0x37D80000, 0x37D88000, 0x37D90000, 0x37D98000, 0x37DA0000, 0x37DA8000, 0x37DB0000, 0x37DB8000, 0x37DC0000, 0x37DC8000, 0x37DD0000, 0x37DD8000, 0x37DE0000, 0x37DE8000, 0x37DF0000, 0x37DF8000, + 0x37E00000, 0x37E08000, 0x37E10000, 0x37E18000, 0x37E20000, 0x37E28000, 0x37E30000, 0x37E38000, 0x37E40000, 0x37E48000, 0x37E50000, 0x37E58000, 0x37E60000, 0x37E68000, 0x37E70000, 0x37E78000, + 0x37E80000, 0x37E88000, 0x37E90000, 0x37E98000, 0x37EA0000, 0x37EA8000, 0x37EB0000, 0x37EB8000, 0x37EC0000, 0x37EC8000, 0x37ED0000, 0x37ED8000, 0x37EE0000, 0x37EE8000, 0x37EF0000, 0x37EF8000, + 0x37F00000, 0x37F08000, 0x37F10000, 0x37F18000, 0x37F20000, 0x37F28000, 0x37F30000, 0x37F38000, 0x37F40000, 0x37F48000, 0x37F50000, 0x37F58000, 0x37F60000, 0x37F68000, 0x37F70000, 0x37F78000, + 0x37F80000, 0x37F88000, 0x37F90000, 0x37F98000, 0x37FA0000, 0x37FA8000, 0x37FB0000, 0x37FB8000, 0x37FC0000, 0x37FC8000, 0x37FD0000, 0x37FD8000, 0x37FE0000, 0x37FE8000, 0x37FF0000, 0x37FF8000, + 0x38000000, 0x38004000, 0x38008000, 0x3800C000, 0x38010000, 0x38014000, 0x38018000, 0x3801C000, 0x38020000, 0x38024000, 0x38028000, 0x3802C000, 0x38030000, 0x38034000, 0x38038000, 0x3803C000, + 0x38040000, 0x38044000, 0x38048000, 0x3804C000, 0x38050000, 0x38054000, 0x38058000, 0x3805C000, 0x38060000, 0x38064000, 0x38068000, 0x3806C000, 0x38070000, 0x38074000, 0x38078000, 0x3807C000, + 0x38080000, 0x38084000, 0x38088000, 0x3808C000, 0x38090000, 0x38094000, 0x38098000, 0x3809C000, 0x380A0000, 0x380A4000, 0x380A8000, 0x380AC000, 0x380B0000, 0x380B4000, 0x380B8000, 0x380BC000, + 0x380C0000, 0x380C4000, 0x380C8000, 0x380CC000, 0x380D0000, 0x380D4000, 0x380D8000, 0x380DC000, 0x380E0000, 0x380E4000, 0x380E8000, 0x380EC000, 0x380F0000, 0x380F4000, 0x380F8000, 0x380FC000, + 0x38100000, 0x38104000, 0x38108000, 0x3810C000, 0x38110000, 0x38114000, 0x38118000, 0x3811C000, 0x38120000, 0x38124000, 0x38128000, 0x3812C000, 0x38130000, 0x38134000, 0x38138000, 0x3813C000, + 0x38140000, 0x38144000, 0x38148000, 0x3814C000, 0x38150000, 0x38154000, 0x38158000, 0x3815C000, 0x38160000, 0x38164000, 0x38168000, 0x3816C000, 0x38170000, 0x38174000, 0x38178000, 0x3817C000, + 0x38180000, 0x38184000, 0x38188000, 0x3818C000, 0x38190000, 0x38194000, 0x38198000, 0x3819C000, 0x381A0000, 0x381A4000, 0x381A8000, 0x381AC000, 0x381B0000, 0x381B4000, 0x381B8000, 0x381BC000, + 0x381C0000, 0x381C4000, 0x381C8000, 0x381CC000, 0x381D0000, 0x381D4000, 0x381D8000, 0x381DC000, 0x381E0000, 0x381E4000, 0x381E8000, 0x381EC000, 0x381F0000, 0x381F4000, 0x381F8000, 0x381FC000, + 0x38200000, 0x38204000, 0x38208000, 0x3820C000, 0x38210000, 0x38214000, 0x38218000, 0x3821C000, 0x38220000, 0x38224000, 0x38228000, 0x3822C000, 0x38230000, 0x38234000, 0x38238000, 0x3823C000, + 0x38240000, 0x38244000, 0x38248000, 0x3824C000, 0x38250000, 0x38254000, 0x38258000, 0x3825C000, 0x38260000, 0x38264000, 0x38268000, 0x3826C000, 0x38270000, 0x38274000, 0x38278000, 0x3827C000, + 0x38280000, 0x38284000, 0x38288000, 0x3828C000, 0x38290000, 0x38294000, 0x38298000, 0x3829C000, 0x382A0000, 0x382A4000, 0x382A8000, 0x382AC000, 0x382B0000, 0x382B4000, 0x382B8000, 0x382BC000, + 0x382C0000, 0x382C4000, 0x382C8000, 0x382CC000, 0x382D0000, 0x382D4000, 0x382D8000, 0x382DC000, 0x382E0000, 0x382E4000, 0x382E8000, 0x382EC000, 0x382F0000, 0x382F4000, 0x382F8000, 0x382FC000, + 0x38300000, 0x38304000, 0x38308000, 0x3830C000, 0x38310000, 0x38314000, 0x38318000, 0x3831C000, 0x38320000, 0x38324000, 0x38328000, 0x3832C000, 0x38330000, 0x38334000, 0x38338000, 0x3833C000, + 0x38340000, 0x38344000, 0x38348000, 0x3834C000, 0x38350000, 0x38354000, 0x38358000, 0x3835C000, 0x38360000, 0x38364000, 0x38368000, 0x3836C000, 0x38370000, 0x38374000, 0x38378000, 0x3837C000, + 0x38380000, 0x38384000, 0x38388000, 0x3838C000, 0x38390000, 0x38394000, 0x38398000, 0x3839C000, 0x383A0000, 0x383A4000, 0x383A8000, 0x383AC000, 0x383B0000, 0x383B4000, 0x383B8000, 0x383BC000, + 0x383C0000, 0x383C4000, 0x383C8000, 0x383CC000, 0x383D0000, 0x383D4000, 0x383D8000, 0x383DC000, 0x383E0000, 0x383E4000, 0x383E8000, 0x383EC000, 0x383F0000, 0x383F4000, 0x383F8000, 0x383FC000, + 0x38400000, 0x38404000, 0x38408000, 0x3840C000, 0x38410000, 0x38414000, 0x38418000, 0x3841C000, 0x38420000, 0x38424000, 0x38428000, 0x3842C000, 0x38430000, 0x38434000, 0x38438000, 0x3843C000, + 0x38440000, 0x38444000, 0x38448000, 0x3844C000, 0x38450000, 0x38454000, 0x38458000, 0x3845C000, 0x38460000, 0x38464000, 0x38468000, 0x3846C000, 0x38470000, 0x38474000, 0x38478000, 0x3847C000, + 0x38480000, 0x38484000, 0x38488000, 0x3848C000, 0x38490000, 0x38494000, 0x38498000, 0x3849C000, 0x384A0000, 0x384A4000, 0x384A8000, 0x384AC000, 0x384B0000, 0x384B4000, 0x384B8000, 0x384BC000, + 0x384C0000, 0x384C4000, 0x384C8000, 0x384CC000, 0x384D0000, 0x384D4000, 0x384D8000, 0x384DC000, 0x384E0000, 0x384E4000, 0x384E8000, 0x384EC000, 0x384F0000, 0x384F4000, 0x384F8000, 0x384FC000, + 0x38500000, 0x38504000, 0x38508000, 0x3850C000, 0x38510000, 0x38514000, 0x38518000, 0x3851C000, 0x38520000, 0x38524000, 0x38528000, 0x3852C000, 0x38530000, 0x38534000, 0x38538000, 0x3853C000, + 0x38540000, 0x38544000, 0x38548000, 0x3854C000, 0x38550000, 0x38554000, 0x38558000, 0x3855C000, 0x38560000, 0x38564000, 0x38568000, 0x3856C000, 0x38570000, 0x38574000, 0x38578000, 0x3857C000, + 0x38580000, 0x38584000, 0x38588000, 0x3858C000, 0x38590000, 0x38594000, 0x38598000, 0x3859C000, 0x385A0000, 0x385A4000, 0x385A8000, 0x385AC000, 0x385B0000, 0x385B4000, 0x385B8000, 0x385BC000, + 0x385C0000, 0x385C4000, 0x385C8000, 0x385CC000, 0x385D0000, 0x385D4000, 0x385D8000, 0x385DC000, 0x385E0000, 0x385E4000, 0x385E8000, 0x385EC000, 0x385F0000, 0x385F4000, 0x385F8000, 0x385FC000, + 0x38600000, 0x38604000, 0x38608000, 0x3860C000, 0x38610000, 0x38614000, 0x38618000, 0x3861C000, 0x38620000, 0x38624000, 0x38628000, 0x3862C000, 0x38630000, 0x38634000, 0x38638000, 0x3863C000, + 0x38640000, 0x38644000, 0x38648000, 0x3864C000, 0x38650000, 0x38654000, 0x38658000, 0x3865C000, 0x38660000, 0x38664000, 0x38668000, 0x3866C000, 0x38670000, 0x38674000, 0x38678000, 0x3867C000, + 0x38680000, 0x38684000, 0x38688000, 0x3868C000, 0x38690000, 0x38694000, 0x38698000, 0x3869C000, 0x386A0000, 0x386A4000, 0x386A8000, 0x386AC000, 0x386B0000, 0x386B4000, 0x386B8000, 0x386BC000, + 0x386C0000, 0x386C4000, 0x386C8000, 0x386CC000, 0x386D0000, 0x386D4000, 0x386D8000, 0x386DC000, 0x386E0000, 0x386E4000, 0x386E8000, 0x386EC000, 0x386F0000, 0x386F4000, 0x386F8000, 0x386FC000, + 0x38700000, 0x38704000, 0x38708000, 0x3870C000, 0x38710000, 0x38714000, 0x38718000, 0x3871C000, 0x38720000, 0x38724000, 0x38728000, 0x3872C000, 0x38730000, 0x38734000, 0x38738000, 0x3873C000, + 0x38740000, 0x38744000, 0x38748000, 0x3874C000, 0x38750000, 0x38754000, 0x38758000, 0x3875C000, 0x38760000, 0x38764000, 0x38768000, 0x3876C000, 0x38770000, 0x38774000, 0x38778000, 0x3877C000, + 0x38780000, 0x38784000, 0x38788000, 0x3878C000, 0x38790000, 0x38794000, 0x38798000, 0x3879C000, 0x387A0000, 0x387A4000, 0x387A8000, 0x387AC000, 0x387B0000, 0x387B4000, 0x387B8000, 0x387BC000, + 0x387C0000, 0x387C4000, 0x387C8000, 0x387CC000, 0x387D0000, 0x387D4000, 0x387D8000, 0x387DC000, 0x387E0000, 0x387E4000, 0x387E8000, 0x387EC000, 0x387F0000, 0x387F4000, 0x387F8000, 0x387FC000, + 0x38000000, 0x38002000, 0x38004000, 0x38006000, 0x38008000, 0x3800A000, 0x3800C000, 0x3800E000, 0x38010000, 0x38012000, 0x38014000, 0x38016000, 0x38018000, 0x3801A000, 0x3801C000, 0x3801E000, + 0x38020000, 0x38022000, 0x38024000, 0x38026000, 0x38028000, 0x3802A000, 0x3802C000, 0x3802E000, 0x38030000, 0x38032000, 0x38034000, 0x38036000, 0x38038000, 0x3803A000, 0x3803C000, 0x3803E000, + 0x38040000, 0x38042000, 0x38044000, 0x38046000, 0x38048000, 0x3804A000, 0x3804C000, 0x3804E000, 0x38050000, 0x38052000, 0x38054000, 0x38056000, 0x38058000, 0x3805A000, 0x3805C000, 0x3805E000, + 0x38060000, 0x38062000, 0x38064000, 0x38066000, 0x38068000, 0x3806A000, 0x3806C000, 0x3806E000, 0x38070000, 0x38072000, 0x38074000, 0x38076000, 0x38078000, 0x3807A000, 0x3807C000, 0x3807E000, + 0x38080000, 0x38082000, 0x38084000, 0x38086000, 0x38088000, 0x3808A000, 0x3808C000, 0x3808E000, 0x38090000, 0x38092000, 0x38094000, 0x38096000, 0x38098000, 0x3809A000, 0x3809C000, 0x3809E000, + 0x380A0000, 0x380A2000, 0x380A4000, 0x380A6000, 0x380A8000, 0x380AA000, 0x380AC000, 0x380AE000, 0x380B0000, 0x380B2000, 0x380B4000, 0x380B6000, 0x380B8000, 0x380BA000, 0x380BC000, 0x380BE000, + 0x380C0000, 0x380C2000, 0x380C4000, 0x380C6000, 0x380C8000, 0x380CA000, 0x380CC000, 0x380CE000, 0x380D0000, 0x380D2000, 0x380D4000, 0x380D6000, 0x380D8000, 0x380DA000, 0x380DC000, 0x380DE000, + 0x380E0000, 0x380E2000, 0x380E4000, 0x380E6000, 0x380E8000, 0x380EA000, 0x380EC000, 0x380EE000, 0x380F0000, 0x380F2000, 0x380F4000, 0x380F6000, 0x380F8000, 0x380FA000, 0x380FC000, 0x380FE000, + 0x38100000, 0x38102000, 0x38104000, 0x38106000, 0x38108000, 0x3810A000, 0x3810C000, 0x3810E000, 0x38110000, 0x38112000, 0x38114000, 0x38116000, 0x38118000, 0x3811A000, 0x3811C000, 0x3811E000, + 0x38120000, 0x38122000, 0x38124000, 0x38126000, 0x38128000, 0x3812A000, 0x3812C000, 0x3812E000, 0x38130000, 0x38132000, 0x38134000, 0x38136000, 0x38138000, 0x3813A000, 0x3813C000, 0x3813E000, + 0x38140000, 0x38142000, 0x38144000, 0x38146000, 0x38148000, 0x3814A000, 0x3814C000, 0x3814E000, 0x38150000, 0x38152000, 0x38154000, 0x38156000, 0x38158000, 0x3815A000, 0x3815C000, 0x3815E000, + 0x38160000, 0x38162000, 0x38164000, 0x38166000, 0x38168000, 0x3816A000, 0x3816C000, 0x3816E000, 0x38170000, 0x38172000, 0x38174000, 0x38176000, 0x38178000, 0x3817A000, 0x3817C000, 0x3817E000, + 0x38180000, 0x38182000, 0x38184000, 0x38186000, 0x38188000, 0x3818A000, 0x3818C000, 0x3818E000, 0x38190000, 0x38192000, 0x38194000, 0x38196000, 0x38198000, 0x3819A000, 0x3819C000, 0x3819E000, + 0x381A0000, 0x381A2000, 0x381A4000, 0x381A6000, 0x381A8000, 0x381AA000, 0x381AC000, 0x381AE000, 0x381B0000, 0x381B2000, 0x381B4000, 0x381B6000, 0x381B8000, 0x381BA000, 0x381BC000, 0x381BE000, + 0x381C0000, 0x381C2000, 0x381C4000, 0x381C6000, 0x381C8000, 0x381CA000, 0x381CC000, 0x381CE000, 0x381D0000, 0x381D2000, 0x381D4000, 0x381D6000, 0x381D8000, 0x381DA000, 0x381DC000, 0x381DE000, + 0x381E0000, 0x381E2000, 0x381E4000, 0x381E6000, 0x381E8000, 0x381EA000, 0x381EC000, 0x381EE000, 0x381F0000, 0x381F2000, 0x381F4000, 0x381F6000, 0x381F8000, 0x381FA000, 0x381FC000, 0x381FE000, + 0x38200000, 0x38202000, 0x38204000, 0x38206000, 0x38208000, 0x3820A000, 0x3820C000, 0x3820E000, 0x38210000, 0x38212000, 0x38214000, 0x38216000, 0x38218000, 0x3821A000, 0x3821C000, 0x3821E000, + 0x38220000, 0x38222000, 0x38224000, 0x38226000, 0x38228000, 0x3822A000, 0x3822C000, 0x3822E000, 0x38230000, 0x38232000, 0x38234000, 0x38236000, 0x38238000, 0x3823A000, 0x3823C000, 0x3823E000, + 0x38240000, 0x38242000, 0x38244000, 0x38246000, 0x38248000, 0x3824A000, 0x3824C000, 0x3824E000, 0x38250000, 0x38252000, 0x38254000, 0x38256000, 0x38258000, 0x3825A000, 0x3825C000, 0x3825E000, + 0x38260000, 0x38262000, 0x38264000, 0x38266000, 0x38268000, 0x3826A000, 0x3826C000, 0x3826E000, 0x38270000, 0x38272000, 0x38274000, 0x38276000, 0x38278000, 0x3827A000, 0x3827C000, 0x3827E000, + 0x38280000, 0x38282000, 0x38284000, 0x38286000, 0x38288000, 0x3828A000, 0x3828C000, 0x3828E000, 0x38290000, 0x38292000, 0x38294000, 0x38296000, 0x38298000, 0x3829A000, 0x3829C000, 0x3829E000, + 0x382A0000, 0x382A2000, 0x382A4000, 0x382A6000, 0x382A8000, 0x382AA000, 0x382AC000, 0x382AE000, 0x382B0000, 0x382B2000, 0x382B4000, 0x382B6000, 0x382B8000, 0x382BA000, 0x382BC000, 0x382BE000, + 0x382C0000, 0x382C2000, 0x382C4000, 0x382C6000, 0x382C8000, 0x382CA000, 0x382CC000, 0x382CE000, 0x382D0000, 0x382D2000, 0x382D4000, 0x382D6000, 0x382D8000, 0x382DA000, 0x382DC000, 0x382DE000, + 0x382E0000, 0x382E2000, 0x382E4000, 0x382E6000, 0x382E8000, 0x382EA000, 0x382EC000, 0x382EE000, 0x382F0000, 0x382F2000, 0x382F4000, 0x382F6000, 0x382F8000, 0x382FA000, 0x382FC000, 0x382FE000, + 0x38300000, 0x38302000, 0x38304000, 0x38306000, 0x38308000, 0x3830A000, 0x3830C000, 0x3830E000, 0x38310000, 0x38312000, 0x38314000, 0x38316000, 0x38318000, 0x3831A000, 0x3831C000, 0x3831E000, + 0x38320000, 0x38322000, 0x38324000, 0x38326000, 0x38328000, 0x3832A000, 0x3832C000, 0x3832E000, 0x38330000, 0x38332000, 0x38334000, 0x38336000, 0x38338000, 0x3833A000, 0x3833C000, 0x3833E000, + 0x38340000, 0x38342000, 0x38344000, 0x38346000, 0x38348000, 0x3834A000, 0x3834C000, 0x3834E000, 0x38350000, 0x38352000, 0x38354000, 0x38356000, 0x38358000, 0x3835A000, 0x3835C000, 0x3835E000, + 0x38360000, 0x38362000, 0x38364000, 0x38366000, 0x38368000, 0x3836A000, 0x3836C000, 0x3836E000, 0x38370000, 0x38372000, 0x38374000, 0x38376000, 0x38378000, 0x3837A000, 0x3837C000, 0x3837E000, + 0x38380000, 0x38382000, 0x38384000, 0x38386000, 0x38388000, 0x3838A000, 0x3838C000, 0x3838E000, 0x38390000, 0x38392000, 0x38394000, 0x38396000, 0x38398000, 0x3839A000, 0x3839C000, 0x3839E000, + 0x383A0000, 0x383A2000, 0x383A4000, 0x383A6000, 0x383A8000, 0x383AA000, 0x383AC000, 0x383AE000, 0x383B0000, 0x383B2000, 0x383B4000, 0x383B6000, 0x383B8000, 0x383BA000, 0x383BC000, 0x383BE000, + 0x383C0000, 0x383C2000, 0x383C4000, 0x383C6000, 0x383C8000, 0x383CA000, 0x383CC000, 0x383CE000, 0x383D0000, 0x383D2000, 0x383D4000, 0x383D6000, 0x383D8000, 0x383DA000, 0x383DC000, 0x383DE000, + 0x383E0000, 0x383E2000, 0x383E4000, 0x383E6000, 0x383E8000, 0x383EA000, 0x383EC000, 0x383EE000, 0x383F0000, 0x383F2000, 0x383F4000, 0x383F6000, 0x383F8000, 0x383FA000, 0x383FC000, 0x383FE000, + 0x38400000, 0x38402000, 0x38404000, 0x38406000, 0x38408000, 0x3840A000, 0x3840C000, 0x3840E000, 0x38410000, 0x38412000, 0x38414000, 0x38416000, 0x38418000, 0x3841A000, 0x3841C000, 0x3841E000, + 0x38420000, 0x38422000, 0x38424000, 0x38426000, 0x38428000, 0x3842A000, 0x3842C000, 0x3842E000, 0x38430000, 0x38432000, 0x38434000, 0x38436000, 0x38438000, 0x3843A000, 0x3843C000, 0x3843E000, + 0x38440000, 0x38442000, 0x38444000, 0x38446000, 0x38448000, 0x3844A000, 0x3844C000, 0x3844E000, 0x38450000, 0x38452000, 0x38454000, 0x38456000, 0x38458000, 0x3845A000, 0x3845C000, 0x3845E000, + 0x38460000, 0x38462000, 0x38464000, 0x38466000, 0x38468000, 0x3846A000, 0x3846C000, 0x3846E000, 0x38470000, 0x38472000, 0x38474000, 0x38476000, 0x38478000, 0x3847A000, 0x3847C000, 0x3847E000, + 0x38480000, 0x38482000, 0x38484000, 0x38486000, 0x38488000, 0x3848A000, 0x3848C000, 0x3848E000, 0x38490000, 0x38492000, 0x38494000, 0x38496000, 0x38498000, 0x3849A000, 0x3849C000, 0x3849E000, + 0x384A0000, 0x384A2000, 0x384A4000, 0x384A6000, 0x384A8000, 0x384AA000, 0x384AC000, 0x384AE000, 0x384B0000, 0x384B2000, 0x384B4000, 0x384B6000, 0x384B8000, 0x384BA000, 0x384BC000, 0x384BE000, + 0x384C0000, 0x384C2000, 0x384C4000, 0x384C6000, 0x384C8000, 0x384CA000, 0x384CC000, 0x384CE000, 0x384D0000, 0x384D2000, 0x384D4000, 0x384D6000, 0x384D8000, 0x384DA000, 0x384DC000, 0x384DE000, + 0x384E0000, 0x384E2000, 0x384E4000, 0x384E6000, 0x384E8000, 0x384EA000, 0x384EC000, 0x384EE000, 0x384F0000, 0x384F2000, 0x384F4000, 0x384F6000, 0x384F8000, 0x384FA000, 0x384FC000, 0x384FE000, + 0x38500000, 0x38502000, 0x38504000, 0x38506000, 0x38508000, 0x3850A000, 0x3850C000, 0x3850E000, 0x38510000, 0x38512000, 0x38514000, 0x38516000, 0x38518000, 0x3851A000, 0x3851C000, 0x3851E000, + 0x38520000, 0x38522000, 0x38524000, 0x38526000, 0x38528000, 0x3852A000, 0x3852C000, 0x3852E000, 0x38530000, 0x38532000, 0x38534000, 0x38536000, 0x38538000, 0x3853A000, 0x3853C000, 0x3853E000, + 0x38540000, 0x38542000, 0x38544000, 0x38546000, 0x38548000, 0x3854A000, 0x3854C000, 0x3854E000, 0x38550000, 0x38552000, 0x38554000, 0x38556000, 0x38558000, 0x3855A000, 0x3855C000, 0x3855E000, + 0x38560000, 0x38562000, 0x38564000, 0x38566000, 0x38568000, 0x3856A000, 0x3856C000, 0x3856E000, 0x38570000, 0x38572000, 0x38574000, 0x38576000, 0x38578000, 0x3857A000, 0x3857C000, 0x3857E000, + 0x38580000, 0x38582000, 0x38584000, 0x38586000, 0x38588000, 0x3858A000, 0x3858C000, 0x3858E000, 0x38590000, 0x38592000, 0x38594000, 0x38596000, 0x38598000, 0x3859A000, 0x3859C000, 0x3859E000, + 0x385A0000, 0x385A2000, 0x385A4000, 0x385A6000, 0x385A8000, 0x385AA000, 0x385AC000, 0x385AE000, 0x385B0000, 0x385B2000, 0x385B4000, 0x385B6000, 0x385B8000, 0x385BA000, 0x385BC000, 0x385BE000, + 0x385C0000, 0x385C2000, 0x385C4000, 0x385C6000, 0x385C8000, 0x385CA000, 0x385CC000, 0x385CE000, 0x385D0000, 0x385D2000, 0x385D4000, 0x385D6000, 0x385D8000, 0x385DA000, 0x385DC000, 0x385DE000, + 0x385E0000, 0x385E2000, 0x385E4000, 0x385E6000, 0x385E8000, 0x385EA000, 0x385EC000, 0x385EE000, 0x385F0000, 0x385F2000, 0x385F4000, 0x385F6000, 0x385F8000, 0x385FA000, 0x385FC000, 0x385FE000, + 0x38600000, 0x38602000, 0x38604000, 0x38606000, 0x38608000, 0x3860A000, 0x3860C000, 0x3860E000, 0x38610000, 0x38612000, 0x38614000, 0x38616000, 0x38618000, 0x3861A000, 0x3861C000, 0x3861E000, + 0x38620000, 0x38622000, 0x38624000, 0x38626000, 0x38628000, 0x3862A000, 0x3862C000, 0x3862E000, 0x38630000, 0x38632000, 0x38634000, 0x38636000, 0x38638000, 0x3863A000, 0x3863C000, 0x3863E000, + 0x38640000, 0x38642000, 0x38644000, 0x38646000, 0x38648000, 0x3864A000, 0x3864C000, 0x3864E000, 0x38650000, 0x38652000, 0x38654000, 0x38656000, 0x38658000, 0x3865A000, 0x3865C000, 0x3865E000, + 0x38660000, 0x38662000, 0x38664000, 0x38666000, 0x38668000, 0x3866A000, 0x3866C000, 0x3866E000, 0x38670000, 0x38672000, 0x38674000, 0x38676000, 0x38678000, 0x3867A000, 0x3867C000, 0x3867E000, + 0x38680000, 0x38682000, 0x38684000, 0x38686000, 0x38688000, 0x3868A000, 0x3868C000, 0x3868E000, 0x38690000, 0x38692000, 0x38694000, 0x38696000, 0x38698000, 0x3869A000, 0x3869C000, 0x3869E000, + 0x386A0000, 0x386A2000, 0x386A4000, 0x386A6000, 0x386A8000, 0x386AA000, 0x386AC000, 0x386AE000, 0x386B0000, 0x386B2000, 0x386B4000, 0x386B6000, 0x386B8000, 0x386BA000, 0x386BC000, 0x386BE000, + 0x386C0000, 0x386C2000, 0x386C4000, 0x386C6000, 0x386C8000, 0x386CA000, 0x386CC000, 0x386CE000, 0x386D0000, 0x386D2000, 0x386D4000, 0x386D6000, 0x386D8000, 0x386DA000, 0x386DC000, 0x386DE000, + 0x386E0000, 0x386E2000, 0x386E4000, 0x386E6000, 0x386E8000, 0x386EA000, 0x386EC000, 0x386EE000, 0x386F0000, 0x386F2000, 0x386F4000, 0x386F6000, 0x386F8000, 0x386FA000, 0x386FC000, 0x386FE000, + 0x38700000, 0x38702000, 0x38704000, 0x38706000, 0x38708000, 0x3870A000, 0x3870C000, 0x3870E000, 0x38710000, 0x38712000, 0x38714000, 0x38716000, 0x38718000, 0x3871A000, 0x3871C000, 0x3871E000, + 0x38720000, 0x38722000, 0x38724000, 0x38726000, 0x38728000, 0x3872A000, 0x3872C000, 0x3872E000, 0x38730000, 0x38732000, 0x38734000, 0x38736000, 0x38738000, 0x3873A000, 0x3873C000, 0x3873E000, + 0x38740000, 0x38742000, 0x38744000, 0x38746000, 0x38748000, 0x3874A000, 0x3874C000, 0x3874E000, 0x38750000, 0x38752000, 0x38754000, 0x38756000, 0x38758000, 0x3875A000, 0x3875C000, 0x3875E000, + 0x38760000, 0x38762000, 0x38764000, 0x38766000, 0x38768000, 0x3876A000, 0x3876C000, 0x3876E000, 0x38770000, 0x38772000, 0x38774000, 0x38776000, 0x38778000, 0x3877A000, 0x3877C000, 0x3877E000, + 0x38780000, 0x38782000, 0x38784000, 0x38786000, 0x38788000, 0x3878A000, 0x3878C000, 0x3878E000, 0x38790000, 0x38792000, 0x38794000, 0x38796000, 0x38798000, 0x3879A000, 0x3879C000, 0x3879E000, + 0x387A0000, 0x387A2000, 0x387A4000, 0x387A6000, 0x387A8000, 0x387AA000, 0x387AC000, 0x387AE000, 0x387B0000, 0x387B2000, 0x387B4000, 0x387B6000, 0x387B8000, 0x387BA000, 0x387BC000, 0x387BE000, + 0x387C0000, 0x387C2000, 0x387C4000, 0x387C6000, 0x387C8000, 0x387CA000, 0x387CC000, 0x387CE000, 0x387D0000, 0x387D2000, 0x387D4000, 0x387D6000, 0x387D8000, 0x387DA000, 0x387DC000, 0x387DE000, + 0x387E0000, 0x387E2000, 0x387E4000, 0x387E6000, 0x387E8000, 0x387EA000, 0x387EC000, 0x387EE000, 0x387F0000, 0x387F2000, 0x387F4000, 0x387F6000, 0x387F8000, 0x387FA000, 0x387FC000, 0x387FE000 }; + static const bits::type exponent_table[64] = { + 0x00000000, 0x00800000, 0x01000000, 0x01800000, 0x02000000, 0x02800000, 0x03000000, 0x03800000, 0x04000000, 0x04800000, 0x05000000, 0x05800000, 0x06000000, 0x06800000, 0x07000000, 0x07800000, + 0x08000000, 0x08800000, 0x09000000, 0x09800000, 0x0A000000, 0x0A800000, 0x0B000000, 0x0B800000, 0x0C000000, 0x0C800000, 0x0D000000, 0x0D800000, 0x0E000000, 0x0E800000, 0x0F000000, 0x47800000, + 0x80000000, 0x80800000, 0x81000000, 0x81800000, 0x82000000, 0x82800000, 0x83000000, 0x83800000, 0x84000000, 0x84800000, 0x85000000, 0x85800000, 0x86000000, 0x86800000, 0x87000000, 0x87800000, + 0x88000000, 0x88800000, 0x89000000, 0x89800000, 0x8A000000, 0x8A800000, 0x8B000000, 0x8B800000, 0x8C000000, 0x8C800000, 0x8D000000, 0x8D800000, 0x8E000000, 0x8E800000, 0x8F000000, 0xC7800000 }; + static const unsigned short offset_table[64] = { + 0, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, + 0, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024 }; + bits::type fbits = mantissa_table[offset_table[value>>10]+(value&0x3FF)] + exponent_table[value>>10]; + #endif + float out; + std::memcpy(&out, &fbits, sizeof(float)); + return out; + #endif + } + + /// Convert half-precision to IEEE double-precision. + /// \param value half-precision value to convert + /// \return double-precision value + inline double half2float_impl(unsigned int value, double, true_type) + { + #if HALF_ENABLE_F16C_INTRINSICS + return _mm_cvtsd_f64(_mm_cvtps_pd(_mm_cvtph_ps(_mm_cvtsi32_si128(value)))); + #else + uint32 hi = static_cast(value&0x8000) << 16; + unsigned int abs = value & 0x7FFF; + if(abs) + { + hi |= 0x3F000000 << static_cast(abs>=0x7C00); + for(; abs<0x400; abs<<=1,hi-=0x100000) ; + hi += static_cast(abs) << 10; + } + bits::type dbits = static_cast::type>(hi) << 32; + double out; + std::memcpy(&out, &dbits, sizeof(double)); + return out; + #endif + } + + /// Convert half-precision to non-IEEE floating-point. + /// \tparam T type to convert to (builtin integer type) + /// \param value half-precision value to convert + /// \return floating-point value + template T half2float_impl(unsigned int value, T, ...) + { + T out; + unsigned int abs = value & 0x7FFF; + if(abs > 0x7C00) + out = (std::numeric_limits::has_signaling_NaN && !(abs&0x200)) ? std::numeric_limits::signaling_NaN() : + std::numeric_limits::has_quiet_NaN ? std::numeric_limits::quiet_NaN() : T(); + else if(abs == 0x7C00) + out = std::numeric_limits::has_infinity ? std::numeric_limits::infinity() : std::numeric_limits::max(); + else if(abs > 0x3FF) + out = std::ldexp(static_cast((abs&0x3FF)|0x400), (abs>>10)-25); + else + out = std::ldexp(static_cast(abs), -24); + return (value&0x8000) ? -out : out; + } + + /// Convert half-precision to floating-point. + /// \tparam T type to convert to (builtin integer type) + /// \param value half-precision value to convert + /// \return floating-point value + template T half2float(unsigned int value) + { + return half2float_impl(value, T(), bool_type::is_iec559&&sizeof(typename bits::type)==sizeof(T)>()); + } + + /// Convert half-precision floating-point to integer. + /// \tparam R rounding mode to use + /// \tparam E `true` for round to even, `false` for round away from zero + /// \tparam I `true` to raise INEXACT exception (if inexact), `false` to never raise it + /// \tparam T type to convert to (buitlin integer type with at least 16 bits precision, excluding any implicit sign bits) + /// \param value half-precision value to convert + /// \return rounded integer value + /// \exception FE_INVALID if value is not representable in type \a T + /// \exception FE_INEXACT if value had to be rounded and \a I is `true` + template T half2int(unsigned int value) + { + unsigned int abs = value & 0x7FFF; + if(abs >= 0x7C00) + { + raise(FE_INVALID); + return (value&0x8000) ? std::numeric_limits::min() : std::numeric_limits::max(); + } + if(abs < 0x3800) + { + raise(FE_INEXACT, I); + return (R==std::round_toward_infinity) ? T(~(value>>15)&(abs!=0)) : + (R==std::round_toward_neg_infinity) ? -T(value>0x8000) : + T(); + } + int exp = 25 - (abs>>10); + unsigned int m = (value&0x3FF) | 0x400; + int32 i = static_cast((exp<=0) ? (m<<-exp) : ((m+( + (R==std::round_to_nearest) ? ((1<<(exp-1))-(~(m>>exp)&E)) : + (R==std::round_toward_infinity) ? (((1<>15)-1)) : + (R==std::round_toward_neg_infinity) ? (((1<>15)) : 0))>>exp)); + if((!std::numeric_limits::is_signed && (value&0x8000)) || (std::numeric_limits::digits<16 && + ((value&0x8000) ? (-i::min()) : (i>std::numeric_limits::max())))) + raise(FE_INVALID); + else if(I && exp > 0 && (m&((1<((value&0x8000) ? -i : i); + } + + /// \} + /// \name Mathematics + /// \{ + + /// upper part of 64-bit multiplication. + /// \tparam R rounding mode to use + /// \param x first factor + /// \param y second factor + /// \return upper 32 bit of \a x * \a y + template uint32 mulhi(uint32 x, uint32 y) + { + uint32 xy = (x>>16) * (y&0xFFFF), yx = (x&0xFFFF) * (y>>16), c = (xy&0xFFFF) + (yx&0xFFFF) + (((x&0xFFFF)*(y&0xFFFF))>>16); + return (x>>16)*(y>>16) + (xy>>16) + (yx>>16) + (c>>16) + + ((R==std::round_to_nearest) ? ((c>>15)&1) : (R==std::round_toward_infinity) ? ((c&0xFFFF)!=0) : 0); + } + + /// 64-bit multiplication. + /// \param x first factor + /// \param y second factor + /// \return upper 32 bit of \a x * \a y rounded to nearest + inline uint32 multiply64(uint32 x, uint32 y) + { + #if HALF_ENABLE_CPP11_LONG_LONG + return static_cast((static_cast(x)*static_cast(y)+0x80000000)>>32); + #else + return mulhi(x, y); + #endif + } + + /// 64-bit division. + /// \param x upper 32 bit of dividend + /// \param y divisor + /// \param s variable to store sticky bit for rounding + /// \return (\a x << 32) / \a y + inline uint32 divide64(uint32 x, uint32 y, int &s) + { + #if HALF_ENABLE_CPP11_LONG_LONG + unsigned long long xx = static_cast(x) << 32; + return s = (xx%y!=0), static_cast(xx/y); + #else + y >>= 1; + uint32 rem = x, div = 0; + for(unsigned int i=0; i<32; ++i) + { + div <<= 1; + if(rem >= y) + { + rem -= y; + div |= 1; + } + rem <<= 1; + } + return s = rem > 1, div; + #endif + } + + /// Half precision positive modulus. + /// \tparam Q `true` to compute full quotient, `false` else + /// \tparam R `true` to compute signed remainder, `false` for positive remainder + /// \param x first operand as positive finite half-precision value + /// \param y second operand as positive finite half-precision value + /// \param quo adress to store quotient at, `nullptr` if \a Q `false` + /// \return modulus of \a x / \a y + template unsigned int mod(unsigned int x, unsigned int y, int *quo = NULL) + { + unsigned int q = 0; + if(x > y) + { + int absx = x, absy = y, expx = 0, expy = 0; + for(; absx<0x400; absx<<=1,--expx) ; + for(; absy<0x400; absy<<=1,--expy) ; + expx += absx >> 10; + expy += absy >> 10; + int mx = (absx&0x3FF) | 0x400, my = (absy&0x3FF) | 0x400; + for(int d=expx-expy; d; --d) + { + if(!Q && mx == my) + return 0; + if(mx >= my) + { + mx -= my; + q += Q; + } + mx <<= 1; + q <<= static_cast(Q); + } + if(!Q && mx == my) + return 0; + if(mx >= my) + { + mx -= my; + ++q; + } + if(Q) + { + q &= (1<<(std::numeric_limits::digits-1)) - 1; + if(!mx) + return *quo = q, 0; + } + for(; mx<0x400; mx<<=1,--expy) ; + x = (expy>0) ? ((expy<<10)|(mx&0x3FF)) : (mx>>(1-expy)); + } + if(R) + { + unsigned int a, b; + if(y < 0x800) + { + a = (x<0x400) ? (x<<1) : (x+0x400); + b = y; + } + else + { + a = x; + b = y - 0x400; + } + if(a > b || (a == b && (q&1))) + { + int exp = (y>>10) + (y<=0x3FF), d = exp - (x>>10) - (x<=0x3FF); + int m = (((y&0x3FF)|((y>0x3FF)<<10))<<1) - (((x&0x3FF)|((x>0x3FF)<<10))<<(1-d)); + for(; m<0x800 && exp>1; m<<=1,--exp) ; + x = 0x8000 + ((exp-1)<<10) + (m>>1); + q += Q; + } + } + if(Q) + *quo = q; + return x; + } + + /// Fixed point square root. + /// \tparam F number of fractional bits + /// \param r radicand in Q1.F fixed point format + /// \param exp exponent + /// \return square root as Q1.F/2 + template uint32 sqrt(uint32 &r, int &exp) + { + int i = exp & 1; + r <<= i; + exp = (exp-i) / 2; + uint32 m = 0; + for(uint32 bit=static_cast(1)<>=2) + { + if(r < m+bit) + m >>= 1; + else + { + r -= m + bit; + m = (m>>1) + bit; + } + } + return m; + } + + /// Fixed point binary exponential. + /// This uses the BKM algorithm in E-mode. + /// \param m exponent in [0,1) as Q0.31 + /// \param n number of iterations (at most 32) + /// \return 2 ^ \a m as Q1.31 + inline uint32 exp2(uint32 m, unsigned int n = 32) + { + static const uint32 logs[] = { + 0x80000000, 0x4AE00D1D, 0x2934F098, 0x15C01A3A, 0x0B31FB7D, 0x05AEB4DD, 0x02DCF2D1, 0x016FE50B, + 0x00B84E23, 0x005C3E10, 0x002E24CA, 0x001713D6, 0x000B8A47, 0x0005C53B, 0x0002E2A3, 0x00017153, + 0x0000B8AA, 0x00005C55, 0x00002E2B, 0x00001715, 0x00000B8B, 0x000005C5, 0x000002E3, 0x00000171, + 0x000000B9, 0x0000005C, 0x0000002E, 0x00000017, 0x0000000C, 0x00000006, 0x00000003, 0x00000001 }; + if(!m) + return 0x80000000; + uint32 mx = 0x80000000, my = 0; + for(unsigned int i=1; i> i; + } + } + return mx; + } + + /// Fixed point binary logarithm. + /// This uses the BKM algorithm in L-mode. + /// \param m mantissa in [1,2) as Q1.30 + /// \param n number of iterations (at most 32) + /// \return log2(\a m) as Q0.31 + inline uint32 log2(uint32 m, unsigned int n = 32) + { + static const uint32 logs[] = { + 0x80000000, 0x4AE00D1D, 0x2934F098, 0x15C01A3A, 0x0B31FB7D, 0x05AEB4DD, 0x02DCF2D1, 0x016FE50B, + 0x00B84E23, 0x005C3E10, 0x002E24CA, 0x001713D6, 0x000B8A47, 0x0005C53B, 0x0002E2A3, 0x00017153, + 0x0000B8AA, 0x00005C55, 0x00002E2B, 0x00001715, 0x00000B8B, 0x000005C5, 0x000002E3, 0x00000171, + 0x000000B9, 0x0000005C, 0x0000002E, 0x00000017, 0x0000000C, 0x00000006, 0x00000003, 0x00000001 }; + if(m == 0x40000000) + return 0; + uint32 mx = 0x40000000, my = 0; + for(unsigned int i=1; i>i); + if(mz <= m) + { + mx = mz; + my += logs[i]; + } + } + return my; + } + + /// Fixed point sine and cosine. + /// This uses the CORDIC algorithm in rotation mode. + /// \param mz angle in [-pi/2,pi/2] as Q1.30 + /// \param n number of iterations (at most 31) + /// \return sine and cosine of \a mz as Q1.30 + inline std::pair sincos(uint32 mz, unsigned int n = 31) + { + static const uint32 angles[] = { + 0x3243F6A9, 0x1DAC6705, 0x0FADBAFD, 0x07F56EA7, 0x03FEAB77, 0x01FFD55C, 0x00FFFAAB, 0x007FFF55, + 0x003FFFEB, 0x001FFFFD, 0x00100000, 0x00080000, 0x00040000, 0x00020000, 0x00010000, 0x00008000, + 0x00004000, 0x00002000, 0x00001000, 0x00000800, 0x00000400, 0x00000200, 0x00000100, 0x00000080, + 0x00000040, 0x00000020, 0x00000010, 0x00000008, 0x00000004, 0x00000002, 0x00000001 }; + uint32 mx = 0x26DD3B6A, my = 0; + for(unsigned int i=0; i0x3FF)<<10); + int exp = (abs>>10) + (abs<=0x3FF) - 15; + if(abs < 0x3A48) + return k = 0, m << (exp+20); + #if HALF_ENABLE_CPP11_LONG_LONG + unsigned long long y = m * 0xA2F9836E4E442, mask = (1ULL<<(62-exp)) - 1, yi = (y+(mask>>1)) & ~mask, f = y - yi; + uint32 sign = -static_cast(f>>63); + k = static_cast(yi>>(62-exp)); + return (multiply64(static_cast((sign ? -f : f)>>(31-exp)), 0xC90FDAA2)^sign) - sign; + #else + uint32 yh = m*0xA2F98 + mulhi(m, 0x36E4E442), yl = (m*0x36E4E442) & 0xFFFFFFFF; + uint32 mask = (static_cast(1)<<(30-exp)) - 1, yi = (yh+(mask>>1)) & ~mask, sign = -static_cast(yi>yh); + k = static_cast(yi>>(30-exp)); + uint32 fh = (yh^sign) + (yi^~sign) - ~sign, fl = (yl^sign) - sign; + return (multiply64((exp>-1) ? (((fh<<(1+exp))&0xFFFFFFFF)|((fl&0xFFFFFFFF)>>(31-exp))) : fh, 0xC90FDAA2)^sign) - sign; + #endif + } + + /// Get arguments for atan2 function. + /// \param abs half-precision floating-point value + /// \return \a abs and sqrt(1 - \a abs^2) as Q0.30 + inline std::pair atan2_args(unsigned int abs) + { + int exp = -15; + for(; abs<0x400; abs<<=1,--exp) ; + exp += abs >> 10; + uint32 my = ((abs&0x3FF)|0x400) << 5, r = my * my; + int rexp = 2 * exp; + r = 0x40000000 - ((rexp>-31) ? ((r>>-rexp)|((r&((static_cast(1)<<-rexp)-1))!=0)) : 1); + for(rexp=0; r<0x40000000; r<<=1,--rexp) ; + uint32 mx = sqrt<30>(r, rexp); + int d = exp - rexp; + if(d < 0) + return std::make_pair((d<-14) ? ((my>>(-d-14))+((my>>(-d-15))&1)) : (my<<(14+d)), (mx<<14)+(r<<13)/mx); + if(d > 0) + return std::make_pair(my<<14, (d>14) ? ((mx>>(d-14))+((mx>>(d-15))&1)) : ((d==14) ? mx : ((mx<<(14-d))+(r<<(13-d))/mx))); + return std::make_pair(my<<13, (mx<<13)+(r<<12)/mx); + } + + /// Get exponentials for hyperbolic computation + /// \param abs half-precision floating-point value + /// \param exp variable to take unbiased exponent of larger result + /// \param n number of BKM iterations (at most 32) + /// \return exp(abs) and exp(-\a abs) as Q1.31 with same exponent + inline std::pair hyperbolic_args(unsigned int abs, int &exp, unsigned int n = 32) + { + uint32 mx = detail::multiply64(static_cast((abs&0x3FF)+((abs>0x3FF)<<10))<<21, 0xB8AA3B29), my; + int e = (abs>>10) + (abs<=0x3FF); + if(e < 14) + { + exp = 0; + mx >>= 14 - e; + } + else + { + exp = mx >> (45-e); + mx = (mx<<(e-14)) & 0x7FFFFFFF; + } + mx = exp2(mx, n); + int d = exp << 1, s; + if(mx > 0x80000000) + { + my = divide64(0x80000000, mx, s); + my |= s; + ++d; + } + else + my = mx; + return std::make_pair(mx, (d<31) ? ((my>>d)|((my&((static_cast(1)< unsigned int exp2_post(uint32 m, int exp, bool esign, unsigned int sign = 0, unsigned int n = 32) + { + if(esign) + { + exp = -exp - (m!=0); + if(exp < -25) + return underflow(sign); + else if(exp == -25) + return rounded(sign, 1, m!=0); + } + else if(exp > 15) + return overflow(sign); + if(!m) + return sign | (((exp+=15)>0) ? (exp<<10) : check_underflow(0x200>>-exp)); + m = exp2(m, n); + int s = 0; + if(esign) + m = divide64(0x80000000, m, s); + return fixed2half(m, exp+14, sign, s); + } + + /// Postprocessing for binary logarithm. + /// \tparam R rounding mode to use + /// \tparam L logarithm for base transformation as Q1.31 + /// \param m fractional part of logarithm as Q0.31 + /// \param ilog signed integer part of logarithm + /// \param exp biased exponent of result + /// \param sign sign bit of result + /// \return value base-transformed and converted to half-precision + /// \exception FE_OVERFLOW on overflows + /// \exception FE_UNDERFLOW on underflows + /// \exception FE_INEXACT if no other exception occurred + template unsigned int log2_post(uint32 m, int ilog, int exp, unsigned int sign = 0) + { + uint32 msign = sign_mask(ilog); + m = (((static_cast(ilog)<<27)+(m>>4))^msign) - msign; + if(!m) + return 0; + for(; m<0x80000000; m<<=1,--exp) ; + int i = m >= L, s; + exp += i; + m >>= 1 + i; + sign ^= msign & 0x8000; + if(exp < -11) + return underflow(sign); + m = divide64(m, L, s); + return fixed2half(m, exp, sign, 1); + } + + /// Hypotenuse square root and postprocessing. + /// \tparam R rounding mode to use + /// \param r mantissa as Q2.30 + /// \param exp biased exponent + /// \return square root converted to half-precision + /// \exception FE_OVERFLOW on overflows + /// \exception FE_UNDERFLOW on underflows + /// \exception FE_INEXACT if value had to be rounded + template unsigned int hypot_post(uint32 r, int exp) + { + int i = r >> 31; + if((exp+=i) > 46) + return overflow(); + if(exp < -34) + return underflow(); + r = (r>>i) | (r&i); + uint32 m = sqrt<30>(r, exp+=15); + return fixed2half(m, exp-1, 0, r!=0); + } + + /// Division and postprocessing for tangents. + /// \tparam R rounding mode to use + /// \param my dividend as Q1.31 + /// \param mx divisor as Q1.31 + /// \param exp biased exponent of result + /// \param sign sign bit of result + /// \return quotient converted to half-precision + /// \exception FE_OVERFLOW on overflows + /// \exception FE_UNDERFLOW on underflows + /// \exception FE_INEXACT if no other exception occurred + template unsigned int tangent_post(uint32 my, uint32 mx, int exp, unsigned int sign = 0) + { + int i = my >= mx, s; + exp += i; + if(exp > 29) + return overflow(sign); + if(exp < -11) + return underflow(sign); + uint32 m = divide64(my>>(i+1), mx, s); + return fixed2half(m, exp, sign, s); + } + + /// Area function and postprocessing. + /// This computes the value directly in Q2.30 using the representation `asinh|acosh(x) = log(x+sqrt(x^2+|-1))`. + /// \tparam R rounding mode to use + /// \tparam S `true` for asinh, `false` for acosh + /// \param arg half-precision argument + /// \return asinh|acosh(\a arg) converted to half-precision + /// \exception FE_OVERFLOW on overflows + /// \exception FE_UNDERFLOW on underflows + /// \exception FE_INEXACT if no other exception occurred + template unsigned int area(unsigned int arg) + { + int abs = arg & 0x7FFF, expx = (abs>>10) + (abs<=0x3FF) - 15, expy = -15, ilog, i; + uint32 mx = static_cast((abs&0x3FF)|((abs>0x3FF)<<10)) << 20, my, r; + for(; abs<0x400; abs<<=1,--expy) ; + expy += abs >> 10; + r = ((abs&0x3FF)|0x400) << 5; + r *= r; + i = r >> 31; + expy = 2*expy + i; + r >>= i; + if(S) + { + if(expy < 0) + { + r = 0x40000000 + ((expy>-30) ? ((r>>-expy)|((r&((static_cast(1)<<-expy)-1))!=0)) : 1); + expy = 0; + } + else + { + r += 0x40000000 >> expy; + i = r >> 31; + r = (r>>i) | (r&i); + expy += i; + } + } + else + { + r -= 0x40000000 >> expy; + for(; r<0x40000000; r<<=1,--expy) ; + } + my = sqrt<30>(r, expy); + my = (my<<15) + (r<<14)/my; + if(S) + { + mx >>= expy - expx; + ilog = expy; + } + else + { + my >>= expx - expy; + ilog = expx; + } + my += mx; + i = my >> 31; + static const int G = S && (R==std::round_to_nearest); + return log2_post(log2(my>>i, 26+S+G)+(G<<3), ilog+i, 17, arg&(static_cast(S)<<15)); + } + + /// Class for 1.31 unsigned floating-point computation + struct f31 + { + /// Constructor. + /// \param mant mantissa as 1.31 + /// \param e exponent + HALF_CONSTEXPR f31(uint32 mant, int e) : m(mant), exp(e) {} + + /// Constructor. + /// \param abs unsigned half-precision value + f31(unsigned int abs) : exp(-15) + { + for(; abs<0x400; abs<<=1,--exp) ; + m = static_cast((abs&0x3FF)|0x400) << 21; + exp += (abs>>10); + } + + /// Addition operator. + /// \param a first operand + /// \param b second operand + /// \return \a a + \a b + friend f31 operator+(f31 a, f31 b) + { + if(b.exp > a.exp) + std::swap(a, b); + int d = a.exp - b.exp; + uint32 m = a.m + ((d<32) ? (b.m>>d) : 0); + int i = (m&0xFFFFFFFF) < a.m; + return f31(((m+i)>>i)|0x80000000, a.exp+i); + } + + /// Subtraction operator. + /// \param a first operand + /// \param b second operand + /// \return \a a - \a b + friend f31 operator-(f31 a, f31 b) + { + int d = a.exp - b.exp, exp = a.exp; + uint32 m = a.m - ((d<32) ? (b.m>>d) : 0); + if(!m) + return f31(0, -32); + for(; m<0x80000000; m<<=1,--exp) ; + return f31(m, exp); + } + + /// Multiplication operator. + /// \param a first operand + /// \param b second operand + /// \return \a a * \a b + friend f31 operator*(f31 a, f31 b) + { + uint32 m = multiply64(a.m, b.m); + int i = m >> 31; + return f31(m<<(1-i), a.exp + b.exp + i); + } + + /// Division operator. + /// \param a first operand + /// \param b second operand + /// \return \a a / \a b + friend f31 operator/(f31 a, f31 b) + { + int i = a.m >= b.m, s; + uint32 m = divide64((a.m+i)>>i, b.m, s); + return f31(m, a.exp - b.exp + i - 1); + } + + uint32 m; ///< mantissa as 1.31. + int exp; ///< exponent. + }; + + /// Error function and postprocessing. + /// This computes the value directly in Q1.31 using the approximations given + /// [here](https://en.wikipedia.org/wiki/Error_function#Approximation_with_elementary_functions). + /// \tparam R rounding mode to use + /// \tparam C `true` for comlementary error function, `false` else + /// \param arg half-precision function argument + /// \return approximated value of error function in half-precision + /// \exception FE_OVERFLOW on overflows + /// \exception FE_UNDERFLOW on underflows + /// \exception FE_INEXACT if no other exception occurred + template unsigned int erf(unsigned int arg) + { + unsigned int abs = arg & 0x7FFF, sign = arg & 0x8000; + f31 x(abs), x2 = x * x * f31(0xB8AA3B29, 0), t = f31(0x80000000, 0) / (f31(0x80000000, 0)+f31(0xA7BA054A, -2)*x), t2 = t * t; + f31 e = ((f31(0x87DC2213, 0)*t2+f31(0xB5F0E2AE, 0))*t2+f31(0x82790637, -2)-(f31(0xBA00E2B8, 0)*t2+f31(0x91A98E62, -2))*t) * t / + ((x2.exp<0) ? f31(exp2((x2.exp>-32) ? (x2.m>>-x2.exp) : 0, 30), 0) : f31(exp2((x2.m<>(31-x2.exp))); + return (!C || sign) ? fixed2half(0x80000000-(e.m>>(C-e.exp)), 14+C, sign&(C-1U)) : + (e.exp<-25) ? underflow() : fixed2half(e.m>>1, e.exp+14, 0, e.m&1); + } + + /// Gamma function and postprocessing. + /// This approximates the value of either the gamma function or its logarithm directly in Q1.31. + /// \tparam R rounding mode to use + /// \tparam L `true` for lograithm of gamma function, `false` for gamma function + /// \param arg half-precision floating-point value + /// \return lgamma/tgamma(\a arg) in half-precision + /// \exception FE_OVERFLOW on overflows + /// \exception FE_UNDERFLOW on underflows + /// \exception FE_INEXACT if \a arg is not a positive integer + template unsigned int gamma(unsigned int arg) + { +/* static const double p[] ={ 2.50662827563479526904, 225.525584619175212544, -268.295973841304927459, 80.9030806934622512966, -5.00757863970517583837, 0.0114684895434781459556 }; + double t = arg + 4.65, s = p[0]; + for(unsigned int i=0; i<5; ++i) + s += p[i+1] / (arg+i); + return std::log(s) + (arg-0.5)*std::log(t) - t; +*/ static const f31 pi(0xC90FDAA2, 1), lbe(0xB8AA3B29, 0); + unsigned int abs = arg & 0x7FFF, sign = arg & 0x8000; + bool bsign = sign != 0; + f31 z(abs), x = sign ? (z+f31(0x80000000, 0)) : z, t = x + f31(0x94CCCCCD, 2), s = + f31(0xA06C9901, 1) + f31(0xBBE654E2, -7)/(x+f31(0x80000000, 2)) + f31(0xA1CE6098, 6)/(x+f31(0x80000000, 1)) + + f31(0xE1868CB7, 7)/x - f31(0x8625E279, 8)/(x+f31(0x80000000, 0)) - f31(0xA03E158F, 2)/(x+f31(0xC0000000, 1)); + int i = (s.exp>=2) + (s.exp>=4) + (s.exp>=8) + (s.exp>=16); + s = f31((static_cast(s.exp)<<(31-i))+(log2(s.m>>1, 28)>>i), i) / lbe; + if(x.exp != -1 || x.m != 0x80000000) + { + i = (t.exp>=2) + (t.exp>=4) + (t.exp>=8); + f31 l = f31((static_cast(t.exp)<<(31-i))+(log2(t.m>>1, 30)>>i), i) / lbe; + s = (x.exp<-1) ? (s-(f31(0x80000000, -1)-x)*l) : (s+(x-f31(0x80000000, -1))*l); + } + s = x.exp ? (s-t) : (t-s); + if(bsign) + { + if(z.exp >= 0) + { + sign &= (L|((z.m>>(31-z.exp))&1)) - 1; + for(z=f31((z.m<<(1+z.exp))&0xFFFFFFFF, -1); z.m<0x80000000; z.m<<=1,--z.exp) ; + } + if(z.exp == -1) + z = f31(0x80000000, 0) - z; + if(z.exp < -1) + { + z = z * pi; + z.m = sincos(z.m>>(1-z.exp), 30).first; + for(z.exp=1; z.m<0x80000000; z.m<<=1,--z.exp) ; + } + else + z = f31(0x80000000, 0); + } + if(L) + { + if(bsign) + { + f31 l(0x92868247, 0); + if(z.exp < 0) + { + uint32 m = log2((z.m+1)>>1, 27); + z = f31(-((static_cast(z.exp)<<26)+(m>>5)), 5); + for(; z.m<0x80000000; z.m<<=1,--z.exp) ; + l = l + z / lbe; + } + sign = static_cast(x.exp&&(l.exp(x.exp==0) << 15; + if(s.exp < -24) + return underflow(sign); + if(s.exp > 15) + return overflow(sign); + } + } + else + { + s = s * lbe; + uint32 m; + if(s.exp < 0) + { + m = s.m >> -s.exp; + s.exp = 0; + } + else + { + m = (s.m<>(31-s.exp)); + } + s.m = exp2(m, 27); + if(!x.exp) + s = f31(0x80000000, 0) / s; + if(bsign) + { + if(z.exp < 0) + s = s * z; + s = pi / s; + if(s.exp < -24) + return underflow(sign); + } + else if(z.exp > 0 && !(z.m&((1<<(31-z.exp))-1))) + return ((s.exp+14)<<10) + (s.m>>21); + if(s.exp > 15) + return overflow(sign); + } + return fixed2half(s.m, s.exp+14, sign); + } + /// \} + + template struct half_caster; + } + + /// Half-precision floating-point type. + /// This class implements an IEEE-conformant half-precision floating-point type with the usual arithmetic + /// operators and conversions. It is implicitly convertible to single-precision floating-point, which makes artihmetic + /// expressions and functions with mixed-type operands to be of the most precise operand type. + /// + /// According to the C++98/03 definition, the half type is not a POD type. But according to C++11's less strict and + /// extended definitions it is both a standard layout type and a trivially copyable type (even if not a POD type), which + /// means it can be standard-conformantly copied using raw binary copies. But in this context some more words about the + /// actual size of the type. Although the half is representing an IEEE 16-bit type, it does not neccessarily have to be of + /// exactly 16-bits size. But on any reasonable implementation the actual binary representation of this type will most + /// probably not ivolve any additional "magic" or padding beyond the simple binary representation of the underlying 16-bit + /// IEEE number, even if not strictly guaranteed by the standard. But even then it only has an actual size of 16 bits if + /// your C++ implementation supports an unsigned integer type of exactly 16 bits width. But this should be the case on + /// nearly any reasonable platform. + /// + /// So if your C++ implementation is not totally exotic or imposes special alignment requirements, it is a reasonable + /// assumption that the data of a half is just comprised of the 2 bytes of the underlying IEEE representation. + class half + { + public: + /// \name Construction and assignment + /// \{ + + /// Default constructor. + /// This initializes the half to 0. Although this does not match the builtin types' default-initialization semantics + /// and may be less efficient than no initialization, it is needed to provide proper value-initialization semantics. + HALF_CONSTEXPR half() HALF_NOEXCEPT : data_() {} + + /// Conversion constructor. + /// \param rhs float to convert + /// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding + explicit half(float rhs) : data_(static_cast(detail::float2half(rhs))) {} + + /// Conversion to single-precision. + /// \return single precision value representing expression value + operator float() const { return detail::half2float(data_); } + + /// Assignment operator. + /// \param rhs single-precision value to copy from + /// \return reference to this half + /// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding + half& operator=(float rhs) { data_ = static_cast(detail::float2half(rhs)); return *this; } + + /// \} + /// \name Arithmetic updates + /// \{ + + /// Arithmetic assignment. + /// \tparam T type of concrete half expression + /// \param rhs half expression to add + /// \return reference to this half + /// \exception FE_... according to operator+(half,half) + half& operator+=(half rhs) { return *this = *this + rhs; } + + /// Arithmetic assignment. + /// \tparam T type of concrete half expression + /// \param rhs half expression to subtract + /// \return reference to this half + /// \exception FE_... according to operator-(half,half) + half& operator-=(half rhs) { return *this = *this - rhs; } + + /// Arithmetic assignment. + /// \tparam T type of concrete half expression + /// \param rhs half expression to multiply with + /// \return reference to this half + /// \exception FE_... according to operator*(half,half) + half& operator*=(half rhs) { return *this = *this * rhs; } + + /// Arithmetic assignment. + /// \tparam T type of concrete half expression + /// \param rhs half expression to divide by + /// \return reference to this half + /// \exception FE_... according to operator/(half,half) + half& operator/=(half rhs) { return *this = *this / rhs; } + + /// Arithmetic assignment. + /// \param rhs single-precision value to add + /// \return reference to this half + /// \exception FE_... according to operator=() + half& operator+=(float rhs) { return *this = *this + rhs; } + + /// Arithmetic assignment. + /// \param rhs single-precision value to subtract + /// \return reference to this half + /// \exception FE_... according to operator=() + half& operator-=(float rhs) { return *this = *this - rhs; } + + /// Arithmetic assignment. + /// \param rhs single-precision value to multiply with + /// \return reference to this half + /// \exception FE_... according to operator=() + half& operator*=(float rhs) { return *this = *this * rhs; } + + /// Arithmetic assignment. + /// \param rhs single-precision value to divide by + /// \return reference to this half + /// \exception FE_... according to operator=() + half& operator/=(float rhs) { return *this = *this / rhs; } + + /// \} + /// \name Increment and decrement + /// \{ + + /// Prefix increment. + /// \return incremented half value + /// \exception FE_... according to operator+(half,half) + half& operator++() { return *this = *this + half(detail::binary, 0x3C00); } + + /// Prefix decrement. + /// \return decremented half value + /// \exception FE_... according to operator-(half,half) + half& operator--() { return *this = *this + half(detail::binary, 0xBC00); } + + /// Postfix increment. + /// \return non-incremented half value + /// \exception FE_... according to operator+(half,half) + half operator++(int) { half out(*this); ++*this; return out; } + + /// Postfix decrement. + /// \return non-decremented half value + /// \exception FE_... according to operator-(half,half) + half operator--(int) { half out(*this); --*this; return out; } + /// \} + + private: + /// Rounding mode to use + static const std::float_round_style round_style = (std::float_round_style)(HALF_ROUND_STYLE); + + /// Constructor. + /// \param bits binary representation to set half to + HALF_CONSTEXPR half(detail::binary_t, unsigned int bits) HALF_NOEXCEPT : data_(static_cast(bits)) {} + + /// Internal binary representation + detail::uint16 data_; + + #ifndef HALF_DOXYGEN_ONLY + friend HALF_CONSTEXPR_NOERR bool operator==(half, half); + friend HALF_CONSTEXPR_NOERR bool operator!=(half, half); + friend HALF_CONSTEXPR_NOERR bool operator<(half, half); + friend HALF_CONSTEXPR_NOERR bool operator>(half, half); + friend HALF_CONSTEXPR_NOERR bool operator<=(half, half); + friend HALF_CONSTEXPR_NOERR bool operator>=(half, half); + friend HALF_CONSTEXPR half operator-(half); + friend half operator+(half, half); + friend half operator-(half, half); + friend half operator*(half, half); + friend half operator/(half, half); + template friend std::basic_ostream& operator<<(std::basic_ostream&, half); + template friend std::basic_istream& operator>>(std::basic_istream&, half&); + friend HALF_CONSTEXPR half fabs(half); + friend half fmod(half, half); + friend half remainder(half, half); + friend half remquo(half, half, int*); + friend half fma(half, half, half); + friend HALF_CONSTEXPR_NOERR half fmax(half, half); + friend HALF_CONSTEXPR_NOERR half fmin(half, half); + friend half fdim(half, half); + friend half nanh(const char*); + friend half exp(half); + friend half exp2(half); + friend half expm1(half); + friend half log(half); + friend half log10(half); + friend half log2(half); + friend half log1p(half); + friend half sqrt(half); + friend half rsqrt(half); + friend half cbrt(half); + friend half hypot(half, half); + friend half hypot(half, half, half); + friend half pow(half, half); + friend void sincos(half, half*, half*); + friend half sin(half); + friend half cos(half); + friend half tan(half); + friend half asin(half); + friend half acos(half); + friend half atan(half); + friend half atan2(half, half); + friend half sinh(half); + friend half cosh(half); + friend half tanh(half); + friend half asinh(half); + friend half acosh(half); + friend half atanh(half); + friend half erf(half); + friend half erfc(half); + friend half lgamma(half); + friend half tgamma(half); + friend half ceil(half); + friend half floor(half); + friend half trunc(half); + friend half round(half); + friend long lround(half); + friend half rint(half); + friend long lrint(half); + friend half nearbyint(half); + #ifdef HALF_ENABLE_CPP11_LONG_LONG + friend long long llround(half); + friend long long llrint(half); + #endif + friend half frexp(half, int*); + friend half scalbln(half, long); + friend half modf(half, half*); + friend int ilogb(half); + friend half logb(half); + friend half nextafter(half, half); + friend half nexttoward(half, long double); + friend HALF_CONSTEXPR half copysign(half, half); + friend HALF_CONSTEXPR int fpclassify(half); + friend HALF_CONSTEXPR bool isfinite(half); + friend HALF_CONSTEXPR bool isinf(half); + friend HALF_CONSTEXPR bool isnan(half); + friend HALF_CONSTEXPR bool isnormal(half); + friend HALF_CONSTEXPR bool signbit(half); + friend HALF_CONSTEXPR bool isgreater(half, half); + friend HALF_CONSTEXPR bool isgreaterequal(half, half); + friend HALF_CONSTEXPR bool isless(half, half); + friend HALF_CONSTEXPR bool islessequal(half, half); + friend HALF_CONSTEXPR bool islessgreater(half, half); + template friend struct detail::half_caster; + friend class std::numeric_limits; + #if HALF_ENABLE_CPP11_HASH + friend struct std::hash; + #endif + #if HALF_ENABLE_CPP11_USER_LITERALS + friend half literal::operator "" _h(long double); + #endif + #endif + }; + +#if HALF_ENABLE_CPP11_USER_LITERALS + namespace literal + { + /// Half literal. + /// While this returns a properly rounded half-precision value, half literals can unfortunately not be constant + /// expressions due to rather involved conversions. So don't expect this to be a literal literal without involving + /// conversion operations at runtime. It is a convenience feature, not a performance optimization. + /// \param value literal value + /// \return half with of given value (possibly rounded) + /// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding + inline half operator "" _h(long double value) { return half(detail::binary, detail::float2half(value)); } + } +#endif + + namespace detail + { + /// Helper class for half casts. + /// This class template has to be specialized for all valid cast arguments to define an appropriate static + /// `cast` member function and a corresponding `type` member denoting its return type. + /// \tparam T destination type + /// \tparam U source type + /// \tparam R rounding mode to use + template struct half_caster {}; + template struct half_caster + { + #if HALF_ENABLE_CPP11_STATIC_ASSERT && HALF_ENABLE_CPP11_TYPE_TRAITS + static_assert(std::is_arithmetic::value, "half_cast from non-arithmetic type unsupported"); + #endif + + static half cast(U arg) { return cast_impl(arg, is_float()); }; + + private: + static half cast_impl(U arg, true_type) { return half(binary, float2half(arg)); } + static half cast_impl(U arg, false_type) { return half(binary, int2half(arg)); } + }; + template struct half_caster + { + #if HALF_ENABLE_CPP11_STATIC_ASSERT && HALF_ENABLE_CPP11_TYPE_TRAITS + static_assert(std::is_arithmetic::value, "half_cast to non-arithmetic type unsupported"); + #endif + + static T cast(half arg) { return cast_impl(arg, is_float()); } + + private: + static T cast_impl(half arg, true_type) { return half2float(arg.data_); } + static T cast_impl(half arg, false_type) { return half2int(arg.data_); } + }; + template struct half_caster + { + static half cast(half arg) { return arg; } + }; + } +} + +/// Extensions to the C++ standard library. +namespace std +{ + /// Numeric limits for half-precision floats. + /// **See also:** Documentation for [std::numeric_limits](https://en.cppreference.com/w/cpp/types/numeric_limits) + template<> class numeric_limits + { + public: + /// Is template specialization. + static HALF_CONSTEXPR_CONST bool is_specialized = true; + + /// Supports signed values. + static HALF_CONSTEXPR_CONST bool is_signed = true; + + /// Is not an integer type. + static HALF_CONSTEXPR_CONST bool is_integer = false; + + /// Is not exact. + static HALF_CONSTEXPR_CONST bool is_exact = false; + + /// Doesn't provide modulo arithmetic. + static HALF_CONSTEXPR_CONST bool is_modulo = false; + + /// Has a finite set of values. + static HALF_CONSTEXPR_CONST bool is_bounded = true; + + /// IEEE conformant. + static HALF_CONSTEXPR_CONST bool is_iec559 = true; + + /// Supports infinity. + static HALF_CONSTEXPR_CONST bool has_infinity = true; + + /// Supports quiet NaNs. + static HALF_CONSTEXPR_CONST bool has_quiet_NaN = true; + + /// Supports signaling NaNs. + static HALF_CONSTEXPR_CONST bool has_signaling_NaN = true; + + /// Supports subnormal values. + static HALF_CONSTEXPR_CONST float_denorm_style has_denorm = denorm_present; + + /// Supports no denormalization detection. + static HALF_CONSTEXPR_CONST bool has_denorm_loss = false; + + #if HALF_ERRHANDLING_THROWS + static HALF_CONSTEXPR_CONST bool traps = true; + #else + /// Traps only if [HALF_ERRHANDLING_THROW_...](\ref HALF_ERRHANDLING_THROW_INVALID) is acitvated. + static HALF_CONSTEXPR_CONST bool traps = false; + #endif + + /// Does not support no pre-rounding underflow detection. + static HALF_CONSTEXPR_CONST bool tinyness_before = false; + + /// Rounding mode. + static HALF_CONSTEXPR_CONST float_round_style round_style = half_float::half::round_style; + + /// Significant digits. + static HALF_CONSTEXPR_CONST int digits = 11; + + /// Significant decimal digits. + static HALF_CONSTEXPR_CONST int digits10 = 3; + + /// Required decimal digits to represent all possible values. + static HALF_CONSTEXPR_CONST int max_digits10 = 5; + + /// Number base. + static HALF_CONSTEXPR_CONST int radix = 2; + + /// One more than smallest exponent. + static HALF_CONSTEXPR_CONST int min_exponent = -13; + + /// Smallest normalized representable power of 10. + static HALF_CONSTEXPR_CONST int min_exponent10 = -4; + + /// One more than largest exponent + static HALF_CONSTEXPR_CONST int max_exponent = 16; + + /// Largest finitely representable power of 10. + static HALF_CONSTEXPR_CONST int max_exponent10 = 4; + + /// Smallest positive normal value. + static HALF_CONSTEXPR half_float::half min() HALF_NOTHROW { return half_float::half(half_float::detail::binary, 0x0400); } + + /// Smallest finite value. + static HALF_CONSTEXPR half_float::half lowest() HALF_NOTHROW { return half_float::half(half_float::detail::binary, 0xFBFF); } + + /// Largest finite value. + static HALF_CONSTEXPR half_float::half max() HALF_NOTHROW { return half_float::half(half_float::detail::binary, 0x7BFF); } + + /// Difference between 1 and next representable value. + static HALF_CONSTEXPR half_float::half epsilon() HALF_NOTHROW { return half_float::half(half_float::detail::binary, 0x1400); } + + /// Maximum rounding error in ULP (units in the last place). + static HALF_CONSTEXPR half_float::half round_error() HALF_NOTHROW + { return half_float::half(half_float::detail::binary, (round_style==std::round_to_nearest) ? 0x3800 : 0x3C00); } + + /// Positive infinity. + static HALF_CONSTEXPR half_float::half infinity() HALF_NOTHROW { return half_float::half(half_float::detail::binary, 0x7C00); } + + /// Quiet NaN. + static HALF_CONSTEXPR half_float::half quiet_NaN() HALF_NOTHROW { return half_float::half(half_float::detail::binary, 0x7FFF); } + + /// Signaling NaN. + static HALF_CONSTEXPR half_float::half signaling_NaN() HALF_NOTHROW { return half_float::half(half_float::detail::binary, 0x7DFF); } + + /// Smallest positive subnormal value. + static HALF_CONSTEXPR half_float::half denorm_min() HALF_NOTHROW { return half_float::half(half_float::detail::binary, 0x0001); } + }; + +#if HALF_ENABLE_CPP11_HASH + /// Hash function for half-precision floats. + /// This is only defined if C++11 `std::hash` is supported and enabled. + /// + /// **See also:** Documentation for [std::hash](https://en.cppreference.com/w/cpp/utility/hash) + template<> struct hash + { + /// Type of function argument. + typedef half_float::half argument_type; + + /// Function return type. + typedef size_t result_type; + + /// Compute hash function. + /// \param arg half to hash + /// \return hash value + result_type operator()(argument_type arg) const { return hash()(arg.data_&-static_cast(arg.data_!=0x8000)); } + }; +#endif +} + +namespace half_float +{ + /// \anchor compop + /// \name Comparison operators + /// \{ + + /// Comparison for equality. + /// \param x first operand + /// \param y second operand + /// \retval true if operands equal + /// \retval false else + /// \exception FE_INVALID if \a x or \a y is NaN + inline HALF_CONSTEXPR_NOERR bool operator==(half x, half y) + { + return !detail::compsignal(x.data_, y.data_) && (x.data_==y.data_ || !((x.data_|y.data_)&0x7FFF)); + } + + /// Comparison for inequality. + /// \param x first operand + /// \param y second operand + /// \retval true if operands not equal + /// \retval false else + /// \exception FE_INVALID if \a x or \a y is NaN + inline HALF_CONSTEXPR_NOERR bool operator!=(half x, half y) + { + return detail::compsignal(x.data_, y.data_) || (x.data_!=y.data_ && ((x.data_|y.data_)&0x7FFF)); + } + + /// Comparison for less than. + /// \param x first operand + /// \param y second operand + /// \retval true if \a x less than \a y + /// \retval false else + /// \exception FE_INVALID if \a x or \a y is NaN + inline HALF_CONSTEXPR_NOERR bool operator<(half x, half y) + { + return !detail::compsignal(x.data_, y.data_) && + ((x.data_^(0x8000|(0x8000-(x.data_>>15))))+(x.data_>>15)) < ((y.data_^(0x8000|(0x8000-(y.data_>>15))))+(y.data_>>15)); + } + + /// Comparison for greater than. + /// \param x first operand + /// \param y second operand + /// \retval true if \a x greater than \a y + /// \retval false else + /// \exception FE_INVALID if \a x or \a y is NaN + inline HALF_CONSTEXPR_NOERR bool operator>(half x, half y) + { + return !detail::compsignal(x.data_, y.data_) && + ((x.data_^(0x8000|(0x8000-(x.data_>>15))))+(x.data_>>15)) > ((y.data_^(0x8000|(0x8000-(y.data_>>15))))+(y.data_>>15)); + } + + /// Comparison for less equal. + /// \param x first operand + /// \param y second operand + /// \retval true if \a x less equal \a y + /// \retval false else + /// \exception FE_INVALID if \a x or \a y is NaN + inline HALF_CONSTEXPR_NOERR bool operator<=(half x, half y) + { + return !detail::compsignal(x.data_, y.data_) && + ((x.data_^(0x8000|(0x8000-(x.data_>>15))))+(x.data_>>15)) <= ((y.data_^(0x8000|(0x8000-(y.data_>>15))))+(y.data_>>15)); + } + + /// Comparison for greater equal. + /// \param x first operand + /// \param y second operand + /// \retval true if \a x greater equal \a y + /// \retval false else + /// \exception FE_INVALID if \a x or \a y is NaN + inline HALF_CONSTEXPR_NOERR bool operator>=(half x, half y) + { + return !detail::compsignal(x.data_, y.data_) && + ((x.data_^(0x8000|(0x8000-(x.data_>>15))))+(x.data_>>15)) >= ((y.data_^(0x8000|(0x8000-(y.data_>>15))))+(y.data_>>15)); + } + + /// \} + /// \anchor arithmetics + /// \name Arithmetic operators + /// \{ + + /// Identity. + /// \param arg operand + /// \return unchanged operand + inline HALF_CONSTEXPR half operator+(half arg) { return arg; } + + /// Negation. + /// \param arg operand + /// \return negated operand + inline HALF_CONSTEXPR half operator-(half arg) { return half(detail::binary, arg.data_^0x8000); } + + /// Addition. + /// This operation is exact to rounding for all rounding modes. + /// \param x left operand + /// \param y right operand + /// \return sum of half expressions + /// \exception FE_INVALID if \a x and \a y are infinities with different signs or signaling NaNs + /// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding + inline half operator+(half x, half y) + { + #ifdef HALF_ARITHMETIC_TYPE + return half(detail::binary, detail::float2half(detail::half2float(x.data_)+detail::half2float(y.data_))); + #else + int absx = x.data_ & 0x7FFF, absy = y.data_ & 0x7FFF; + bool sub = ((x.data_^y.data_)&0x8000) != 0; + if(absx >= 0x7C00 || absy >= 0x7C00) + return half(detail::binary, (absx>0x7C00 || absy>0x7C00) ? detail::signal(x.data_, y.data_) : (absy!=0x7C00) ? x.data_ : + (sub && absx==0x7C00) ? detail::invalid() : y.data_); + if(!absx) + return absy ? y : half(detail::binary, (half::round_style==std::round_toward_neg_infinity) ? (x.data_|y.data_) : (x.data_&y.data_)); + if(!absy) + return x; + unsigned int sign = ((sub && absy>absx) ? y.data_ : x.data_) & 0x8000; + if(absy > absx) + std::swap(absx, absy); + int exp = (absx>>10) + (absx<=0x3FF), d = exp - (absy>>10) - (absy<=0x3FF), mx = ((absx&0x3FF)|((absx>0x3FF)<<10)) << 3, my; + if(d < 13) + { + my = ((absy&0x3FF)|((absy>0x3FF)<<10)) << 3; + my = (my>>d) | ((my&((1<(half::round_style==std::round_toward_neg_infinity)<<15); + for(; mx<0x2000 && exp>1; mx<<=1,--exp) ; + } + else + { + mx += my; + int i = mx >> 14; + if((exp+=i) > 30) + return half(detail::binary, detail::overflow(sign)); + mx = (mx>>i) | (mx&i); + } + return half(detail::binary, detail::rounded(sign+((exp-1)<<10)+(mx>>3), (mx>>2)&1, (mx&0x3)!=0)); + #endif + } + + /// Subtraction. + /// This operation is exact to rounding for all rounding modes. + /// \param x left operand + /// \param y right operand + /// \return difference of half expressions + /// \exception FE_INVALID if \a x and \a y are infinities with equal signs or signaling NaNs + /// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding + inline half operator-(half x, half y) + { + #ifdef HALF_ARITHMETIC_TYPE + return half(detail::binary, detail::float2half(detail::half2float(x.data_)-detail::half2float(y.data_))); + #else + return x + -y; + #endif + } + + /// Multiplication. + /// This operation is exact to rounding for all rounding modes. + /// \param x left operand + /// \param y right operand + /// \return product of half expressions + /// \exception FE_INVALID if multiplying 0 with infinity or if \a x or \a y is signaling NaN + /// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding + inline half operator*(half x, half y) + { + #ifdef HALF_ARITHMETIC_TYPE + return half(detail::binary, detail::float2half(detail::half2float(x.data_)*detail::half2float(y.data_))); + #else + int absx = x.data_ & 0x7FFF, absy = y.data_ & 0x7FFF, exp = -16; + unsigned int sign = (x.data_^y.data_) & 0x8000; + if(absx >= 0x7C00 || absy >= 0x7C00) + return half(detail::binary, (absx>0x7C00 || absy>0x7C00) ? detail::signal(x.data_, y.data_) : + ((absx==0x7C00 && !absy)||(absy==0x7C00 && !absx)) ? detail::invalid() : (sign|0x7C00)); + if(!absx || !absy) + return half(detail::binary, sign); + for(; absx<0x400; absx<<=1,--exp) ; + for(; absy<0x400; absy<<=1,--exp) ; + detail::uint32 m = static_cast((absx&0x3FF)|0x400) * static_cast((absy&0x3FF)|0x400); + int i = m >> 21, s = m & i; + exp += (absx>>10) + (absy>>10) + i; + if(exp > 29) + return half(detail::binary, detail::overflow(sign)); + else if(exp < -11) + return half(detail::binary, detail::underflow(sign)); + return half(detail::binary, detail::fixed2half(m>>i, exp, sign, s)); + #endif + } + + /// Division. + /// This operation is exact to rounding for all rounding modes. + /// \param x left operand + /// \param y right operand + /// \return quotient of half expressions + /// \exception FE_INVALID if dividing 0s or infinities with each other or if \a x or \a y is signaling NaN + /// \exception FE_DIVBYZERO if dividing finite value by 0 + /// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding + inline half operator/(half x, half y) + { + #ifdef HALF_ARITHMETIC_TYPE + return half(detail::binary, detail::float2half(detail::half2float(x.data_)/detail::half2float(y.data_))); + #else + int absx = x.data_ & 0x7FFF, absy = y.data_ & 0x7FFF, exp = 14; + unsigned int sign = (x.data_^y.data_) & 0x8000; + if(absx >= 0x7C00 || absy >= 0x7C00) + return half(detail::binary, (absx>0x7C00 || absy>0x7C00) ? detail::signal(x.data_, y.data_) : + (absx==absy) ? detail::invalid() : (sign|((absx==0x7C00) ? 0x7C00 : 0))); + if(!absx) + return half(detail::binary, absy ? sign : detail::invalid()); + if(!absy) + return half(detail::binary, detail::pole(sign)); + for(; absx<0x400; absx<<=1,--exp) ; + for(; absy<0x400; absy<<=1,++exp) ; + detail::uint32 mx = (absx&0x3FF) | 0x400, my = (absy&0x3FF) | 0x400; + int i = mx < my; + exp += (absx>>10) - (absy>>10) - i; + if(exp > 29) + return half(detail::binary, detail::overflow(sign)); + else if(exp < -11) + return half(detail::binary, detail::underflow(sign)); + mx <<= 12 + i; + my <<= 1; + return half(detail::binary, detail::fixed2half(mx/my, exp, sign, mx%my!=0)); + #endif + } + + /// \} + /// \anchor streaming + /// \name Input and output + /// \{ + + /// Output operator. + /// This uses the built-in functionality for streaming out floating-point numbers. + /// \param out output stream to write into + /// \param arg half expression to write + /// \return reference to output stream + template std::basic_ostream& operator<<(std::basic_ostream &out, half arg) + { + #ifdef HALF_ARITHMETIC_TYPE + return out << detail::half2float(arg.data_); + #else + return out << detail::half2float(arg.data_); + #endif + } + + /// Input operator. + /// This uses the built-in functionality for streaming in floating-point numbers, specifically double precision floating + /// point numbers (unless overridden with [HALF_ARITHMETIC_TYPE](\ref HALF_ARITHMETIC_TYPE)). So the input string is first + /// rounded to double precision using the underlying platform's current floating-point rounding mode before being rounded + /// to half-precision using the library's half-precision rounding mode. + /// \param in input stream to read from + /// \param arg half to read into + /// \return reference to input stream + /// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding + template std::basic_istream& operator>>(std::basic_istream &in, half &arg) + { + #ifdef HALF_ARITHMETIC_TYPE + detail::internal_t f; + #else + double f; + #endif + if(in >> f) + arg.data_ = detail::float2half(f); + return in; + } + + /// \} + /// \anchor basic + /// \name Basic mathematical operations + /// \{ + + /// Absolute value. + /// **See also:** Documentation for [std::fabs](https://en.cppreference.com/w/cpp/numeric/math/fabs). + /// \param arg operand + /// \return absolute value of \a arg + inline HALF_CONSTEXPR half fabs(half arg) { return half(detail::binary, arg.data_&0x7FFF); } + + /// Absolute value. + /// **See also:** Documentation for [std::abs](https://en.cppreference.com/w/cpp/numeric/math/fabs). + /// \param arg operand + /// \return absolute value of \a arg + inline HALF_CONSTEXPR half abs(half arg) { return fabs(arg); } + + /// Remainder of division. + /// **See also:** Documentation for [std::fmod](https://en.cppreference.com/w/cpp/numeric/math/fmod). + /// \param x first operand + /// \param y second operand + /// \return remainder of floating-point division. + /// \exception FE_INVALID if \a x is infinite or \a y is 0 or if \a x or \a y is signaling NaN + inline half fmod(half x, half y) + { + unsigned int absx = x.data_ & 0x7FFF, absy = y.data_ & 0x7FFF, sign = x.data_ & 0x8000; + if(absx >= 0x7C00 || absy >= 0x7C00) + return half(detail::binary, (absx>0x7C00 || absy>0x7C00) ? detail::signal(x.data_, y.data_) : + (absx==0x7C00) ? detail::invalid() : x.data_); + if(!absy) + return half(detail::binary, detail::invalid()); + if(!absx) + return x; + if(absx == absy) + return half(detail::binary, sign); + return half(detail::binary, sign|detail::mod(absx, absy)); + } + + /// Remainder of division. + /// **See also:** Documentation for [std::remainder](https://en.cppreference.com/w/cpp/numeric/math/remainder). + /// \param x first operand + /// \param y second operand + /// \return remainder of floating-point division. + /// \exception FE_INVALID if \a x is infinite or \a y is 0 or if \a x or \a y is signaling NaN + inline half remainder(half x, half y) + { + unsigned int absx = x.data_ & 0x7FFF, absy = y.data_ & 0x7FFF, sign = x.data_ & 0x8000; + if(absx >= 0x7C00 || absy >= 0x7C00) + return half(detail::binary, (absx>0x7C00 || absy>0x7C00) ? detail::signal(x.data_, y.data_) : + (absx==0x7C00) ? detail::invalid() : x.data_); + if(!absy) + return half(detail::binary, detail::invalid()); + if(absx == absy) + return half(detail::binary, sign); + return half(detail::binary, sign^detail::mod(absx, absy)); + } + + /// Remainder of division. + /// **See also:** Documentation for [std::remquo](https://en.cppreference.com/w/cpp/numeric/math/remquo). + /// \param x first operand + /// \param y second operand + /// \param quo address to store some bits of quotient at + /// \return remainder of floating-point division. + /// \exception FE_INVALID if \a x is infinite or \a y is 0 or if \a x or \a y is signaling NaN + inline half remquo(half x, half y, int *quo) + { + unsigned int absx = x.data_ & 0x7FFF, absy = y.data_ & 0x7FFF, value = x.data_ & 0x8000; + if(absx >= 0x7C00 || absy >= 0x7C00) + return half(detail::binary, (absx>0x7C00 || absy>0x7C00) ? detail::signal(x.data_, y.data_) : + (absx==0x7C00) ? detail::invalid() : (*quo = 0, x.data_)); + if(!absy) + return half(detail::binary, detail::invalid()); + bool qsign = ((value^y.data_)&0x8000) != 0; + int q = 1; + if(absx != absy) + value ^= detail::mod(absx, absy, &q); + return *quo = qsign ? -q : q, half(detail::binary, value); + } + + /// Fused multiply add. + /// This function is exact to rounding for all rounding modes. + /// + /// **See also:** Documentation for [std::fma](https://en.cppreference.com/w/cpp/numeric/math/fma). + /// \param x first operand + /// \param y second operand + /// \param z third operand + /// \return ( \a x * \a y ) + \a z rounded as one operation. + /// \exception FE_INVALID according to operator*() and operator+() unless any argument is a quiet NaN and no argument is a signaling NaN + /// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding the final addition + inline half fma(half x, half y, half z) + { + #ifdef HALF_ARITHMETIC_TYPE + detail::internal_t fx = detail::half2float(x.data_), fy = detail::half2float(y.data_), fz = detail::half2float(z.data_); + #if HALF_ENABLE_CPP11_CMATH && FP_FAST_FMA + return half(detail::binary, detail::float2half(std::fma(fx, fy, fz))); + #else + return half(detail::binary, detail::float2half(fx*fy+fz)); + #endif + #else + int absx = x.data_ & 0x7FFF, absy = y.data_ & 0x7FFF, absz = z.data_ & 0x7FFF, exp = -15; + unsigned int sign = (x.data_^y.data_) & 0x8000; + bool sub = ((sign^z.data_)&0x8000) != 0; + if(absx >= 0x7C00 || absy >= 0x7C00 || absz >= 0x7C00) + return (absx>0x7C00 || absy>0x7C00 || absz>0x7C00) ? half(detail::binary, detail::signal(x.data_, y.data_, z.data_)) : + (absx==0x7C00) ? half(detail::binary, (!absy || (sub && absz==0x7C00)) ? detail::invalid() : (sign|0x7C00)) : + (absy==0x7C00) ? half(detail::binary, (!absx || (sub && absz==0x7C00)) ? detail::invalid() : (sign|0x7C00)) : z; + if(!absx || !absy) + return absz ? z : half(detail::binary, (half::round_style==std::round_toward_neg_infinity) ? (z.data_|sign) : (z.data_&sign)); + for(; absx<0x400; absx<<=1,--exp) ; + for(; absy<0x400; absy<<=1,--exp) ; + detail::uint32 m = static_cast((absx&0x3FF)|0x400) * static_cast((absy&0x3FF)|0x400); + int i = m >> 21; + exp += (absx>>10) + (absy>>10) + i; + m <<= 3 - i; + if(absz) + { + int expz = 0; + for(; absz<0x400; absz<<=1,--expz) ; + expz += absz >> 10; + detail::uint32 mz = static_cast((absz&0x3FF)|0x400) << 13; + if(expz > exp || (expz == exp && mz > m)) + { + std::swap(m, mz); + std::swap(exp, expz); + if(sub) + sign = z.data_ & 0x8000; + } + int d = exp - expz; + mz = (d<23) ? ((mz>>d)|((mz&((static_cast(1)<(half::round_style==std::round_toward_neg_infinity)<<15); + for(; m<0x800000; m<<=1,--exp) ; + } + else + { + m += mz; + i = m >> 24; + m = (m>>i) | (m&i); + exp += i; + } + } + if(exp > 30) + return half(detail::binary, detail::overflow(sign)); + else if(exp < -10) + return half(detail::binary, detail::underflow(sign)); + return half(detail::binary, detail::fixed2half(m, exp-1, sign)); + #endif + } + + /// Maximum of half expressions. + /// **See also:** Documentation for [std::fmax](https://en.cppreference.com/w/cpp/numeric/math/fmax). + /// \param x first operand + /// \param y second operand + /// \return maximum of operands, ignoring quiet NaNs + /// \exception FE_INVALID if \a x or \a y is signaling NaN + inline HALF_CONSTEXPR_NOERR half fmax(half x, half y) + { + return half(detail::binary, (!isnan(y) && (isnan(x) || (x.data_^(0x8000|(0x8000-(x.data_>>15)))) < + (y.data_^(0x8000|(0x8000-(y.data_>>15)))))) ? detail::select(y.data_, x.data_) : detail::select(x.data_, y.data_)); + } + + /// Minimum of half expressions. + /// **See also:** Documentation for [std::fmin](https://en.cppreference.com/w/cpp/numeric/math/fmin). + /// \param x first operand + /// \param y second operand + /// \return minimum of operands, ignoring quiet NaNs + /// \exception FE_INVALID if \a x or \a y is signaling NaN + inline HALF_CONSTEXPR_NOERR half fmin(half x, half y) + { + return half(detail::binary, (!isnan(y) && (isnan(x) || (x.data_^(0x8000|(0x8000-(x.data_>>15)))) > + (y.data_^(0x8000|(0x8000-(y.data_>>15)))))) ? detail::select(y.data_, x.data_) : detail::select(x.data_, y.data_)); + } + + /// Positive difference. + /// This function is exact to rounding for all rounding modes. + /// + /// **See also:** Documentation for [std::fdim](https://en.cppreference.com/w/cpp/numeric/math/fdim). + /// \param x first operand + /// \param y second operand + /// \return \a x - \a y or 0 if difference negative + /// \exception FE_... according to operator-(half,half) + inline half fdim(half x, half y) + { + if(isnan(x) || isnan(y)) + return half(detail::binary, detail::signal(x.data_, y.data_)); + return (x.data_^(0x8000|(0x8000-(x.data_>>15)))) <= (y.data_^(0x8000|(0x8000-(y.data_>>15)))) ? half(detail::binary, 0) : (x-y); + } + + /// Get NaN value. + /// **See also:** Documentation for [std::nan](https://en.cppreference.com/w/cpp/numeric/math/nan). + /// \param arg string code + /// \return quiet NaN + inline half nanh(const char *arg) + { + unsigned int value = 0x7FFF; + while(*arg) + value ^= static_cast(*arg++) & 0xFF; + return half(detail::binary, value); + } + + /// \} + /// \anchor exponential + /// \name Exponential functions + /// \{ + + /// Exponential function. + /// This function is exact to rounding for all rounding modes. + /// + /// **See also:** Documentation for [std::exp](https://en.cppreference.com/w/cpp/numeric/math/exp). + /// \param arg function argument + /// \return e raised to \a arg + /// \exception FE_INVALID for signaling NaN + /// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding + inline half exp(half arg) + { + #ifdef HALF_ARITHMETIC_TYPE + return half(detail::binary, detail::float2half(std::exp(detail::half2float(arg.data_)))); + #else + int abs = arg.data_ & 0x7FFF, e = (abs>>10) + (abs<=0x3FF), exp; + if(!abs) + return half(detail::binary, 0x3C00); + if(abs >= 0x7C00) + return half(detail::binary, (abs==0x7C00) ? (0x7C00&((arg.data_>>15)-1U)) : detail::signal(arg.data_)); + if(abs >= 0x4C80) + return half(detail::binary, (arg.data_&0x8000) ? detail::underflow() : detail::overflow()); + detail::uint32 m = detail::multiply64(static_cast((abs&0x3FF)+((abs>0x3FF)<<10))<<21, 0xB8AA3B29); + if(e < 14) + { + exp = 0; + m >>= 14 - e; + } + else + { + exp = m >> (45-e); + m = (m<<(e-14)) & 0x7FFFFFFF; + } + return half(detail::binary, detail::exp2_post(m, exp, (arg.data_&0x8000)!=0, 0, 26)); + #endif + } + + /// Binary exponential. + /// This function is exact to rounding for all rounding modes. + /// + /// **See also:** Documentation for [std::exp2](https://en.cppreference.com/w/cpp/numeric/math/exp2). + /// \param arg function argument + /// \return 2 raised to \a arg + /// \exception FE_INVALID for signaling NaN + /// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding + inline half exp2(half arg) + { + #if defined(HALF_ARITHMETIC_TYPE) && HALF_ENABLE_CPP11_CMATH + return half(detail::binary, detail::float2half(std::exp2(detail::half2float(arg.data_)))); + #else + int abs = arg.data_ & 0x7FFF, e = (abs>>10) + (abs<=0x3FF), exp = (abs&0x3FF) + ((abs>0x3FF)<<10); + if(!abs) + return half(detail::binary, 0x3C00); + if(abs >= 0x7C00) + return half(detail::binary, (abs==0x7C00) ? (0x7C00&((arg.data_>>15)-1U)) : detail::signal(arg.data_)); + if(abs >= 0x4E40) + return half(detail::binary, (arg.data_&0x8000) ? detail::underflow() : detail::overflow()); + return half(detail::binary, detail::exp2_post( + (static_cast(exp)<<(6+e))&0x7FFFFFFF, exp>>(25-e), (arg.data_&0x8000)!=0, 0, 28)); + #endif + } + + /// Exponential minus one. + /// This function may be 1 ULP off the correctly rounded exact result in <0.05% of inputs for `std::round_to_nearest` + /// and in <1% of inputs for any other rounding mode. + /// + /// **See also:** Documentation for [std::expm1](https://en.cppreference.com/w/cpp/numeric/math/expm1). + /// \param arg function argument + /// \return e raised to \a arg and subtracted by 1 + /// \exception FE_INVALID for signaling NaN + /// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding + inline half expm1(half arg) + { + #if defined(HALF_ARITHMETIC_TYPE) && HALF_ENABLE_CPP11_CMATH + return half(detail::binary, detail::float2half(std::expm1(detail::half2float(arg.data_)))); + #else + unsigned int abs = arg.data_ & 0x7FFF, sign = arg.data_ & 0x8000, e = (abs>>10) + (abs<=0x3FF), exp; + if(!abs) + return arg; + if(abs >= 0x7C00) + return half(detail::binary, (abs==0x7C00) ? (0x7C00+(sign>>1)) : detail::signal(arg.data_)); + if(abs >= 0x4A00) + return half(detail::binary, (arg.data_&0x8000) ? detail::rounded(0xBBFF, 1, 1) : detail::overflow()); + detail::uint32 m = detail::multiply64(static_cast((abs&0x3FF)+((abs>0x3FF)<<10))<<21, 0xB8AA3B29); + if(e < 14) + { + exp = 0; + m >>= 14 - e; + } + else + { + exp = m >> (45-e); + m = (m<<(e-14)) & 0x7FFFFFFF; + } + m = detail::exp2(m); + if(sign) + { + int s = 0; + if(m > 0x80000000) + { + ++exp; + m = detail::divide64(0x80000000, m, s); + } + m = 0x80000000 - ((m>>exp)|((m&((static_cast(1)<>exp) : 1; + for(exp+=14; m<0x80000000 && exp; m<<=1,--exp) ; + if(exp > 29) + return half(detail::binary, detail::overflow()); + return half(detail::binary, detail::rounded(sign+(exp<<10)+(m>>21), (m>>20)&1, (m&0xFFFFF)!=0)); + #endif + } + + /// Natural logarithm. + /// This function is exact to rounding for all rounding modes. + /// + /// **See also:** Documentation for [std::log](https://en.cppreference.com/w/cpp/numeric/math/log). + /// \param arg function argument + /// \return logarithm of \a arg to base e + /// \exception FE_INVALID for signaling NaN or negative argument + /// \exception FE_DIVBYZERO for 0 + /// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding + inline half log(half arg) + { + #ifdef HALF_ARITHMETIC_TYPE + return half(detail::binary, detail::float2half(std::log(detail::half2float(arg.data_)))); + #else + int abs = arg.data_ & 0x7FFF, exp = -15; + if(!abs) + return half(detail::binary, detail::pole(0x8000)); + if(arg.data_ & 0x8000) + return half(detail::binary, (arg.data_<=0xFC00) ? detail::invalid() : detail::signal(arg.data_)); + if(abs >= 0x7C00) + return (abs==0x7C00) ? arg : half(detail::binary, detail::signal(arg.data_)); + for(; abs<0x400; abs<<=1,--exp) ; + exp += abs >> 10; + return half(detail::binary, detail::log2_post( + detail::log2(static_cast((abs&0x3FF)|0x400)<<20, 27)+8, exp, 17)); + #endif + } + + /// Common logarithm. + /// This function is exact to rounding for all rounding modes. + /// + /// **See also:** Documentation for [std::log10](https://en.cppreference.com/w/cpp/numeric/math/log10). + /// \param arg function argument + /// \return logarithm of \a arg to base 10 + /// \exception FE_INVALID for signaling NaN or negative argument + /// \exception FE_DIVBYZERO for 0 + /// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding + inline half log10(half arg) + { + #ifdef HALF_ARITHMETIC_TYPE + return half(detail::binary, detail::float2half(std::log10(detail::half2float(arg.data_)))); + #else + int abs = arg.data_ & 0x7FFF, exp = -15; + if(!abs) + return half(detail::binary, detail::pole(0x8000)); + if(arg.data_ & 0x8000) + return half(detail::binary, (arg.data_<=0xFC00) ? detail::invalid() : detail::signal(arg.data_)); + if(abs >= 0x7C00) + return (abs==0x7C00) ? arg : half(detail::binary, detail::signal(arg.data_)); + switch(abs) + { + case 0x4900: return half(detail::binary, 0x3C00); + case 0x5640: return half(detail::binary, 0x4000); + case 0x63D0: return half(detail::binary, 0x4200); + case 0x70E2: return half(detail::binary, 0x4400); + } + for(; abs<0x400; abs<<=1,--exp) ; + exp += abs >> 10; + return half(detail::binary, detail::log2_post( + detail::log2(static_cast((abs&0x3FF)|0x400)<<20, 27)+8, exp, 16)); + #endif + } + + /// Binary logarithm. + /// This function is exact to rounding for all rounding modes. + /// + /// **See also:** Documentation for [std::log2](https://en.cppreference.com/w/cpp/numeric/math/log2). + /// \param arg function argument + /// \return logarithm of \a arg to base 2 + /// \exception FE_INVALID for signaling NaN or negative argument + /// \exception FE_DIVBYZERO for 0 + /// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding + inline half log2(half arg) + { + #if defined(HALF_ARITHMETIC_TYPE) && HALF_ENABLE_CPP11_CMATH + return half(detail::binary, detail::float2half(std::log2(detail::half2float(arg.data_)))); + #else + int abs = arg.data_ & 0x7FFF, exp = -15, s = 0; + if(!abs) + return half(detail::binary, detail::pole(0x8000)); + if(arg.data_ & 0x8000) + return half(detail::binary, (arg.data_<=0xFC00) ? detail::invalid() : detail::signal(arg.data_)); + if(abs >= 0x7C00) + return (abs==0x7C00) ? arg : half(detail::binary, detail::signal(arg.data_)); + if(abs == 0x3C00) + return half(detail::binary, 0); + for(; abs<0x400; abs<<=1,--exp) ; + exp += (abs>>10); + if(!(abs&0x3FF)) + { + unsigned int value = static_cast(exp<0) << 15, m = std::abs(exp) << 6; + for(exp=18; m<0x400; m<<=1,--exp) ; + return half(detail::binary, value+(exp<<10)+m); + } + detail::uint32 ilog = exp, sign = detail::sign_mask(ilog), m = + (((ilog<<27)+(detail::log2(static_cast((abs&0x3FF)|0x400)<<20, 28)>>4))^sign) - sign; + if(!m) + return half(detail::binary, 0); + for(exp=14; m<0x8000000 && exp; m<<=1,--exp) ; + for(; m>0xFFFFFFF; m>>=1,++exp) + s |= m & 1; + return half(detail::binary, detail::fixed2half(m, exp, sign&0x8000, s)); + #endif + } + + /// Natural logarithm plus one. + /// This function may be 1 ULP off the correctly rounded exact result in <0.05% of inputs for `std::round_to_nearest` + /// and in ~1% of inputs for any other rounding mode. + /// + /// **See also:** Documentation for [std::log1p](https://en.cppreference.com/w/cpp/numeric/math/log1p). + /// \param arg function argument + /// \return logarithm of \a arg plus 1 to base e + /// \exception FE_INVALID for signaling NaN or argument <-1 + /// \exception FE_DIVBYZERO for -1 + /// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding + inline half log1p(half arg) + { + #if defined(HALF_ARITHMETIC_TYPE) && HALF_ENABLE_CPP11_CMATH + return half(detail::binary, detail::float2half(std::log1p(detail::half2float(arg.data_)))); + #else + if(arg.data_ >= 0xBC00) + return half(detail::binary, (arg.data_==0xBC00) ? detail::pole(0x8000) : (arg.data_<=0xFC00) ? detail::invalid() : detail::signal(arg.data_)); + int abs = arg.data_ & 0x7FFF, exp = -15; + if(!abs || abs >= 0x7C00) + return (abs>0x7C00) ? half(detail::binary, detail::signal(arg.data_)) : arg; + for(; abs<0x400; abs<<=1,--exp) ; + exp += abs >> 10; + detail::uint32 m = static_cast((abs&0x3FF)|0x400) << 20; + if(arg.data_ & 0x8000) + { + m = 0x40000000 - (m>>-exp); + for(exp=0; m<0x40000000; m<<=1,--exp) ; + } + else + { + if(exp < 0) + { + m = 0x40000000 + (m>>-exp); + exp = 0; + } + else + { + m += 0x40000000 >> exp; + int i = m >> 31; + m >>= i; + exp += i; + } + } + return half(detail::binary, detail::log2_post(detail::log2(m), exp, 17)); + #endif + } + + /// \} + /// \anchor power + /// \name Power functions + /// \{ + + /// Square root. + /// This function is exact to rounding for all rounding modes. + /// + /// **See also:** Documentation for [std::sqrt](https://en.cppreference.com/w/cpp/numeric/math/sqrt). + /// \param arg function argument + /// \return square root of \a arg + /// \exception FE_INVALID for signaling NaN and negative arguments + /// \exception FE_INEXACT according to rounding + inline half sqrt(half arg) + { + #ifdef HALF_ARITHMETIC_TYPE + return half(detail::binary, detail::float2half(std::sqrt(detail::half2float(arg.data_)))); + #else + int abs = arg.data_ & 0x7FFF, exp = 15; + if(!abs || arg.data_ >= 0x7C00) + return half(detail::binary, (abs>0x7C00) ? detail::signal(arg.data_) : (arg.data_>0x8000) ? detail::invalid() : arg.data_); + for(; abs<0x400; abs<<=1,--exp) ; + detail::uint32 r = static_cast((abs&0x3FF)|0x400) << 10, m = detail::sqrt<20>(r, exp+=abs>>10); + return half(detail::binary, detail::rounded((exp<<10)+(m&0x3FF), r>m, r!=0)); + #endif + } + + /// Inverse square root. + /// This function is exact to rounding for all rounding modes and thus generally more accurate than directly computing + /// 1 / sqrt(\a arg) in half-precision, in addition to also being faster. + /// \param arg function argument + /// \return reciprocal of square root of \a arg + /// \exception FE_INVALID for signaling NaN and negative arguments + /// \exception FE_INEXACT according to rounding + inline half rsqrt(half arg) + { + #ifdef HALF_ARITHMETIC_TYPE + return half(detail::binary, detail::float2half(detail::internal_t(1)/std::sqrt(detail::half2float(arg.data_)))); + #else + unsigned int abs = arg.data_ & 0x7FFF, bias = 0x4000; + if(!abs || arg.data_ >= 0x7C00) + return half(detail::binary, (abs>0x7C00) ? detail::signal(arg.data_) : (arg.data_>0x8000) ? + detail::invalid() : !abs ? detail::pole(arg.data_&0x8000) : 0); + for(; abs<0x400; abs<<=1,bias-=0x400) ; + unsigned int frac = (abs+=bias) & 0x7FF; + if(frac == 0x400) + return half(detail::binary, 0x7A00-(abs>>1)); + if((half::round_style == std::round_to_nearest && (frac == 0x3FE || frac == 0x76C)) || + (half::round_style != std::round_to_nearest && (frac == 0x15A || frac == 0x3FC || frac == 0x401 || frac == 0x402 || frac == 0x67B))) + return pow(arg, half(detail::binary, 0xB800)); + detail::uint32 f = 0x17376 - abs, mx = (abs&0x3FF) | 0x400, my = ((f>>1)&0x3FF) | 0x400, mz = my * my; + int expy = (f>>11) - 31, expx = 32 - (abs>>10), i = mz >> 21; + for(mz=0x60000000-(((mz>>i)*mx)>>(expx-2*expy-i)); mz<0x40000000; mz<<=1,--expy) ; + i = (my*=mz>>10) >> 31; + expy += i; + my = (my>>(20+i)) + 1; + i = (mz=my*my) >> 21; + for(mz=0x60000000-(((mz>>i)*mx)>>(expx-2*expy-i)); mz<0x40000000; mz<<=1,--expy) ; + i = (my*=(mz>>10)+1) >> 31; + return half(detail::binary, detail::fixed2half(my>>i, expy+i+14)); + #endif + } + + /// Cubic root. + /// This function is exact to rounding for all rounding modes. + /// + /// **See also:** Documentation for [std::cbrt](https://en.cppreference.com/w/cpp/numeric/math/cbrt). + /// \param arg function argument + /// \return cubic root of \a arg + /// \exception FE_INVALID for signaling NaN + /// \exception FE_INEXACT according to rounding + inline half cbrt(half arg) + { + #if defined(HALF_ARITHMETIC_TYPE) && HALF_ENABLE_CPP11_CMATH + return half(detail::binary, detail::float2half(std::cbrt(detail::half2float(arg.data_)))); + #else + int abs = arg.data_ & 0x7FFF, exp = -15; + if(!abs || abs == 0x3C00 || abs >= 0x7C00) + return (abs>0x7C00) ? half(detail::binary, detail::signal(arg.data_)) : arg; + for(; abs<0x400; abs<<=1, --exp); + detail::uint32 ilog = exp + (abs>>10), sign = detail::sign_mask(ilog), f, m = + (((ilog<<27)+(detail::log2(static_cast((abs&0x3FF)|0x400)<<20, 24)>>4))^sign) - sign; + for(exp=2; m<0x80000000; m<<=1,--exp) ; + m = detail::multiply64(m, 0xAAAAAAAB); + int i = m >> 31, s; + exp += i; + m <<= 1 - i; + if(exp < 0) + { + f = m >> -exp; + exp = 0; + } + else + { + f = (m<> (31-exp); + } + m = detail::exp2(f, (half::round_style==std::round_to_nearest) ? 29 : 26); + if(sign) + { + if(m > 0x80000000) + { + m = detail::divide64(0x80000000, m, s); + ++exp; + } + exp = -exp; + } + return half(detail::binary, (half::round_style==std::round_to_nearest) ? + detail::fixed2half(m, exp+14, arg.data_&0x8000) : + detail::fixed2half((m+0x80)>>8, exp+14, arg.data_&0x8000)); + #endif + } + + /// Hypotenuse function. + /// This function is exact to rounding for all rounding modes. + /// + /// **See also:** Documentation for [std::hypot](https://en.cppreference.com/w/cpp/numeric/math/hypot). + /// \param x first argument + /// \param y second argument + /// \return square root of sum of squares without internal over- or underflows + /// \exception FE_INVALID if \a x or \a y is signaling NaN + /// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding of the final square root + inline half hypot(half x, half y) + { + #ifdef HALF_ARITHMETIC_TYPE + detail::internal_t fx = detail::half2float(x.data_), fy = detail::half2float(y.data_); + #if HALF_ENABLE_CPP11_CMATH + return half(detail::binary, detail::float2half(std::hypot(fx, fy))); + #else + return half(detail::binary, detail::float2half(std::sqrt(fx*fx+fy*fy))); + #endif + #else + int absx = x.data_ & 0x7FFF, absy = y.data_ & 0x7FFF, expx = 0, expy = 0; + if(absx >= 0x7C00 || absy >= 0x7C00) + return half(detail::binary, (absx==0x7C00) ? detail::select(0x7C00, y.data_) : + (absy==0x7C00) ? detail::select(0x7C00, x.data_) : detail::signal(x.data_, y.data_)); + if(!absx) + return half(detail::binary, absy ? detail::check_underflow(absy) : 0); + if(!absy) + return half(detail::binary, detail::check_underflow(absx)); + if(absy > absx) + std::swap(absx, absy); + for(; absx<0x400; absx<<=1,--expx) ; + for(; absy<0x400; absy<<=1,--expy) ; + detail::uint32 mx = (absx&0x3FF) | 0x400, my = (absy&0x3FF) | 0x400; + mx *= mx; + my *= my; + int ix = mx >> 21, iy = my >> 21; + expx = 2*(expx+(absx>>10)) - 15 + ix; + expy = 2*(expy+(absy>>10)) - 15 + iy; + mx <<= 10 - ix; + my <<= 10 - iy; + int d = expx - expy; + my = (d<30) ? ((my>>d)|((my&((static_cast(1)<(mx+my, expx)); + #endif + } + + /// Hypotenuse function. + /// This function is exact to rounding for all rounding modes. + /// + /// **See also:** Documentation for [std::hypot](https://en.cppreference.com/w/cpp/numeric/math/hypot). + /// \param x first argument + /// \param y second argument + /// \param z third argument + /// \return square root of sum of squares without internal over- or underflows + /// \exception FE_INVALID if \a x, \a y or \a z is signaling NaN + /// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding of the final square root + inline half hypot(half x, half y, half z) + { + #ifdef HALF_ARITHMETIC_TYPE + detail::internal_t fx = detail::half2float(x.data_), fy = detail::half2float(y.data_), fz = detail::half2float(z.data_); + return half(detail::binary, detail::float2half(std::sqrt(fx*fx+fy*fy+fz*fz))); + #else + int absx = x.data_ & 0x7FFF, absy = y.data_ & 0x7FFF, absz = z.data_ & 0x7FFF, expx = 0, expy = 0, expz = 0; + if(!absx) + return hypot(y, z); + if(!absy) + return hypot(x, z); + if(!absz) + return hypot(x, y); + if(absx >= 0x7C00 || absy >= 0x7C00 || absz >= 0x7C00) + return half(detail::binary, (absx==0x7C00) ? detail::select(0x7C00, detail::select(y.data_, z.data_)) : + (absy==0x7C00) ? detail::select(0x7C00, detail::select(x.data_, z.data_)) : + (absz==0x7C00) ? detail::select(0x7C00, detail::select(x.data_, y.data_)) : + detail::signal(x.data_, y.data_, z.data_)); + if(absz > absy) + std::swap(absy, absz); + if(absy > absx) + std::swap(absx, absy); + if(absz > absy) + std::swap(absy, absz); + for(; absx<0x400; absx<<=1,--expx) ; + for(; absy<0x400; absy<<=1,--expy) ; + for(; absz<0x400; absz<<=1,--expz) ; + detail::uint32 mx = (absx&0x3FF) | 0x400, my = (absy&0x3FF) | 0x400, mz = (absz&0x3FF) | 0x400; + mx *= mx; + my *= my; + mz *= mz; + int ix = mx >> 21, iy = my >> 21, iz = mz >> 21; + expx = 2*(expx+(absx>>10)) - 15 + ix; + expy = 2*(expy+(absy>>10)) - 15 + iy; + expz = 2*(expz+(absz>>10)) - 15 + iz; + mx <<= 10 - ix; + my <<= 10 - iy; + mz <<= 10 - iz; + int d = expy - expz; + mz = (d<30) ? ((mz>>d)|((mz&((static_cast(1)<>1) | (my&1); + if(++expy > expx) + { + std::swap(mx, my); + std::swap(expx, expy); + } + } + d = expx - expy; + my = (d<30) ? ((my>>d)|((my&((static_cast(1)<(mx+my, expx)); + #endif + } + + /// Power function. + /// This function may be 1 ULP off the correctly rounded exact result for any rounding mode in ~0.00025% of inputs. + /// + /// **See also:** Documentation for [std::pow](https://en.cppreference.com/w/cpp/numeric/math/pow). + /// \param x base + /// \param y exponent + /// \return \a x raised to \a y + /// \exception FE_INVALID if \a x or \a y is signaling NaN or if \a x is finite an negative and \a y is finite and not integral + /// \exception FE_DIVBYZERO if \a x is 0 and \a y is negative + /// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding + inline half pow(half x, half y) + { + #ifdef HALF_ARITHMETIC_TYPE + return half(detail::binary, detail::float2half(std::pow(detail::half2float(x.data_), detail::half2float(y.data_)))); + #else + int absx = x.data_ & 0x7FFF, absy = y.data_ & 0x7FFF, exp = -15; + if(!absy || x.data_ == 0x3C00) + return half(detail::binary, detail::select(0x3C00, (x.data_==0x3C00) ? y.data_ : x.data_)); + bool is_int = absy >= 0x6400 || (absy>=0x3C00 && !(absy&((1<<(25-(absy>>10)))-1))); + unsigned int sign = x.data_ & (static_cast((absy<0x6800)&&is_int&&((absy>>(25-(absy>>10)))&1))<<15); + if(absx >= 0x7C00 || absy >= 0x7C00) + return half(detail::binary, (absx>0x7C00 || absy>0x7C00) ? detail::signal(x.data_, y.data_) : + (absy==0x7C00) ? ((absx==0x3C00) ? 0x3C00 : (!absx && y.data_==0xFC00) ? detail::pole() : + (0x7C00&-((y.data_>>15)^(absx>0x3C00)))) : (sign|(0x7C00&((y.data_>>15)-1U)))); + if(!absx) + return half(detail::binary, (y.data_&0x8000) ? detail::pole(sign) : sign); + if((x.data_&0x8000) && !is_int) + return half(detail::binary, detail::invalid()); + if(x.data_ == 0xBC00) + return half(detail::binary, sign|0x3C00); + switch(y.data_) + { + case 0x3800: return sqrt(x); + case 0x3C00: return half(detail::binary, detail::check_underflow(x.data_)); + case 0x4000: return x * x; + case 0xBC00: return half(detail::binary, 0x3C00) / x; + } + for(; absx<0x400; absx<<=1,--exp) ; + detail::uint32 ilog = exp + (absx>>10), msign = detail::sign_mask(ilog), f, m = + (((ilog<<27)+((detail::log2(static_cast((absx&0x3FF)|0x400)<<20)+8)>>4))^msign) - msign; + for(exp=-11; m<0x80000000; m<<=1,--exp) ; + for(; absy<0x400; absy<<=1,--exp) ; + m = detail::multiply64(m, static_cast((absy&0x3FF)|0x400)<<21); + int i = m >> 31; + exp += (absy>>10) + i; + m <<= 1 - i; + if(exp < 0) + { + f = m >> -exp; + exp = 0; + } + else + { + f = (m<> (31-exp); + } + return half(detail::binary, detail::exp2_post(f, exp, ((msign&1)^(y.data_>>15))!=0, sign)); + #endif + } + + /// \} + /// \anchor trigonometric + /// \name Trigonometric functions + /// \{ + + /// Compute sine and cosine simultaneously. + /// This returns the same results as sin() and cos() but is faster than calling each function individually. + /// + /// This function is exact to rounding for all rounding modes. + /// \param arg function argument + /// \param sin variable to take sine of \a arg + /// \param cos variable to take cosine of \a arg + /// \exception FE_INVALID for signaling NaN or infinity + /// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding + inline void sincos(half arg, half *sin, half *cos) + { + #ifdef HALF_ARITHMETIC_TYPE + detail::internal_t f = detail::half2float(arg.data_); + *sin = half(detail::binary, detail::float2half(std::sin(f))); + *cos = half(detail::binary, detail::float2half(std::cos(f))); + #else + int abs = arg.data_ & 0x7FFF, sign = arg.data_ >> 15, k; + if(abs >= 0x7C00) + *sin = *cos = half(detail::binary, (abs==0x7C00) ? detail::invalid() : detail::signal(arg.data_)); + else if(!abs) + { + *sin = arg; + *cos = half(detail::binary, 0x3C00); + } + else if(abs < 0x2500) + { + *sin = half(detail::binary, detail::rounded(arg.data_-1, 1, 1)); + *cos = half(detail::binary, detail::rounded(0x3BFF, 1, 1)); + } + else + { + if(half::round_style != std::round_to_nearest) + { + switch(abs) + { + case 0x48B7: + *sin = half(detail::binary, detail::rounded((~arg.data_&0x8000)|0x1D07, 1, 1)); + *cos = half(detail::binary, detail::rounded(0xBBFF, 1, 1)); + return; + case 0x598C: + *sin = half(detail::binary, detail::rounded((arg.data_&0x8000)|0x3BFF, 1, 1)); + *cos = half(detail::binary, detail::rounded(0x80FC, 1, 1)); + return; + case 0x6A64: + *sin = half(detail::binary, detail::rounded((~arg.data_&0x8000)|0x3BFE, 1, 1)); + *cos = half(detail::binary, detail::rounded(0x27FF, 1, 1)); + return; + case 0x6D8C: + *sin = half(detail::binary, detail::rounded((arg.data_&0x8000)|0x0FE6, 1, 1)); + *cos = half(detail::binary, detail::rounded(0x3BFF, 1, 1)); + return; + } + } + std::pair sc = detail::sincos(detail::angle_arg(abs, k), 28); + switch(k & 3) + { + case 1: sc = std::make_pair(sc.second, -sc.first); break; + case 2: sc = std::make_pair(-sc.first, -sc.second); break; + case 3: sc = std::make_pair(-sc.second, sc.first); break; + } + *sin = half(detail::binary, detail::fixed2half((sc.first^-static_cast(sign))+sign)); + *cos = half(detail::binary, detail::fixed2half(sc.second)); + } + #endif + } + + /// Sine function. + /// This function is exact to rounding for all rounding modes. + /// + /// **See also:** Documentation for [std::sin](https://en.cppreference.com/w/cpp/numeric/math/sin). + /// \param arg function argument + /// \return sine value of \a arg + /// \exception FE_INVALID for signaling NaN or infinity + /// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding + inline half sin(half arg) + { + #ifdef HALF_ARITHMETIC_TYPE + return half(detail::binary, detail::float2half(std::sin(detail::half2float(arg.data_)))); + #else + int abs = arg.data_ & 0x7FFF, k; + if(!abs) + return arg; + if(abs >= 0x7C00) + return half(detail::binary, (abs==0x7C00) ? detail::invalid() : detail::signal(arg.data_)); + if(abs < 0x2900) + return half(detail::binary, detail::rounded(arg.data_-1, 1, 1)); + if(half::round_style != std::round_to_nearest) + switch(abs) + { + case 0x48B7: return half(detail::binary, detail::rounded((~arg.data_&0x8000)|0x1D07, 1, 1)); + case 0x6A64: return half(detail::binary, detail::rounded((~arg.data_&0x8000)|0x3BFE, 1, 1)); + case 0x6D8C: return half(detail::binary, detail::rounded((arg.data_&0x8000)|0x0FE6, 1, 1)); + } + std::pair sc = detail::sincos(detail::angle_arg(abs, k), 28); + detail::uint32 sign = -static_cast(((k>>1)&1)^(arg.data_>>15)); + return half(detail::binary, detail::fixed2half((((k&1) ? sc.second : sc.first)^sign) - sign)); + #endif + } + + /// Cosine function. + /// This function is exact to rounding for all rounding modes. + /// + /// **See also:** Documentation for [std::cos](https://en.cppreference.com/w/cpp/numeric/math/cos). + /// \param arg function argument + /// \return cosine value of \a arg + /// \exception FE_INVALID for signaling NaN or infinity + /// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding + inline half cos(half arg) + { + #ifdef HALF_ARITHMETIC_TYPE + return half(detail::binary, detail::float2half(std::cos(detail::half2float(arg.data_)))); + #else + int abs = arg.data_ & 0x7FFF, k; + if(!abs) + return half(detail::binary, 0x3C00); + if(abs >= 0x7C00) + return half(detail::binary, (abs==0x7C00) ? detail::invalid() : detail::signal(arg.data_)); + if(abs < 0x2500) + return half(detail::binary, detail::rounded(0x3BFF, 1, 1)); + if(half::round_style != std::round_to_nearest && abs == 0x598C) + return half(detail::binary, detail::rounded(0x80FC, 1, 1)); + std::pair sc = detail::sincos(detail::angle_arg(abs, k), 28); + detail::uint32 sign = -static_cast(((k>>1)^k)&1); + return half(detail::binary, detail::fixed2half((((k&1) ? sc.first : sc.second)^sign) - sign)); + #endif + } + + /// Tangent function. + /// This function is exact to rounding for all rounding modes. + /// + /// **See also:** Documentation for [std::tan](https://en.cppreference.com/w/cpp/numeric/math/tan). + /// \param arg function argument + /// \return tangent value of \a arg + /// \exception FE_INVALID for signaling NaN or infinity + /// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding + inline half tan(half arg) + { + #ifdef HALF_ARITHMETIC_TYPE + return half(detail::binary, detail::float2half(std::tan(detail::half2float(arg.data_)))); + #else + int abs = arg.data_ & 0x7FFF, exp = 13, k; + if(!abs) + return arg; + if(abs >= 0x7C00) + return half(detail::binary, (abs==0x7C00) ? detail::invalid() : detail::signal(arg.data_)); + if(abs < 0x2700) + return half(detail::binary, detail::rounded(arg.data_, 0, 1)); + if(half::round_style != std::round_to_nearest) + switch(abs) + { + case 0x658C: return half(detail::binary, detail::rounded((arg.data_&0x8000)|0x07E6, 1, 1)); + case 0x7330: return half(detail::binary, detail::rounded((~arg.data_&0x8000)|0x4B62, 1, 1)); + } + std::pair sc = detail::sincos(detail::angle_arg(abs, k), 30); + if(k & 1) + sc = std::make_pair(-sc.second, sc.first); + detail::uint32 signy = detail::sign_mask(sc.first), signx = detail::sign_mask(sc.second); + detail::uint32 my = (sc.first^signy) - signy, mx = (sc.second^signx) - signx; + for(; my<0x80000000; my<<=1,--exp) ; + for(; mx<0x80000000; mx<<=1,++exp) ; + return half(detail::binary, detail::tangent_post(my, mx, exp, (signy^signx^arg.data_)&0x8000)); + #endif + } + + /// Arc sine. + /// This function is exact to rounding for all rounding modes. + /// + /// **See also:** Documentation for [std::asin](https://en.cppreference.com/w/cpp/numeric/math/asin). + /// \param arg function argument + /// \return arc sine value of \a arg + /// \exception FE_INVALID for signaling NaN or if abs(\a arg) > 1 + /// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding + inline half asin(half arg) + { + #ifdef HALF_ARITHMETIC_TYPE + return half(detail::binary, detail::float2half(std::asin(detail::half2float(arg.data_)))); + #else + unsigned int abs = arg.data_ & 0x7FFF, sign = arg.data_ & 0x8000; + if(!abs) + return arg; + if(abs >= 0x3C00) + return half(detail::binary, (abs>0x7C00) ? detail::signal(arg.data_) : (abs>0x3C00) ? detail::invalid() : + detail::rounded(sign|0x3E48, 0, 1)); + if(abs < 0x2900) + return half(detail::binary, detail::rounded(arg.data_, 0, 1)); + if(half::round_style != std::round_to_nearest && (abs == 0x2B44 || abs == 0x2DC3)) + return half(detail::binary, detail::rounded(arg.data_+1, 1, 1)); + std::pair sc = detail::atan2_args(abs); + detail::uint32 m = detail::atan2(sc.first, sc.second, (half::round_style==std::round_to_nearest) ? 27 : 26); + return half(detail::binary, detail::fixed2half(m, 14, sign)); + #endif + } + + /// Arc cosine function. + /// This function is exact to rounding for all rounding modes. + /// + /// **See also:** Documentation for [std::acos](https://en.cppreference.com/w/cpp/numeric/math/acos). + /// \param arg function argument + /// \return arc cosine value of \a arg + /// \exception FE_INVALID for signaling NaN or if abs(\a arg) > 1 + /// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding + inline half acos(half arg) + { + #ifdef HALF_ARITHMETIC_TYPE + return half(detail::binary, detail::float2half(std::acos(detail::half2float(arg.data_)))); + #else + unsigned int abs = arg.data_ & 0x7FFF, sign = arg.data_ >> 15; + if(!abs) + return half(detail::binary, detail::rounded(0x3E48, 0, 1)); + if(abs >= 0x3C00) + return half(detail::binary, (abs>0x7C00) ? detail::signal(arg.data_) : (abs>0x3C00) ? detail::invalid() : + sign ? detail::rounded(0x4248, 0, 1) : 0); + std::pair cs = detail::atan2_args(abs); + detail::uint32 m = detail::atan2(cs.second, cs.first, 28); + return half(detail::binary, detail::fixed2half(sign ? (0xC90FDAA2-m) : m, 15, 0, sign)); + #endif + } + + /// Arc tangent function. + /// This function is exact to rounding for all rounding modes. + /// + /// **See also:** Documentation for [std::atan](https://en.cppreference.com/w/cpp/numeric/math/atan). + /// \param arg function argument + /// \return arc tangent value of \a arg + /// \exception FE_INVALID for signaling NaN + /// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding + inline half atan(half arg) + { + #ifdef HALF_ARITHMETIC_TYPE + return half(detail::binary, detail::float2half(std::atan(detail::half2float(arg.data_)))); + #else + unsigned int abs = arg.data_ & 0x7FFF, sign = arg.data_ & 0x8000; + if(!abs) + return arg; + if(abs >= 0x7C00) + return half(detail::binary, (abs==0x7C00) ? detail::rounded(sign|0x3E48, 0, 1) : detail::signal(arg.data_)); + if(abs <= 0x2700) + return half(detail::binary, detail::rounded(arg.data_-1, 1, 1)); + int exp = (abs>>10) + (abs<=0x3FF); + detail::uint32 my = (abs&0x3FF) | ((abs>0x3FF)<<10); + detail::uint32 m = (exp>15) ? detail::atan2(my<<19, 0x20000000>>(exp-15), (half::round_style==std::round_to_nearest) ? 26 : 24) : + detail::atan2(my<<(exp+4), 0x20000000, (half::round_style==std::round_to_nearest) ? 30 : 28); + return half(detail::binary, detail::fixed2half(m, 14, sign)); + #endif + } + + /// Arc tangent function. + /// This function may be 1 ULP off the correctly rounded exact result in ~0.005% of inputs for `std::round_to_nearest`, + /// in ~0.1% of inputs for `std::round_toward_zero` and in ~0.02% of inputs for any other rounding mode. + /// + /// **See also:** Documentation for [std::atan2](https://en.cppreference.com/w/cpp/numeric/math/atan2). + /// \param y numerator + /// \param x denominator + /// \return arc tangent value + /// \exception FE_INVALID if \a x or \a y is signaling NaN + /// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding + inline half atan2(half y, half x) + { + #ifdef HALF_ARITHMETIC_TYPE + return half(detail::binary, detail::float2half(std::atan2(detail::half2float(y.data_), detail::half2float(x.data_)))); + #else + unsigned int absx = x.data_ & 0x7FFF, absy = y.data_ & 0x7FFF, signx = x.data_ >> 15, signy = y.data_ & 0x8000; + if(absx >= 0x7C00 || absy >= 0x7C00) + { + if(absx > 0x7C00 || absy > 0x7C00) + return half(detail::binary, detail::signal(x.data_, y.data_)); + if(absy == 0x7C00) + return half(detail::binary, (absx<0x7C00) ? detail::rounded(signy|0x3E48, 0, 1) : + signx ? detail::rounded(signy|0x40B6, 0, 1) : + detail::rounded(signy|0x3A48, 0, 1)); + return (x.data_==0x7C00) ? half(detail::binary, signy) : half(detail::binary, detail::rounded(signy|0x4248, 0, 1)); + } + if(!absy) + return signx ? half(detail::binary, detail::rounded(signy|0x4248, 0, 1)) : y; + if(!absx) + return half(detail::binary, detail::rounded(signy|0x3E48, 0, 1)); + int d = (absy>>10) + (absy<=0x3FF) - (absx>>10) - (absx<=0x3FF); + if(d > (signx ? 18 : 12)) + return half(detail::binary, detail::rounded(signy|0x3E48, 0, 1)); + if(signx && d < -11) + return half(detail::binary, detail::rounded(signy|0x4248, 0, 1)); + if(!signx && d < ((half::round_style==std::round_toward_zero) ? -15 : -9)) + { + for(; absy<0x400; absy<<=1,--d) ; + detail::uint32 mx = ((absx<<1)&0x7FF) | 0x800, my = ((absy<<1)&0x7FF) | 0x800; + int i = my < mx; + d -= i; + if(d < -25) + return half(detail::binary, detail::underflow(signy)); + my <<= 11 + i; + return half(detail::binary, detail::fixed2half(my/mx, d+14, signy, my%mx!=0)); + } + detail::uint32 m = detail::atan2( ((absy&0x3FF)|((absy>0x3FF)<<10))<<(19+((d<0) ? d : (d>0) ? 0 : -1)), + ((absx&0x3FF)|((absx>0x3FF)<<10))<<(19-((d>0) ? d : (d<0) ? 0 : 1))); + return half(detail::binary, detail::fixed2half(signx ? (0xC90FDAA2-m) : m, 15, signy, signx)); + #endif + } + + /// \} + /// \anchor hyperbolic + /// \name Hyperbolic functions + /// \{ + + /// Hyperbolic sine. + /// This function is exact to rounding for all rounding modes. + /// + /// **See also:** Documentation for [std::sinh](https://en.cppreference.com/w/cpp/numeric/math/sinh). + /// \param arg function argument + /// \return hyperbolic sine value of \a arg + /// \exception FE_INVALID for signaling NaN + /// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding + inline half sinh(half arg) + { + #ifdef HALF_ARITHMETIC_TYPE + return half(detail::binary, detail::float2half(std::sinh(detail::half2float(arg.data_)))); + #else + int abs = arg.data_ & 0x7FFF, exp; + if(!abs || abs >= 0x7C00) + return (abs>0x7C00) ? half(detail::binary, detail::signal(arg.data_)) : arg; + if(abs <= 0x2900) + return half(detail::binary, detail::rounded(arg.data_, 0, 1)); + std::pair mm = detail::hyperbolic_args(abs, exp, (half::round_style==std::round_to_nearest) ? 29 : 27); + detail::uint32 m = mm.first - mm.second; + for(exp+=13; m<0x80000000 && exp; m<<=1,--exp) ; + unsigned int sign = arg.data_ & 0x8000; + if(exp > 29) + return half(detail::binary, detail::overflow(sign)); + return half(detail::binary, detail::fixed2half(m, exp, sign)); + #endif + } + + /// Hyperbolic cosine. + /// This function is exact to rounding for all rounding modes. + /// + /// **See also:** Documentation for [std::cosh](https://en.cppreference.com/w/cpp/numeric/math/cosh). + /// \param arg function argument + /// \return hyperbolic cosine value of \a arg + /// \exception FE_INVALID for signaling NaN + /// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding + inline half cosh(half arg) + { + #ifdef HALF_ARITHMETIC_TYPE + return half(detail::binary, detail::float2half(std::cosh(detail::half2float(arg.data_)))); + #else + int abs = arg.data_ & 0x7FFF, exp; + if(!abs) + return half(detail::binary, 0x3C00); + if(abs >= 0x7C00) + return half(detail::binary, (abs>0x7C00) ? detail::signal(arg.data_) : 0x7C00); + std::pair mm = detail::hyperbolic_args(abs, exp, (half::round_style==std::round_to_nearest) ? 23 : 26); + detail::uint32 m = mm.first + mm.second, i = (~m&0xFFFFFFFF) >> 31; + m = (m>>i) | (m&i) | 0x80000000; + if((exp+=13+i) > 29) + return half(detail::binary, detail::overflow()); + return half(detail::binary, detail::fixed2half(m, exp)); + #endif + } + + /// Hyperbolic tangent. + /// This function is exact to rounding for all rounding modes. + /// + /// **See also:** Documentation for [std::tanh](https://en.cppreference.com/w/cpp/numeric/math/tanh). + /// \param arg function argument + /// \return hyperbolic tangent value of \a arg + /// \exception FE_INVALID for signaling NaN + /// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding + inline half tanh(half arg) + { + #ifdef HALF_ARITHMETIC_TYPE + return half(detail::binary, detail::float2half(std::tanh(detail::half2float(arg.data_)))); + #else + int abs = arg.data_ & 0x7FFF, exp; + if(!abs) + return arg; + if(abs >= 0x7C00) + return half(detail::binary, (abs>0x7C00) ? detail::signal(arg.data_) : (arg.data_-0x4000)); + if(abs >= 0x4500) + return half(detail::binary, detail::rounded((arg.data_&0x8000)|0x3BFF, 1, 1)); + if(abs < 0x2700) + return half(detail::binary, detail::rounded(arg.data_-1, 1, 1)); + if(half::round_style != std::round_to_nearest && abs == 0x2D3F) + return half(detail::binary, detail::rounded(arg.data_-3, 0, 1)); + std::pair mm = detail::hyperbolic_args(abs, exp, 27); + detail::uint32 my = mm.first - mm.second - (half::round_style!=std::round_to_nearest), mx = mm.first + mm.second, i = (~mx&0xFFFFFFFF) >> 31; + for(exp=13; my<0x80000000; my<<=1,--exp) ; + mx = (mx>>i) | 0x80000000; + return half(detail::binary, detail::tangent_post(my, mx, exp-i, arg.data_&0x8000)); + #endif + } + + /// Hyperbolic area sine. + /// This function is exact to rounding for all rounding modes. + /// + /// **See also:** Documentation for [std::asinh](https://en.cppreference.com/w/cpp/numeric/math/asinh). + /// \param arg function argument + /// \return area sine value of \a arg + /// \exception FE_INVALID for signaling NaN + /// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding + inline half asinh(half arg) + { + #if defined(HALF_ARITHMETIC_TYPE) && HALF_ENABLE_CPP11_CMATH + return half(detail::binary, detail::float2half(std::asinh(detail::half2float(arg.data_)))); + #else + int abs = arg.data_ & 0x7FFF; + if(!abs || abs >= 0x7C00) + return (abs>0x7C00) ? half(detail::binary, detail::signal(arg.data_)) : arg; + if(abs <= 0x2900) + return half(detail::binary, detail::rounded(arg.data_-1, 1, 1)); + if(half::round_style != std::round_to_nearest) + switch(abs) + { + case 0x32D4: return half(detail::binary, detail::rounded(arg.data_-13, 1, 1)); + case 0x3B5B: return half(detail::binary, detail::rounded(arg.data_-197, 1, 1)); + } + return half(detail::binary, detail::area(arg.data_)); + #endif + } + + /// Hyperbolic area cosine. + /// This function is exact to rounding for all rounding modes. + /// + /// **See also:** Documentation for [std::acosh](https://en.cppreference.com/w/cpp/numeric/math/acosh). + /// \param arg function argument + /// \return area cosine value of \a arg + /// \exception FE_INVALID for signaling NaN or arguments <1 + /// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding + inline half acosh(half arg) + { + #if defined(HALF_ARITHMETIC_TYPE) && HALF_ENABLE_CPP11_CMATH + return half(detail::binary, detail::float2half(std::acosh(detail::half2float(arg.data_)))); + #else + int abs = arg.data_ & 0x7FFF; + if((arg.data_&0x8000) || abs < 0x3C00) + return half(detail::binary, (abs<=0x7C00) ? detail::invalid() : detail::signal(arg.data_)); + if(abs == 0x3C00) + return half(detail::binary, 0); + if(arg.data_ >= 0x7C00) + return (abs>0x7C00) ? half(detail::binary, detail::signal(arg.data_)) : arg; + return half(detail::binary, detail::area(arg.data_)); + #endif + } + + /// Hyperbolic area tangent. + /// This function is exact to rounding for all rounding modes. + /// + /// **See also:** Documentation for [std::atanh](https://en.cppreference.com/w/cpp/numeric/math/atanh). + /// \param arg function argument + /// \return area tangent value of \a arg + /// \exception FE_INVALID for signaling NaN or if abs(\a arg) > 1 + /// \exception FE_DIVBYZERO for +/-1 + /// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding + inline half atanh(half arg) + { + #if defined(HALF_ARITHMETIC_TYPE) && HALF_ENABLE_CPP11_CMATH + return half(detail::binary, detail::float2half(std::atanh(detail::half2float(arg.data_)))); + #else + int abs = arg.data_ & 0x7FFF, exp = 0; + if(!abs) + return arg; + if(abs >= 0x3C00) + return half(detail::binary, (abs==0x3C00) ? detail::pole(arg.data_&0x8000) : (abs<=0x7C00) ? detail::invalid() : detail::signal(arg.data_)); + if(abs < 0x2700) + return half(detail::binary, detail::rounded(arg.data_, 0, 1)); + detail::uint32 m = static_cast((abs&0x3FF)|((abs>0x3FF)<<10)) << ((abs>>10)+(abs<=0x3FF)+6), my = 0x80000000 + m, mx = 0x80000000 - m; + for(; mx<0x80000000; mx<<=1,++exp) ; + int i = my >= mx, s; + return half(detail::binary, detail::log2_post(detail::log2( + (detail::divide64(my>>i, mx, s)+1)>>1, 27)+0x10, exp+i-1, 16, arg.data_&0x8000)); + #endif + } + + /// \} + /// \anchor special + /// \name Error and gamma functions + /// \{ + + /// Error function. + /// This function may be 1 ULP off the correctly rounded exact result for any rounding mode in <0.5% of inputs. + /// + /// **See also:** Documentation for [std::erf](https://en.cppreference.com/w/cpp/numeric/math/erf). + /// \param arg function argument + /// \return error function value of \a arg + /// \exception FE_INVALID for signaling NaN + /// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding + inline half erf(half arg) + { + #if defined(HALF_ARITHMETIC_TYPE) && HALF_ENABLE_CPP11_CMATH + return half(detail::binary, detail::float2half(std::erf(detail::half2float(arg.data_)))); + #else + unsigned int abs = arg.data_ & 0x7FFF; + if(!abs || abs >= 0x7C00) + return (abs>=0x7C00) ? half(detail::binary, (abs==0x7C00) ? (arg.data_-0x4000) : detail::signal(arg.data_)) : arg; + if(abs >= 0x4200) + return half(detail::binary, detail::rounded((arg.data_&0x8000)|0x3BFF, 1, 1)); + return half(detail::binary, detail::erf(arg.data_)); + #endif + } + + /// Complementary error function. + /// This function may be 1 ULP off the correctly rounded exact result for any rounding mode in <0.5% of inputs. + /// + /// **See also:** Documentation for [std::erfc](https://en.cppreference.com/w/cpp/numeric/math/erfc). + /// \param arg function argument + /// \return 1 minus error function value of \a arg + /// \exception FE_INVALID for signaling NaN + /// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding + inline half erfc(half arg) + { + #if defined(HALF_ARITHMETIC_TYPE) && HALF_ENABLE_CPP11_CMATH + return half(detail::binary, detail::float2half(std::erfc(detail::half2float(arg.data_)))); + #else + unsigned int abs = arg.data_ & 0x7FFF, sign = arg.data_ & 0x8000; + if(abs >= 0x7C00) + return (abs>=0x7C00) ? half(detail::binary, (abs==0x7C00) ? (sign>>1) : detail::signal(arg.data_)) : arg; + if(!abs) + return half(detail::binary, 0x3C00); + if(abs >= 0x4400) + return half(detail::binary, detail::rounded((sign>>1)-(sign>>15), sign>>15, 1)); + return half(detail::binary, detail::erf(arg.data_)); + #endif + } + + /// Natural logarithm of gamma function. + /// This function may be 1 ULP off the correctly rounded exact result for any rounding mode in ~0.025% of inputs. + /// + /// **See also:** Documentation for [std::lgamma](https://en.cppreference.com/w/cpp/numeric/math/lgamma). + /// \param arg function argument + /// \return natural logarith of gamma function for \a arg + /// \exception FE_INVALID for signaling NaN + /// \exception FE_DIVBYZERO for 0 or negative integer arguments + /// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding + inline half lgamma(half arg) + { + #if defined(HALF_ARITHMETIC_TYPE) && HALF_ENABLE_CPP11_CMATH + return half(detail::binary, detail::float2half(std::lgamma(detail::half2float(arg.data_)))); + #else + int abs = arg.data_ & 0x7FFF; + if(abs >= 0x7C00) + return half(detail::binary, (abs==0x7C00) ? 0x7C00 : detail::signal(arg.data_)); + if(!abs || arg.data_ >= 0xE400 || (arg.data_ >= 0xBC00 && !(abs&((1<<(25-(abs>>10)))-1)))) + return half(detail::binary, detail::pole()); + if(arg.data_ == 0x3C00 || arg.data_ == 0x4000) + return half(detail::binary, 0); + return half(detail::binary, detail::gamma(arg.data_)); + #endif + } + + /// Gamma function. + /// This function may be 1 ULP off the correctly rounded exact result for any rounding mode in <0.25% of inputs. + /// + /// **See also:** Documentation for [std::tgamma](https://en.cppreference.com/w/cpp/numeric/math/tgamma). + /// \param arg function argument + /// \return gamma function value of \a arg + /// \exception FE_INVALID for signaling NaN, negative infinity or negative integer arguments + /// \exception FE_DIVBYZERO for 0 + /// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding + inline half tgamma(half arg) + { + #if defined(HALF_ARITHMETIC_TYPE) && HALF_ENABLE_CPP11_CMATH + return half(detail::binary, detail::float2half(std::tgamma(detail::half2float(arg.data_)))); + #else + unsigned int abs = arg.data_ & 0x7FFF; + if(!abs) + return half(detail::binary, detail::pole(arg.data_)); + if(abs >= 0x7C00) + return (arg.data_==0x7C00) ? arg : half(detail::binary, detail::signal(arg.data_)); + if(arg.data_ >= 0xE400 || (arg.data_ >= 0xBC00 && !(abs&((1<<(25-(abs>>10)))-1)))) + return half(detail::binary, detail::invalid()); + if(arg.data_ >= 0xCA80) + return half(detail::binary, detail::underflow((1-((abs>>(25-(abs>>10)))&1))<<15)); + if(arg.data_ <= 0x100 || (arg.data_ >= 0x4900 && arg.data_ < 0x8000)) + return half(detail::binary, detail::overflow()); + if(arg.data_ == 0x3C00) + return arg; + return half(detail::binary, detail::gamma(arg.data_)); + #endif + } + + /// \} + /// \anchor rounding + /// \name Rounding + /// \{ + + /// Nearest integer not less than half value. + /// **See also:** Documentation for [std::ceil](https://en.cppreference.com/w/cpp/numeric/math/ceil). + /// \param arg half to round + /// \return nearest integer not less than \a arg + /// \exception FE_INVALID for signaling NaN + /// \exception FE_INEXACT if value had to be rounded + inline half ceil(half arg) { return half(detail::binary, detail::integral(arg.data_)); } + + /// Nearest integer not greater than half value. + /// **See also:** Documentation for [std::floor](https://en.cppreference.com/w/cpp/numeric/math/floor). + /// \param arg half to round + /// \return nearest integer not greater than \a arg + /// \exception FE_INVALID for signaling NaN + /// \exception FE_INEXACT if value had to be rounded + inline half floor(half arg) { return half(detail::binary, detail::integral(arg.data_)); } + + /// Nearest integer not greater in magnitude than half value. + /// **See also:** Documentation for [std::trunc](https://en.cppreference.com/w/cpp/numeric/math/trunc). + /// \param arg half to round + /// \return nearest integer not greater in magnitude than \a arg + /// \exception FE_INVALID for signaling NaN + /// \exception FE_INEXACT if value had to be rounded + inline half trunc(half arg) { return half(detail::binary, detail::integral(arg.data_)); } + + /// Nearest integer. + /// **See also:** Documentation for [std::round](https://en.cppreference.com/w/cpp/numeric/math/round). + /// \param arg half to round + /// \return nearest integer, rounded away from zero in half-way cases + /// \exception FE_INVALID for signaling NaN + /// \exception FE_INEXACT if value had to be rounded + inline half round(half arg) { return half(detail::binary, detail::integral(arg.data_)); } + + /// Nearest integer. + /// **See also:** Documentation for [std::lround](https://en.cppreference.com/w/cpp/numeric/math/round). + /// \param arg half to round + /// \return nearest integer, rounded away from zero in half-way cases + /// \exception FE_INVALID if value is not representable as `long` + inline long lround(half arg) { return detail::half2int(arg.data_); } + + /// Nearest integer using half's internal rounding mode. + /// **See also:** Documentation for [std::rint](https://en.cppreference.com/w/cpp/numeric/math/rint). + /// \param arg half expression to round + /// \return nearest integer using default rounding mode + /// \exception FE_INVALID for signaling NaN + /// \exception FE_INEXACT if value had to be rounded + inline half rint(half arg) { return half(detail::binary, detail::integral(arg.data_)); } + + /// Nearest integer using half's internal rounding mode. + /// **See also:** Documentation for [std::lrint](https://en.cppreference.com/w/cpp/numeric/math/rint). + /// \param arg half expression to round + /// \return nearest integer using default rounding mode + /// \exception FE_INVALID if value is not representable as `long` + /// \exception FE_INEXACT if value had to be rounded + inline long lrint(half arg) { return detail::half2int(arg.data_); } + + /// Nearest integer using half's internal rounding mode. + /// **See also:** Documentation for [std::nearbyint](https://en.cppreference.com/w/cpp/numeric/math/nearbyint). + /// \param arg half expression to round + /// \return nearest integer using default rounding mode + /// \exception FE_INVALID for signaling NaN + inline half nearbyint(half arg) { return half(detail::binary, detail::integral(arg.data_)); } +#if HALF_ENABLE_CPP11_LONG_LONG + /// Nearest integer. + /// **See also:** Documentation for [std::llround](https://en.cppreference.com/w/cpp/numeric/math/round). + /// \param arg half to round + /// \return nearest integer, rounded away from zero in half-way cases + /// \exception FE_INVALID if value is not representable as `long long` + inline long long llround(half arg) { return detail::half2int(arg.data_); } + + /// Nearest integer using half's internal rounding mode. + /// **See also:** Documentation for [std::llrint](https://en.cppreference.com/w/cpp/numeric/math/rint). + /// \param arg half expression to round + /// \return nearest integer using default rounding mode + /// \exception FE_INVALID if value is not representable as `long long` + /// \exception FE_INEXACT if value had to be rounded + inline long long llrint(half arg) { return detail::half2int(arg.data_); } +#endif + + /// \} + /// \anchor float + /// \name Floating point manipulation + /// \{ + + /// Decompress floating-point number. + /// **See also:** Documentation for [std::frexp](https://en.cppreference.com/w/cpp/numeric/math/frexp). + /// \param arg number to decompress + /// \param exp address to store exponent at + /// \return significant in range [0.5, 1) + /// \exception FE_INVALID for signaling NaN + inline half frexp(half arg, int *exp) + { + *exp = 0; + unsigned int abs = arg.data_ & 0x7FFF; + if(abs >= 0x7C00 || !abs) + return (abs>0x7C00) ? half(detail::binary, detail::signal(arg.data_)) : arg; + for(; abs<0x400; abs<<=1,--*exp) ; + *exp += (abs>>10) - 14; + return half(detail::binary, (arg.data_&0x8000)|0x3800|(abs&0x3FF)); + } + + /// Multiply by power of two. + /// This function is exact to rounding for all rounding modes. + /// + /// **See also:** Documentation for [std::scalbln](https://en.cppreference.com/w/cpp/numeric/math/scalbn). + /// \param arg number to modify + /// \param exp power of two to multiply with + /// \return \a arg multplied by 2 raised to \a exp + /// \exception FE_INVALID for signaling NaN + /// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding + inline half scalbln(half arg, long exp) + { + unsigned int abs = arg.data_ & 0x7FFF, sign = arg.data_ & 0x8000; + if(abs >= 0x7C00 || !abs) + return (abs>0x7C00) ? half(detail::binary, detail::signal(arg.data_)) : arg; + for(; abs<0x400; abs<<=1,--exp) ; + exp += abs >> 10; + if(exp > 30) + return half(detail::binary, detail::overflow(sign)); + else if(exp < -10) + return half(detail::binary, detail::underflow(sign)); + else if(exp > 0) + return half(detail::binary, sign|(exp<<10)|(abs&0x3FF)); + unsigned int m = (abs&0x3FF) | 0x400; + return half(detail::binary, detail::rounded(sign|(m>>(1-exp)), (m>>-exp)&1, (m&((1<<-exp)-1))!=0)); + } + + /// Multiply by power of two. + /// This function is exact to rounding for all rounding modes. + /// + /// **See also:** Documentation for [std::scalbn](https://en.cppreference.com/w/cpp/numeric/math/scalbn). + /// \param arg number to modify + /// \param exp power of two to multiply with + /// \return \a arg multplied by 2 raised to \a exp + /// \exception FE_INVALID for signaling NaN + /// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding + inline half scalbn(half arg, int exp) { return scalbln(arg, exp); } + + /// Multiply by power of two. + /// This function is exact to rounding for all rounding modes. + /// + /// **See also:** Documentation for [std::ldexp](https://en.cppreference.com/w/cpp/numeric/math/ldexp). + /// \param arg number to modify + /// \param exp power of two to multiply with + /// \return \a arg multplied by 2 raised to \a exp + /// \exception FE_INVALID for signaling NaN + /// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding + inline half ldexp(half arg, int exp) { return scalbln(arg, exp); } + + /// Extract integer and fractional parts. + /// **See also:** Documentation for [std::modf](https://en.cppreference.com/w/cpp/numeric/math/modf). + /// \param arg number to decompress + /// \param iptr address to store integer part at + /// \return fractional part + /// \exception FE_INVALID for signaling NaN + inline half modf(half arg, half *iptr) + { + unsigned int abs = arg.data_ & 0x7FFF; + if(abs > 0x7C00) + { + arg = half(detail::binary, detail::signal(arg.data_)); + return *iptr = arg, arg; + } + if(abs >= 0x6400) + return *iptr = arg, half(detail::binary, arg.data_&0x8000); + if(abs < 0x3C00) + return iptr->data_ = arg.data_ & 0x8000, arg; + unsigned int exp = abs >> 10, mask = (1<<(25-exp)) - 1, m = arg.data_ & mask; + iptr->data_ = arg.data_ & ~mask; + if(!m) + return half(detail::binary, arg.data_&0x8000); + for(; m<0x400; m<<=1,--exp) ; + return half(detail::binary, (arg.data_&0x8000)|(exp<<10)|(m&0x3FF)); + } + + /// Extract exponent. + /// **See also:** Documentation for [std::ilogb](https://en.cppreference.com/w/cpp/numeric/math/ilogb). + /// \param arg number to query + /// \return floating-point exponent + /// \retval FP_ILOGB0 for zero + /// \retval FP_ILOGBNAN for NaN + /// \retval INT_MAX for infinity + /// \exception FE_INVALID for 0 or infinite values + inline int ilogb(half arg) + { + int abs = arg.data_ & 0x7FFF, exp; + if(!abs || abs >= 0x7C00) + { + detail::raise(FE_INVALID); + return !abs ? FP_ILOGB0 : (abs==0x7C00) ? INT_MAX : FP_ILOGBNAN; + } + for(exp=(abs>>10)-15; abs<0x200; abs<<=1,--exp) ; + return exp; + } + + /// Extract exponent. + /// **See also:** Documentation for [std::logb](https://en.cppreference.com/w/cpp/numeric/math/logb). + /// \param arg number to query + /// \return floating-point exponent + /// \exception FE_INVALID for signaling NaN + /// \exception FE_DIVBYZERO for 0 + inline half logb(half arg) + { + int abs = arg.data_ & 0x7FFF, exp; + if(!abs) + return half(detail::binary, detail::pole(0x8000)); + if(abs >= 0x7C00) + return half(detail::binary, (abs==0x7C00) ? 0x7C00 : detail::signal(arg.data_)); + for(exp=(abs>>10)-15; abs<0x200; abs<<=1,--exp) ; + unsigned int value = static_cast(exp<0) << 15; + if(exp) + { + unsigned int m = std::abs(exp) << 6; + for(exp=18; m<0x400; m<<=1,--exp) ; + value |= (exp<<10) + m; + } + return half(detail::binary, value); + } + + /// Next representable value. + /// **See also:** Documentation for [std::nextafter](https://en.cppreference.com/w/cpp/numeric/math/nextafter). + /// \param from value to compute next representable value for + /// \param to direction towards which to compute next value + /// \return next representable value after \a from in direction towards \a to + /// \exception FE_INVALID for signaling NaN + /// \exception FE_OVERFLOW for infinite result from finite argument + /// \exception FE_UNDERFLOW for subnormal result + inline half nextafter(half from, half to) + { + int fabs = from.data_ & 0x7FFF, tabs = to.data_ & 0x7FFF; + if(fabs > 0x7C00 || tabs > 0x7C00) + return half(detail::binary, detail::signal(from.data_, to.data_)); + if(from.data_ == to.data_ || !(fabs|tabs)) + return to; + if(!fabs) + { + detail::raise(FE_UNDERFLOW, !HALF_ERRHANDLING_UNDERFLOW_TO_INEXACT); + return half(detail::binary, (to.data_&0x8000)+1); + } + unsigned int out = from.data_ + (((from.data_>>15)^static_cast( + (from.data_^(0x8000|(0x8000-(from.data_>>15))))<(to.data_^(0x8000|(0x8000-(to.data_>>15))))))<<1) - 1; + detail::raise(FE_OVERFLOW, fabs<0x7C00 && (out&0x7C00)==0x7C00); + detail::raise(FE_UNDERFLOW, !HALF_ERRHANDLING_UNDERFLOW_TO_INEXACT && (out&0x7C00)<0x400); + return half(detail::binary, out); + } + + /// Next representable value. + /// **See also:** Documentation for [std::nexttoward](https://en.cppreference.com/w/cpp/numeric/math/nexttoward). + /// \param from value to compute next representable value for + /// \param to direction towards which to compute next value + /// \return next representable value after \a from in direction towards \a to + /// \exception FE_INVALID for signaling NaN + /// \exception FE_OVERFLOW for infinite result from finite argument + /// \exception FE_UNDERFLOW for subnormal result + inline half nexttoward(half from, long double to) + { + int fabs = from.data_ & 0x7FFF; + if(fabs > 0x7C00) + return half(detail::binary, detail::signal(from.data_)); + long double lfrom = static_cast(from); + if(detail::builtin_isnan(to) || lfrom == to) + return half(static_cast(to)); + if(!fabs) + { + detail::raise(FE_UNDERFLOW, !HALF_ERRHANDLING_UNDERFLOW_TO_INEXACT); + return half(detail::binary, (static_cast(detail::builtin_signbit(to))<<15)+1); + } + unsigned int out = from.data_ + (((from.data_>>15)^static_cast(lfrom 0x7C00; } + + /// Check if normal number. + /// **See also:** Documentation for [std::isnormal](https://en.cppreference.com/w/cpp/numeric/math/isnormal). + /// \param arg number to check + /// \retval true if normal number + /// \retval false if either subnormal, zero, infinity or NaN + inline HALF_CONSTEXPR bool isnormal(half arg) { return ((arg.data_&0x7C00)!=0) & ((arg.data_&0x7C00)!=0x7C00); } + + /// Check sign. + /// **See also:** Documentation for [std::signbit](https://en.cppreference.com/w/cpp/numeric/math/signbit). + /// \param arg number to check + /// \retval true for negative number + /// \retval false for positive number + inline HALF_CONSTEXPR bool signbit(half arg) { return (arg.data_&0x8000) != 0; } + + /// \} + /// \anchor compfunc + /// \name Comparison + /// \{ + + /// Quiet comparison for greater than. + /// **See also:** Documentation for [std::isgreater](https://en.cppreference.com/w/cpp/numeric/math/isgreater). + /// \param x first operand + /// \param y second operand + /// \retval true if \a x greater than \a y + /// \retval false else + inline HALF_CONSTEXPR bool isgreater(half x, half y) + { + return ((x.data_^(0x8000|(0x8000-(x.data_>>15))))+(x.data_>>15)) > ((y.data_^(0x8000|(0x8000-(y.data_>>15))))+(y.data_>>15)) && !isnan(x) && !isnan(y); + } + + /// Quiet comparison for greater equal. + /// **See also:** Documentation for [std::isgreaterequal](https://en.cppreference.com/w/cpp/numeric/math/isgreaterequal). + /// \param x first operand + /// \param y second operand + /// \retval true if \a x greater equal \a y + /// \retval false else + inline HALF_CONSTEXPR bool isgreaterequal(half x, half y) + { + return ((x.data_^(0x8000|(0x8000-(x.data_>>15))))+(x.data_>>15)) >= ((y.data_^(0x8000|(0x8000-(y.data_>>15))))+(y.data_>>15)) && !isnan(x) && !isnan(y); + } + + /// Quiet comparison for less than. + /// **See also:** Documentation for [std::isless](https://en.cppreference.com/w/cpp/numeric/math/isless). + /// \param x first operand + /// \param y second operand + /// \retval true if \a x less than \a y + /// \retval false else + inline HALF_CONSTEXPR bool isless(half x, half y) + { + return ((x.data_^(0x8000|(0x8000-(x.data_>>15))))+(x.data_>>15)) < ((y.data_^(0x8000|(0x8000-(y.data_>>15))))+(y.data_>>15)) && !isnan(x) && !isnan(y); + } + + /// Quiet comparison for less equal. + /// **See also:** Documentation for [std::islessequal](https://en.cppreference.com/w/cpp/numeric/math/islessequal). + /// \param x first operand + /// \param y second operand + /// \retval true if \a x less equal \a y + /// \retval false else + inline HALF_CONSTEXPR bool islessequal(half x, half y) + { + return ((x.data_^(0x8000|(0x8000-(x.data_>>15))))+(x.data_>>15)) <= ((y.data_^(0x8000|(0x8000-(y.data_>>15))))+(y.data_>>15)) && !isnan(x) && !isnan(y); + } + + /// Quiet comarison for less or greater. + /// **See also:** Documentation for [std::islessgreater](https://en.cppreference.com/w/cpp/numeric/math/islessgreater). + /// \param x first operand + /// \param y second operand + /// \retval true if either less or greater + /// \retval false else + inline HALF_CONSTEXPR bool islessgreater(half x, half y) + { + return x.data_!=y.data_ && ((x.data_|y.data_)&0x7FFF) && !isnan(x) && !isnan(y); + } + + /// Quiet check if unordered. + /// **See also:** Documentation for [std::isunordered](https://en.cppreference.com/w/cpp/numeric/math/isunordered). + /// \param x first operand + /// \param y second operand + /// \retval true if unordered (one or two NaN operands) + /// \retval false else + inline HALF_CONSTEXPR bool isunordered(half x, half y) { return isnan(x) || isnan(y); } + + /// \} + /// \anchor casting + /// \name Casting + /// \{ + + /// Cast to or from half-precision floating-point number. + /// This casts between [half](\ref half_float::half) and any built-in arithmetic type. The values are converted + /// directly using the default rounding mode, without any roundtrip over `float` that a `static_cast` would otherwise do. + /// + /// Using this cast with neither of the two types being a [half](\ref half_float::half) or with any of the two types + /// not being a built-in arithmetic type (apart from [half](\ref half_float::half), of course) results in a compiler + /// error and casting between [half](\ref half_float::half)s returns the argument unmodified. + /// \tparam T destination type (half or built-in arithmetic type) + /// \tparam U source type (half or built-in arithmetic type) + /// \param arg value to cast + /// \return \a arg converted to destination type + /// \exception FE_INVALID if \a T is integer type and result is not representable as \a T + /// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding + template T half_cast(U arg) { return detail::half_caster::cast(arg); } + + /// Cast to or from half-precision floating-point number. + /// This casts between [half](\ref half_float::half) and any built-in arithmetic type. The values are converted + /// directly using the specified rounding mode, without any roundtrip over `float` that a `static_cast` would otherwise do. + /// + /// Using this cast with neither of the two types being a [half](\ref half_float::half) or with any of the two types + /// not being a built-in arithmetic type (apart from [half](\ref half_float::half), of course) results in a compiler + /// error and casting between [half](\ref half_float::half)s returns the argument unmodified. + /// \tparam T destination type (half or built-in arithmetic type) + /// \tparam R rounding mode to use. + /// \tparam U source type (half or built-in arithmetic type) + /// \param arg value to cast + /// \return \a arg converted to destination type + /// \exception FE_INVALID if \a T is integer type and result is not representable as \a T + /// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding + template T half_cast(U arg) { return detail::half_caster::cast(arg); } + /// \} + + /// \} + /// \anchor errors + /// \name Error handling + /// \{ + + /// Clear exception flags. + /// This function works even if [automatic exception flag handling](\ref HALF_ERRHANDLING_FLAGS) is disabled, + /// but in that case manual flag management is the only way to raise flags. + /// + /// **See also:** Documentation for [std::feclearexcept](https://en.cppreference.com/w/cpp/numeric/fenv/feclearexcept). + /// \param excepts OR of exceptions to clear + /// \retval 0 all selected flags cleared successfully + inline int feclearexcept(int excepts) { detail::errflags() &= ~excepts; return 0; } + + /// Test exception flags. + /// This function works even if [automatic exception flag handling](\ref HALF_ERRHANDLING_FLAGS) is disabled, + /// but in that case manual flag management is the only way to raise flags. + /// + /// **See also:** Documentation for [std::fetestexcept](https://en.cppreference.com/w/cpp/numeric/fenv/fetestexcept). + /// \param excepts OR of exceptions to test + /// \return OR of selected exceptions if raised + inline int fetestexcept(int excepts) { return detail::errflags() & excepts; } + + /// Raise exception flags. + /// This raises the specified floating point exceptions and also invokes any additional automatic exception handling as + /// configured with the [HALF_ERRHANDLIG_...](\ref HALF_ERRHANDLING_ERRNO) preprocessor symbols. + /// This function works even if [automatic exception flag handling](\ref HALF_ERRHANDLING_FLAGS) is disabled, + /// but in that case manual flag management is the only way to raise flags. + /// + /// **See also:** Documentation for [std::feraiseexcept](https://en.cppreference.com/w/cpp/numeric/fenv/feraiseexcept). + /// \param excepts OR of exceptions to raise + /// \retval 0 all selected exceptions raised successfully + inline int feraiseexcept(int excepts) { detail::errflags() |= excepts; detail::raise(excepts); return 0; } + + /// Save exception flags. + /// This function works even if [automatic exception flag handling](\ref HALF_ERRHANDLING_FLAGS) is disabled, + /// but in that case manual flag management is the only way to raise flags. + /// + /// **See also:** Documentation for [std::fegetexceptflag](https://en.cppreference.com/w/cpp/numeric/fenv/feexceptflag). + /// \param flagp adress to store flag state at + /// \param excepts OR of flags to save + /// \retval 0 for success + inline int fegetexceptflag(int *flagp, int excepts) { *flagp = detail::errflags() & excepts; return 0; } + + /// Restore exception flags. + /// This only copies the specified exception state (including unset flags) without incurring any additional exception handling. + /// This function works even if [automatic exception flag handling](\ref HALF_ERRHANDLING_FLAGS) is disabled, + /// but in that case manual flag management is the only way to raise flags. + /// + /// **See also:** Documentation for [std::fesetexceptflag](https://en.cppreference.com/w/cpp/numeric/fenv/feexceptflag). + /// \param flagp adress to take flag state from + /// \param excepts OR of flags to restore + /// \retval 0 for success + inline int fesetexceptflag(const int *flagp, int excepts) { detail::errflags() = (detail::errflags()|(*flagp&excepts)) & (*flagp|~excepts); return 0; } + + /// Throw C++ exceptions based on set exception flags. + /// This function manually throws a corresponding C++ exception if one of the specified flags is set, + /// no matter if automatic throwing (via [HALF_ERRHANDLING_THROW_...](\ref HALF_ERRHANDLING_THROW_INVALID)) is enabled or not. + /// This function works even if [automatic exception flag handling](\ref HALF_ERRHANDLING_FLAGS) is disabled, + /// but in that case manual flag management is the only way to raise flags. + /// \param excepts OR of exceptions to test + /// \param msg error message to use for exception description + /// \throw std::domain_error if `FE_INVALID` or `FE_DIVBYZERO` is selected and set + /// \throw std::overflow_error if `FE_OVERFLOW` is selected and set + /// \throw std::underflow_error if `FE_UNDERFLOW` is selected and set + /// \throw std::range_error if `FE_INEXACT` is selected and set + inline void fethrowexcept(int excepts, const char *msg = "") + { + excepts &= detail::errflags(); + if(excepts & (FE_INVALID|FE_DIVBYZERO)) + throw std::domain_error(msg); + if(excepts & FE_OVERFLOW) + throw std::overflow_error(msg); + if(excepts & FE_UNDERFLOW) + throw std::underflow_error(msg); + if(excepts & FE_INEXACT) + throw std::range_error(msg); + } + /// \} +} + + +#undef HALF_UNUSED_NOERR +#undef HALF_CONSTEXPR +#undef HALF_CONSTEXPR_CONST +#undef HALF_CONSTEXPR_NOERR +#undef HALF_NOEXCEPT +#undef HALF_NOTHROW +#undef HALF_THREAD_LOCAL +#undef HALF_TWOS_COMPLEMENT_INT +#ifdef HALF_POP_WARNINGS + #pragma warning(pop) + #undef HALF_POP_WARNINGS +#endif + +#endif diff --git a/source/main/CMakeLists.txt b/source/main/CMakeLists.txt index ad2e1f4ad7..8508193ac8 100644 --- a/source/main/CMakeLists.txt +++ b/source/main/CMakeLists.txt @@ -141,8 +141,10 @@ set(SOURCE_FILES gui/panels/GUI_VehicleDescription.{h,cpp} gui/panels/GUI_VehicleButtons.{h,cpp} network/DiscordRpc.{h,cpp} + network/NetStats.{h,cpp} network/Network.{h,cpp} network/OutGauge.{h,cpp} + network/RoRnet.h physics/Actor.{h,cpp} physics/ApproxMath.h physics/ActorForcesEuler.cpp diff --git a/source/main/gui/panels/GUI_MultiplayerClientList.cpp b/source/main/gui/panels/GUI_MultiplayerClientList.cpp index 6cd1d9fa48..7ab2bc844c 100644 --- a/source/main/gui/panels/GUI_MultiplayerClientList.cpp +++ b/source/main/gui/panels/GUI_MultiplayerClientList.cpp @@ -65,7 +65,7 @@ void MpClientList::Draw() ImGuiWindowFlags flags = ImGuiWindowFlags_NoCollapse | ImGuiWindowFlags_NoMove | ImGuiWindowFlags_AlwaysAutoResize | ImGuiWindowFlags_NoTitleBar | ImGuiWindowFlags_NoScrollbar; - const float content_width = 200.f; + const float content_width = 300.f; ImGui::SetNextWindowContentWidth(content_width); ImGui::SetNextWindowPos(ImVec2( ImGui::GetIO().DisplaySize.x - (content_width + (2*ImGui::GetStyle().WindowPadding.x) + theme.screen_edge_padding.x), @@ -85,6 +85,8 @@ void MpClientList::Draw() const RoRnet::UserInfo& local_user = m_users[0]; // See `UpdateClients()` for (RoRnet::UserInfo const& user: m_users) { + ImGui::PushID(user.uniqueid); + // Icon sizes: flag(16x11), auth(16x16), up(16x16), down(16x16) bool hovered = false; Ogre::TexturePtr flag_tex; @@ -113,8 +115,18 @@ void MpClientList::Draw() default:; } } + + // net graphs + NetClientStats stats; + App::GetNetwork()->GetUserStats(user.uniqueid, /*out*/stats); + + hovered |= this->DrawPlotSmall("##Time", "", stats.client_time_offset, 40.f); + // Always invoke to keep usernames aligned hovered |= this->DrawIcon(down_tex, ImVec2(8.f, ImGui::GetTextLineHeight())); + hovered |= this->DrawPlotSmall("##Send", "", stats.remote_queue_delay, 25.f); + hovered |= this->DrawPlotSmall("##Recv", "", stats.local_queue_delay, 25.f); + // Always invoke to keep usernames aligned hovered |= this->DrawIcon(up_tex, ImVec2(8.f, ImGui::GetTextLineHeight())); // Auth icon @@ -214,10 +226,18 @@ void MpClientList::Draw() case 2: ImGui::Text("%s", _LC("MultiplayerClientList", "No Trucks loaded")); break; default:; // never happens } + + // Stats + ImGui::Separator(); + this->DrawPlotBig("Time shift (ms)", stats.client_time_offset); + this->DrawPlotBig("Send lag (ms)", stats.remote_queue_delay); + this->DrawPlotBig("Recv lag (ms)", stats.local_queue_delay); } ImGui::EndTooltip(); } + + ImGui::PopID(); //user.uniqueid } if (App::GetNetwork()->GetNetQuality() != 0) @@ -266,3 +286,26 @@ void MpClientList::CacheIcons() m_icons_cached = true; } + +bool MpClientList::DrawPlotSmall(const char* label, const char* overlay_text, NetGraphData& graphdata, float width) +{ + graphdata.ImPlotLines(label, overlay_text, ImVec2(width, ImGui::GetTextLineHeight())); + ImGui::SameLine(); + return ImGui::IsItemHovered(); +} + +void MpClientList::DrawPlotBig(const char* label, NetGraphData& graphdata) +{ + const float PLOT_WIDTH = 125.f; + + // The plot widget + const ImVec2 cursor_start = ImGui::GetCursorPos(); + graphdata.ImPlotLines(label, nullptr, ImVec2(PLOT_WIDTH, 35.f)); + const ImVec2 cursor_end = ImGui::GetCursorPos(); + + // The plot scale text + const ImVec2 scale_pos = cursor_start + ImVec2(PLOT_WIDTH + 5.f, ImGui::GetTextLineHeight() + 2.f); + ImGui::SetCursorPos(scale_pos); + ImGui::TextDisabled("%5.2f - %5.2f", graphdata.plotline_smoothmin, graphdata.plotline_smoothmax); + ImGui::SetCursorPos(cursor_end); +} diff --git a/source/main/gui/panels/GUI_MultiplayerClientList.h b/source/main/gui/panels/GUI_MultiplayerClientList.h index 34ed98490d..09354c022b 100644 --- a/source/main/gui/panels/GUI_MultiplayerClientList.h +++ b/source/main/gui/panels/GUI_MultiplayerClientList.h @@ -28,6 +28,7 @@ #pragma once #include "RoRnet.h" +#include "Network.h" #include #include @@ -43,6 +44,8 @@ class MpClientList private: bool DrawIcon(Ogre::TexturePtr tex, ImVec2 reference_box); // Returns true if hovered + bool DrawPlotSmall(const char* label, const char* overlay_text, NetGraphData& graphdata, float width); + void DrawPlotBig(const char* label, NetGraphData& graphdata); void CacheIcons(); std::vector m_users; // only updated on demand to reduce mutex locking and vector allocating overhead. diff --git a/source/main/main.cpp b/source/main/main.cpp index aaf8b12280..cd60a07bf7 100644 --- a/source/main/main.cpp +++ b/source/main/main.cpp @@ -404,6 +404,7 @@ int main(int argc, char *argv[]) ScriptUnitId_t* id = static_cast(m.payload); App::GetScriptEngine()->unloadScript(*id); delete id; + break; } // -- Network events -- diff --git a/source/main/network/NetStats.cpp b/source/main/network/NetStats.cpp new file mode 100644 index 0000000000..0ef9474dbe --- /dev/null +++ b/source/main/network/NetStats.cpp @@ -0,0 +1,98 @@ +/* + This source file is part of Rigs of Rods + Copyright 2005-2012 Pierre-Michel Ricordel + Copyright 2007-2012 Thomas Fischer + Copyright 2013-2023 Petr Ohlidal + + For more information, see http://www.rigsofrods.org/ + + Rigs of Rods is free software: you can redistribute it and/or modify + it under the terms of the GNU General Public License version 3, as + published by the Free Software Foundation. + + Rigs of Rods is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License + along with Rigs of Rods. If not, see . +*/ + +#ifdef USE_SOCKETW + +#include "Network.h" + +#include "Application.h" +#include "ChatSystem.h" +#include "Console.h" +#include "ErrorUtils.h" +#include "GameContext.h" +#include "GUIManager.h" +#include "GUI_TopMenubar.h" +#include "Language.h" +#include "RoRVersion.h" +#include "ScriptEngine.h" +#include "Utils.h" + +#include +#include + +#include +#include +#include + +using namespace RoR; + +NetGraphData::NetGraphData(size_t size) +{ + plotline.resize(size, RoRnet::NetTime32_t(0)); +} + +void NetGraphData::AddSample(RoRnet::NetTime32_t sample) +{ + plotline.erase(plotline.begin()); + plotline.push_back(sample); + const auto minmax = std::minmax_element(plotline.begin(), plotline.end()); + plotline_min = *minmax.first; + plotline_max = *minmax.second; + + // smooth scale + const float SMOOTH_UP = 0.4f; + const float SMOOTH_DOWN = 0.05f; + + const float fmin = static_cast(*minmax.first); + if (fmin < plotline_smoothmin) + plotline_smoothmin = fmin * SMOOTH_UP + plotline_smoothmin * (1.f - SMOOTH_UP); + else + plotline_smoothmin = fmin * SMOOTH_DOWN + plotline_smoothmin * (1.f - SMOOTH_DOWN); + + const float fmax = static_cast(*minmax.second); + if (fmax > plotline_smoothmax) + plotline_smoothmax = fmax * SMOOTH_UP + plotline_smoothmax * (1.f - SMOOTH_UP); + else + plotline_smoothmax = fmax * SMOOTH_DOWN + plotline_smoothmax * (1.f - SMOOTH_DOWN); +} + +// static +float NetGraphData::ImPlotGetSample(void* data, int idx) +{ + NetGraphPlotline* plotline = static_cast(data); + return static_cast(plotline->at(idx)); +} + +void NetGraphData::ImPlotLines(const char* label, const char* overlay_text, ImVec2 size) +{ + ImGui::PlotLines( + label, + NetGraphData::ImPlotGetSample, + static_cast(&plotline), + static_cast(plotline.size()), + /*values_offset:*/0, + overlay_text, + plotline_smoothmin, + plotline_smoothmax, + size); +} + +#endif // USE_SOCKETW diff --git a/source/main/network/NetStats.h b/source/main/network/NetStats.h new file mode 100644 index 0000000000..82c6819d30 --- /dev/null +++ b/source/main/network/NetStats.h @@ -0,0 +1,63 @@ +/* + This source file is part of Rigs of Rods + Copyright 2005-2012 Pierre-Michel Ricordel + Copyright 2007-2012 Thomas Fischer + Copyright 2013-2023 Petr Ohlidal + + For more information, see http://www.rigsofrods.org/ + + Rigs of Rods is free software: you can redistribute it and/or modify + it under the terms of the GNU General Public License version 3, as + published by the Free Software Foundation. + + Rigs of Rods is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License + along with Rigs of Rods. If not, see . +*/ + +#pragma once + +#ifdef USE_SOCKETW + +#include "Application.h" +#include "OgreImGui.h" +#include "RoRnet.h" + +namespace RoR { + +/// @addtogroup Network +/// @{ + +typedef std::vector NetGraphPlotline; + +struct NetGraphData +{ + NetGraphPlotline plotline; + RoRnet::NetTime32_t plotline_max = 0; + RoRnet::NetTime32_t plotline_min = 0; + float plotline_smoothmax = 0.f; + float plotline_smoothmin = 0.f; + + NetGraphData(size_t size); + + void AddSample(RoRnet::NetTime32_t sample); + static float ImPlotGetSample(void* data, int idx); + void ImPlotLines(const char* label, const char* overlay_text, ImVec2 size); +}; + +struct NetClientStats +{ + NetGraphData remote_queue_delay = NetGraphData(20); //!< How long it takes remote client to transmit outgoing packet. + NetGraphData local_queue_delay = NetGraphData(20); //!< How long it takes us to process received packet. + NetGraphData client_time_offset = NetGraphData(40); //!< Difference between client timers; we monitor it's stability. +}; + +/// @} //addtogroup Network + +} // namespace RoR + +#endif // USE_SOCKETW diff --git a/source/main/network/Network.cpp b/source/main/network/Network.cpp index 25d603bfa8..42e3ec01f1 100644 --- a/source/main/network/Network.cpp +++ b/source/main/network/Network.cpp @@ -2,7 +2,7 @@ This source file is part of Rigs of Rods Copyright 2005-2012 Pierre-Michel Ricordel Copyright 2007-2012 Thomas Fischer - Copyright 2013-2016 Petr Ohlidal + Copyright 2013-2023 Petr Ohlidal For more information, see http://www.rigsofrods.org/ @@ -167,7 +167,8 @@ void Network::QueueStreamData(RoRnet::Header &header, char *buffer, size_t buffe memcpy(packet.buffer, buffer, std::min(buffer_len, size_t(RORNET_MAX_MESSAGE_LENGTH))); std::lock_guard lock(m_recv_packetqueue_mutex); - m_recv_packet_buffer.push_back(packet); + packet.recv_queue_time = m_recv_packet_timer.getMilliseconds(); + m_recv_packet_buffer.push_back(packet); } int Network::ReceiveMessage(RoRnet::Header *head, char* content, int bufferlen) @@ -228,6 +229,7 @@ void Network::SendThread() break; } packet = m_send_packet_buffer.front(); + packet.GetHeader()->source_send_time = m_send_packet_timer.getMilliseconds(); m_send_packet_buffer.pop_front(); } SendMessageRaw(packet.buffer, packet.size); @@ -552,6 +554,8 @@ bool Network::ConnectThread() m_shutdown = false; LOG("[RoR|Networking] Connect(): Creating Send/Recv threads"); + m_send_packet_timer.reset(); + m_recv_packet_timer.reset(); m_send_thread = std::thread(&Network::SendThread, this); m_recv_thread = std::thread(&Network::RecvThread, this); PushNetMessage(MSG_NET_CONNECT_SUCCESS, ""); @@ -614,18 +618,15 @@ void Network::AddPacket(int streamid, int type, int len, const char *content) } NetSendPacket packet; - memset(&packet, 0, sizeof(NetSendPacket)); - - char *buffer = (char*)(packet.buffer); - - RoRnet::Header *head = (RoRnet::Header *)buffer; - head->command = type; - head->source = m_uid; - head->size = len; - head->streamid = streamid; + + // fill in the header + packet.GetHeader()->command = type; + packet.GetHeader()->source = m_uid; + packet.GetHeader()->size = len; + packet.GetHeader()->streamid = streamid; // then copy the contents - char *bufferContent = (char *)(buffer + sizeof(RoRnet::Header)); + char *bufferContent = (char *)(packet.buffer + sizeof(RoRnet::Header)); memcpy(bufferContent, content, len); // record the packet size @@ -633,6 +634,7 @@ void Network::AddPacket(int streamid, int type, int len, const char *content) { // Lock scope std::lock_guard lock(m_send_packetqueue_mutex); + if (type == MSG2_STREAM_DATA_DISCARDABLE) { if (m_send_packet_buffer.size() > m_packet_buffer_size) @@ -651,6 +653,7 @@ void Network::AddPacket(int streamid, int type, int len, const char *content) } } //DebugPacket("send", head, buffer); + packet.GetHeader()->source_queue_time = m_send_packet_timer.getMilliseconds(); m_send_packet_buffer.push_back(packet); } @@ -674,6 +677,19 @@ std::vector Network::GetIncomingStreamData() std::lock_guard lock(m_recv_packetqueue_mutex); std::vector buf_copy = m_recv_packet_buffer; m_recv_packet_buffer.clear(); + + // update stats (graphs) + // TODO: this should be done _after_ the packets get pruned in `HandleActorStreamData()` + // - that logic should be moved here so that characters benefit too. + for (const NetRecvPacket& packet: buf_copy) + { + const RoRnet::NetTime32_t cur_time = m_recv_packet_timer.getMilliseconds(); + NetClientStats& stats = m_recv_client_stats[packet.header.source]; + stats.remote_queue_delay.AddSample(packet.header.source_send_time - packet.header.source_queue_time); + stats.local_queue_delay.AddSample(cur_time - packet.recv_queue_time); + stats.client_time_offset.AddSample(cur_time - packet.header.source_queue_time); + } + return buf_copy; } @@ -770,6 +786,18 @@ bool Network::FindUserInfo(std::string const& username, RoRnet::UserInfo &result return false; } +bool Network::GetUserStats(int uid, NetClientStats& result) +{ + std::lock_guard lock(m_recv_packetqueue_mutex); + const auto it = m_recv_client_stats.find(uid); + const bool found = it != m_recv_client_stats.end(); + if (found) + { + result = it->second; + } + return found; +} + void Network::BroadcastChatMsg(const char* msg) { AddPacket(m_stream_id, RoRnet::MSG2_UTF8_CHAT, (int)std::strlen(msg), msg); diff --git a/source/main/network/Network.h b/source/main/network/Network.h index 4ba0339f4f..356321208c 100644 --- a/source/main/network/Network.h +++ b/source/main/network/Network.h @@ -2,7 +2,7 @@ This source file is part of Rigs of Rods Copyright 2005-2012 Pierre-Michel Ricordel Copyright 2007-2012 Thomas Fischer - Copyright 2013-2016 Petr Ohlidal + Copyright 2013-2023 Petr Ohlidal For more information, see http://www.rigsofrods.org/ @@ -24,6 +24,7 @@ #ifdef USE_SOCKETW #include "Application.h" +#include "NetStats.h" #include "RoRnet.h" #include @@ -80,13 +81,16 @@ struct NetCharacterMsgAttach struct NetSendPacket { - char buffer[RORNET_MAX_MESSAGE_LENGTH]; - int size; + char buffer[RORNET_MAX_MESSAGE_LENGTH] = {}; + int size = 0; + + RoRnet::Header* const GetHeader() { return reinterpret_cast(buffer); } }; struct NetRecvPacket { RoRnet::Header header; + RoRnet::NetTime32_t recv_queue_time; char buffer[RORNET_MAX_MESSAGE_LENGTH]; }; @@ -119,6 +123,7 @@ class Network bool GetDisconnectedUserInfo(int uid, RoRnet::UserInfo &result); bool GetAnyUserInfo(int uid, RoRnet::UserInfo &result); //!< Also considers local client bool FindUserInfo(std::string const& username, RoRnet::UserInfo &result); + bool GetUserStats(int uid, NetClientStats& result); Ogre::ColourValue GetPlayerColor(int color_num); void BroadcastChatMsg(const char* msg); @@ -164,17 +169,26 @@ class Network std::string m_status_message; std::atomic m_shutdown; std::atomic m_net_quality; - int m_stream_id = 10; + int m_stream_id = 10; //!< Counter std::mutex m_users_mutex; std::mutex m_userdata_mutex; - std::mutex m_recv_packetqueue_mutex; - std::mutex m_send_packetqueue_mutex; - - std::condition_variable m_send_packet_available_cv; - + + /// @name Threadsafe send packet queue + /// { + std::mutex m_send_packetqueue_mutex; + std::condition_variable m_send_packet_available_cv; + std::deque m_send_packet_buffer; + Ogre::Timer m_send_packet_timer; //!< In sync with `m_recv_packet_timer` + /// } + + /// @name Threadsafe recv packet queue + stats + /// { + std::mutex m_recv_packetqueue_mutex; std::vector m_recv_packet_buffer; - std::deque m_send_packet_buffer; + Ogre::Timer m_recv_packet_timer; //!< In sync with `m_send_packet_timer` + std::unordered_map m_recv_client_stats; + /// } }; /// @} //addtogroup Network diff --git a/source/main/network/RoRnet.h b/source/main/network/RoRnet.h index 96e584592d..f998cb53f3 100644 --- a/source/main/network/RoRnet.h +++ b/source/main/network/RoRnet.h @@ -1,8 +1,9 @@ /* This file is part of Rigs of Rods - Copyright 2007 Pierre-Michel Ricordel - Copyright 2014+ Petr Ohlidal & contributors. + Copyright 2007 Pierre-Michel Ricordel + Copyright 2014-2017 Ulteq + Copyright 2020-2023 Petr Ohlidal Rigs of Rods is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by @@ -30,10 +31,12 @@ namespace RoRnet { #define RORNET_MAX_PEERS 64 //!< maximum clients connected at the same time #define RORNET_MAX_MESSAGE_LENGTH 8192 //!< maximum size of a RoR message. 8192 bytes = 8 kibibytes #define RORNET_LAN_BROADCAST_PORT 13000 //!< port used to send the broadcast announcement in LAN mode -#define RORNET_MAX_USERNAME_LEN 40 //!< port used to send the broadcast announcement in LAN mode +#define RORNET_MAX_USERNAME_LEN 40 //!< bytes. #define RORNET_VERSION "RoRnet_2.44" +typedef uint32_t NetTime32_t; //!< Milliseconds + enum MessageType { MSG2_HELLO = 1025, //!< client sends its version as first message @@ -67,7 +70,10 @@ enum MessageType MSG2_STREAM_DATA_DISCARDABLE, //!< stream data that is allowed to be discarded // Legacy values (RoRnet_2.38 and earlier) - MSG2_WRONG_VER_LEGACY = 1003 //!< Wrong version + MSG2_WRONG_VER_LEGACY = 1003, //!< Wrong version + + // Special values + MSG2_INVALID = 0 //!< Not to be transmitted }; enum UserAuth @@ -131,32 +137,37 @@ enum Lightmask struct Header //!< Common header for every packet { - uint32_t command; //!< the command of this packet: MSG2_* - int32_t source; //!< source of this command: 0 = server - uint32_t streamid; //!< streamid for this command - uint32_t size; //!< size of the attached data block + uint32_t command; //!< the command of this packet: MSG2_* + int32_t source; //!< client who sent this command: 0 = server + NetTime32_t source_queue_time; //!< client time when queuing packet for sending + NetTime32_t source_send_time; //!< client time when actually sending the packet + uint32_t streamid; //!< streamid for this command + uint32_t size; //!< size of the attached data block + }; struct StreamRegister //!< Sent from the client to server and vice versa, to broadcast a new stream { - int32_t type; //!< stream type + int32_t type; //!< 0 = Actor, 1 = Character, 3 = ChatSystem int32_t status; //!< initial stream status int32_t origin_sourceid; //!< origin sourceid int32_t origin_streamid; //!< origin streamid - char name[128]; //!< the actor filename + char name[128]; //!< file name char data[128]; //!< data used for stream setup }; -struct ActorStreamRegister +struct ActorStreamRegister //!< Must preserve mem. layout of RoRnet::StreamRegister { - int32_t type; //!< stream type + // RoRnet::StreamRegister: Common + int32_t type; //!< 0 int32_t status; //!< initial stream status int32_t origin_sourceid; //!< origin sourceid int32_t origin_streamid; //!< origin streamid - char name[128]; //!< filename + char name[128]; //!< truck file name + // RoRnet::StreamRegister: Data buffer (128B) int32_t bufferSize; //!< initial stream status int32_t time; //!< initial time stamp - char skin[60]; //!< skin + char skin[60]; //!< skin char sectionconfig[60]; //!< section configuration }; diff --git a/source/main/physics/Actor.cpp b/source/main/physics/Actor.cpp index 2aedda3f2b..32be819d00 100644 --- a/source/main/physics/Actor.cpp +++ b/source/main/physics/Actor.cpp @@ -68,6 +68,7 @@ #include "VehicleAI.h" #include "Water.h" #include +#include "half/half.hpp" #include #include @@ -504,8 +505,8 @@ void Actor::calcNetwork() App::GetGameContext()->GetActorManager()->UpdateNetTimeOffset(ar_net_source_id, +1); } - short* sp1 = (short*)(netb1 + sizeof(float) * 3); - short* sp2 = (short*)(netb2 + sizeof(float) * 3); + half_float::half* halfb1 = reinterpret_cast(netb1 + sizeof(float) * 3); + half_float::half* halfb2 = reinterpret_cast(netb2 + sizeof(float) * 3); Vector3 p1ref = Vector3::ZERO; Vector3 p2ref = Vector3::ZERO; Vector3 p1 = Vector3::ZERO; @@ -528,18 +529,14 @@ void Actor::calcNetwork() } else { - // all other nodes are compressed: - // short int compared to previous node - p1.x = (float)(sp1[(i - 1) * 3 + 0]) / m_net_node_compression; - p1.y = (float)(sp1[(i - 1) * 3 + 1]) / m_net_node_compression; - p1.z = (float)(sp1[(i - 1) * 3 + 2]) / m_net_node_compression; - p1 = p1 + p1ref; - - p2.x = (float)(sp2[(i - 1) * 3 + 0]) / m_net_node_compression; - p2.y = (float)(sp2[(i - 1) * 3 + 1]) / m_net_node_compression; - p2.z = (float)(sp2[(i - 1) * 3 + 2]) / m_net_node_compression; - p2 = p2 + p2ref; - } + // all other nodes are compressed as half-floats (2 bytes) + const int bufpos = (i - 1) * 3; + const Vector3 p1rel(halfb1[bufpos + 0], halfb1[bufpos + 1], halfb1[bufpos + 2]); + const Vector3 p2rel(halfb2[bufpos + 0], halfb2[bufpos + 1], halfb2[bufpos + 2]); + + p1 = p1ref + p1rel; + p2 = p2ref + p2rel; + } // linear interpolation ar_nodes[i].AbsPosition = p1 + tratio * (p2 - p1); @@ -1928,7 +1925,7 @@ void Actor::sendStreamData() exit(126); } - char send_buffer[8192] = {0}; + char send_buffer[RORNET_MAX_MESSAGE_LENGTH] = {0}; unsigned int packet_len = 0; @@ -2013,16 +2010,16 @@ void Actor::sendStreamData() ptr += sizeof(float) * 3;// plus 3 floats from above - // then copy the other nodes into a compressed short format - short* sbuf = (short*)ptr; + // then copy the other nodes into a compressed half_float format + half_float::half* sbuf = (half_float::half*)ptr; for (i = 1; i < m_net_first_wheel_node; i++) { - Vector3 relpos = ar_nodes[i].AbsPosition - refpos; - sbuf[(i - 1) * 3 + 0] = (short int)(relpos.x * m_net_node_compression); - sbuf[(i - 1) * 3 + 1] = (short int)(relpos.y * m_net_node_compression); - sbuf[(i - 1) * 3 + 2] = (short int)(relpos.z * m_net_node_compression); + Ogre::Vector3 relpos = ar_nodes[i].AbsPosition - ar_nodes[0].AbsPosition; + sbuf[(i-1) * 3 + 0] = static_cast(relpos.x); + sbuf[(i-1) * 3 + 1] = static_cast(relpos.y); + sbuf[(i-1) * 3 + 2] = static_cast(relpos.z); - ptr += sizeof(short int) * 3; // increase pointer + ptr += sizeof(half_float::half) * 3; // increase pointer } // then to the wheels diff --git a/source/main/physics/Actor.h b/source/main/physics/Actor.h index 6151448ff5..2697fcb5b4 100644 --- a/source/main/physics/Actor.h +++ b/source/main/physics/Actor.h @@ -575,7 +575,6 @@ class Actor : public ZeroedMemoryAllocator, public RefCountingObject size_t m_net_wheel_buf_size; //!< For incoming/outgoing traffic; calculated on spawn size_t m_net_propanimkey_buf_size; //!< For incoming/outgoing traffic; calculated on spawn size_t m_net_total_buffer_size; //!< For incoming/outgoing traffic; calculated on spawn - float m_net_node_compression; //!< For incoming/outgoing traffic; calculated on spawn int m_net_first_wheel_node; //!< Network attr; Determines data buffer layout; calculated on spawn Ogre::UTFString m_net_username; diff --git a/source/main/physics/ActorManager.cpp b/source/main/physics/ActorManager.cpp index 3274ddc136..ba6af3e89a 100644 --- a/source/main/physics/ActorManager.cpp +++ b/source/main/physics/ActorManager.cpp @@ -102,15 +102,6 @@ ActorPtr ActorManager::CreateNewActor(ActorSpawnRequest rq, RigDef::DocumentPtr actor->UpdateBoundingBoxes(); // (records the unrotated dimensions for 'veh_aab_size') - if (App::mp_state->getEnum() == RoR::MpState::CONNECTED) - { - // Calculate optimal node position compression (for network transfer) - Vector3 aabb_size = actor->ar_bounding_box.getSize(); - float max_dimension = std::max(1.0f, aabb_size.x); - max_dimension = std::max(max_dimension, aabb_size.y); - max_dimension = std::max(max_dimension, aabb_size.z); - actor->m_net_node_compression = std::numeric_limits::max() / std::ceil(max_dimension * 1.5f); - } // Apply spawn position & spawn rotation for (int i = 0; i < actor->ar_num_nodes; i++) { @@ -361,8 +352,10 @@ void ActorManager::HandleActorStreamData(std::vector packet_ // Compress data stream by eliminating all but the last update from every consecutive group of stream data updates auto it = std::unique(packet_buffer.rbegin(), packet_buffer.rend(), [](const RoR::NetRecvPacket& a, const RoR::NetRecvPacket& b) - { return !memcmp(&a.header, &b.header, sizeof(RoRnet::Header)) && - a.header.command == RoRnet::MSG2_STREAM_DATA; }); + { return a.header.command == RoRnet::MSG2_STREAM_DATA + && a.header.source == b.header.source + && a.header.streamid == b.header.streamid; + }); packet_buffer.erase(packet_buffer.begin(), it.base()); for (auto& packet : packet_buffer) {