-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_specgram.py
132 lines (116 loc) · 3.97 KB
/
train_specgram.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
from __future__ import print_function
import os
import random
import numpy as np
# np.random.seed(510) # for reproducibility
import scipy
from keras.applications import Xception, VGG16
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation, Flatten
from keras.applications.inception_v3 import InceptionV3
from keras.preprocessing import image
from keras.models import Model
from keras.layers import Dense, GlobalAveragePooling2D, Conv2D, MaxPooling2D
from keras import backend as K, Input
from PIL import Image
from keras.utils.vis_utils import plot_model
from keras_preprocessing.image import ImageDataGenerator
from matplotlib import pyplot as plt
# os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
# os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
#######################################################################################################################
batch_size = 60 # 每批多少张图
nb_classes = 2 # 分多少类
nb_epoch = 5 # 迭代次数
width = 256
height = 256
input_shape = (256, 256, 3)
input_size = (256, 256)
model_name="model/specgram/save_model.h5"
struct_name="model/specgram/save_struct.h5"
weights_name="model/specgram/save_weights.h5"
# *************** ImageDataGenerator *************** #
train_dir = r'./data_set/specgram/train/'
validation_dir = r'./data_set/specgram/test/'
# 训练集数据增强
train_datagen = ImageDataGenerator(
rescale=1. / 255,
# rotation_range=40,
# width_shift_range=0.2,#0.2,
# height_shift_range=0.2,
# shear_range=0.2,
# zoom_range=0.2,
# horizontal_flip=True,
)
# 测试集
test_datagen = ImageDataGenerator(rescale=1. / 255)
train_generator = train_datagen.flow_from_directory(
# 目标文件夹
train_dir,
# 规范化图片大小
target_size=input_size,
batch_size=batch_size,
# shuffle=False,
# 二分类
# class_mode='binary'
)
validation_generator = test_datagen.flow_from_directory(
validation_dir,
target_size=input_size,
batch_size=batch_size,
shuffle=False,
# class_mode='binary'
)
train_sum = len(train_generator.filenames)
vali_sum = len(validation_generator.filenames)
model = Sequential()
input=(Input(input_shape,name='input'))
x=Conv2D(64, (3, 3), padding="same", activation="relu", name='conv1')(input)
x=MaxPooling2D(pool_size=(2, 2), strides=(2, 2), name="pool1")(x)
x=Conv2D(128, (3, 3), padding="same", activation="relu", name="conv2")(x)
x=MaxPooling2D(pool_size=(4, 4), strides=(4, 4), name="pool2")(x)
x=Dropout(0.25)(x)
x=Conv2D(256, (3, 3), padding="same", activation="relu", name="conv3")(x)
x=MaxPooling2D(pool_size=(4, 4), strides=(4, 4), name="pool3")(x)
x=Dropout(0.25)(x)
x=Conv2D(512, (3, 3), padding="same", activation="relu", name="conv4")(x)
x=MaxPooling2D(pool_size=(4, 4), strides=(4, 4), name="pool4")(x)
x=Dropout(0.25)(x)
x=Flatten()(x)
x=Dense(128, activation="relu", name="fc1")(x)
x=Dropout(0.5)(x)
output=Dense(nb_classes, activation="softmax", name="fc2")(x)
model=Model(inputs=input,outputs=output,name="net")
model.compile(loss="categorical_crossentropy", optimizer="Adam", metrics=["acc"])
file = open(struct_name,"w")
file.write(model.to_json())
file.close()
history = model.fit_generator(
train_generator,
steps_per_epoch=train_sum / batch_size,
epochs=nb_epoch,
validation_data=validation_generator,
validation_steps=vali_sum / batch_size,
)
'''画图'''
# summarize history for accuracy
plt.plot(history.history['acc'])
plt.plot(history.history['val_acc'])
plt.title('model accuracy')
plt.ylabel('accuracy')
plt.xlabel('epoch')
plt.legend(['train', 'test'], loc='upper left')
plt.savefig("model/specgram/specgram_acc.png")
plt.cla()
# summarize history for loss
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('model loss')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(['train', 'test'], loc='upper left')
plt.savefig("model/specgram/specgram_loss.png")
plt.cla()
model.save(model_name)
model.save_weights(weights_name)